

Plan Contents

18 AAC 75.448(a)

As required, by 18 Alaska Administrative Code (AAC) 75.448(a), this plan was written to:

- Be usable as a working plan for oil discharge control, containment, cleanup, and disposal;
- Contain enough information, analyses, supporting data, and documentation to demonstrate the ability of Delta Western, LLC (DW) to meet the requirements of Alaska Statute (AS) 46.04.030, AS 46.04.055(c)(2), and 18 AAC 75.400 – 18 AAC 75.495;
- Demonstrate that the personnel, equipment, and other resources identified in the plan are sufficient for meeting each response planning standard (RPS) applicable for each facility in the plan; and
- Take into account realistic maximum operating limitations and their effects on response capability and the deployment of resources.

Greatest Possible Discharge

18 AAC 75.448(b)

DW considers the greatest possible discharge (GPD) that could occur at the facility covered by this plan to be the facility's total oil storage of **418442,814** gallons¹. The general procedures to respond to a discharge of this magnitude are described throughout this plan and addressed specifically in Section 1.8.

Field Constructed Aboveground Storage Tank (FCAST) Total	408,259	gallons
Shop Fabricated Aboveground Storage Tank (SFAST) Total	10,000	gallons
ISO Tank Total²	24,000	gallons
Piping Total	555	gallons
Facility Total / GPD	418,81442,814	gallons

¹ The volume presented here assumes the full capacity (100%) of every aboveground storage tank of 1,000 gallons or greater plus the full capacity (100%) of every component of facility oil piping, and assumes the complete and utter failure of all containment capacity. In reality, DW does not fill tanks to full capacity (100%) and the conditions that would result in the catastrophic failure of every aboveground storage tank, all facility oil piping, and all containment structures are few.

² ISO tanks stored onsite temporarily to meet operational needs are included in the table above. Once they are no longer needed, this CPLAN will be amended to remove these from the facility total capacity. The number provided is based on four (4) ISO tanks with a maximum capacity of 6,000 gallons each.

Table of Contents

The table of contents provides a structured guide for navigating this document. Certain tables, figures, forms, and other embedded elements are assigned page numbers. While in most cases these page numbers appear on the pages, some do not.

Certificate of Approval.....	i
Plan Contents.....	ii
Greatest Possible Discharge.....	ii
Cover Page	iv ⁱⁱⁱ
Plan Organization.....	iv ⁱⁱⁱ
Table of Contents.....	v ^v
Cross-Reference Table.....	ix ^{viii}
1 Response Action Plan	1-1
1.1 Emergency Action Checklist	1-1
1.2 Reporting and Notification	1-2
Table 1-1: Designated QI Names & Phone Numbers	1-3
Table 1-2A: Regulatory Reporting Thresholds	1-4
Table 1-2B: Government Agency Phone Numbers.....	1-5
Table 1-2C: Potentially Impacted Groups Contacts	1-6
1.3 Safety Plan	1-7
1.4 Communications Procedures	1-8 ¹⁻⁷
Table 1-3: VHF Radio Channel & Frequency Guide.....	1-9 ¹⁻⁸
1.5 Deployment Strategies	1-10 ¹⁻⁹
1.6 Response Scenario.....	1-11 ¹⁻¹⁰
1.7 Facility Diagrams.....	1-12 ¹⁻¹¹
Figure 1-1: General Vicinity Map	1-13 ¹⁻¹²
Figure 1-2: Facility Site Layout.....	1-14 ¹⁻¹³
Figure 1-3: Facility Contour Map.....	1-15 ¹⁻¹⁴
Figure 1-4: Tank Farm Fire Control Map.....	1-16 ¹⁻¹⁵
Figure 1-5: Detailed Piping Diagram.....	1-17 ¹⁻¹⁶
1.8 General Procedures for Greatest Possible Discharge	1-18 ¹⁻¹⁷
2 Prevention Plan	2-1

	Oil Discharge Prevention & Contingency Plan (CPLAN)	
	Document Number	SIT-CPLAN-01; Rev. 0
	Revision Date	August December 2025

2.1	Discharge Prevention Programs	2-2
2.1.1	Oil Discharge Prevention.....	2-3
2.1.1.1	Persons to be Trained.....	2-3
	Table 2-1: Personnel Training Program Matrix	2-5
2.1.1.2	Documentation of Training	2-7
2.1.2	Inspection and Maintenance	2-7
2.1.3	Substance Abuse and Medical Monitoring	2-8
2.1.4	Security and Surveillance.....	2-8
2.1.5	Procedures for Loading / Transfer.....	2-9
2.1.5.1	Spill and Overfill Prevention.....	2-9
2.1.5.2	Tank Cleaning Operations Prohibited	2-10
2.1.5.3	Personnel Communication.....	2-10
2.1.5.4	Positive Means to Stop Transfer	2-10
2.1.5.5	Areas not Protected by Secondary Containment	2-11
2.1.5.6	Tank Cars and Tank Trucks	2-11
2.1.5.7	Shore-to-Vessel Transfers	2-11
2.1.6	Facility Description and Operational Overview.....	2-12
	Table 2-2: ASTs >10,000 Gallons	2-13
	Table 2-3: ASTs >1,000 and ≤10,000 Gallons	2-14
2.1.6.1	Field-Constructed Aboveground Oil Storage Tanks (FCASTs)	2-15
	Table 2-4: FCAST Summary	2-17
	Table 2-5: FCAST Inspection Schedule.....	2-19
2.1.6.2	Shop-Fabricated Aboveground Oil Storage Tanks (SFASTs)	2-21
	Table 2-6: SFAST Summary	<u>2-23</u> <u>2-22</u>
	Table 2-7: SFAST Inspection Schedule	<u>2-25</u> <u>2-24</u>
2.1.6.3	Secondary Containment Structures	<u>2-26</u> <u>2-25</u>
	Table 2-8: Facility SCA Summary	<u>2-28</u> <u>2-27</u>
2.1.6.4	Facility Oil Piping	<u>2-31</u> <u>2-30</u>
	Table 2-9: Facility Oil Piping Summary	<u>2-32</u> <u>2-31</u>
	Table 2-10: Piping Inspection Schedule	<u>2-34</u> <u>2-33</u>
2.2	Facility Discharge History	<u>2-35</u> <u>2-34</u>
	Table 2-11: Discharge History	<u>2-36</u> <u>2-35</u>

	Oil Discharge Prevention & Contingency Plan (CPLAN)	
	Document Number	SIT-CPLAN-01; Rev. 0
	Revision Date	August December 2025

2.3	Potential Discharge Analysis	2-372-36
	Table 2-12: Potential Discharge Analysis.....	2-382-37
2.4	Specific Conditions	2-392-38
	Table 2-13: Specific Conditions.....	2-402-39
2.5	Discharge Detection	2-412-40
3	Supplemental Information	3-1
3.1	Receiving Environment	3-1
	Table 3-1: Percentage of Adj RPS Remaining on Land (ADNR, 2024)	3-3
3.2	Command System.....	3-4
	Figure 3-1: Incident Command System Diagram.....	3-6
3.3	Realistic Maximum Response Operating Limitation Summary	3-7
	Table 3-2: Realistic Max Response Operating Limits	3-8
3.4	Logistical Support.....	3-9
	Table 3-3: Logistical Support.....	3-10
3.5	Response Equipment.....	3-11
3.6	Response Equipment Specifications	3-11
3.7	Primary Response Action Contractor.....	3-133-12
	Certificate 3-1: Statement of Contractual Terms between DW and PRAC/OSRO.	3-143-13
3.8	Training for Discharge Response Personnel	3-153-14
3.9	Environmentally Sensitive Areas and Areas of Public Concern.....	3-153-14
	GRS 3-1: Middle Island, SE05-11 (ADEC, 2003)	3-173-16
	GRS 3-2: Starrigavan Bay, SE05-20 (ADEC, 2014).....	3-193-18
	Table 3-4: Potential Areas of Concern (ADEC, 2019) (ARRT, 2023).....	3-213-20
	Table 3-5: Anadromous Streams & Species (ADF&G, 2021)	3-223-21
	Figure 3-2: Anadromous Waters Atlas Map – Quad 008 (SIT)	3-233-22
	Table 3-6: Product Toxicity Summary (ADEC, 2024)	3-243-23
	Figure 3-3: Environmental Resource Seasonality – SIT (NOAA, 2001)	3-253-24
	Figure 3-4: Environmental Sensitivity Index Map – Sitka A-5(NOAA, 2001)	3-263-25
3.10	List of Resources for Greatest Possible Discharge	3-273-26
3.11	Additional Information	3-273-26
3.12	Bibliography	3-283-27

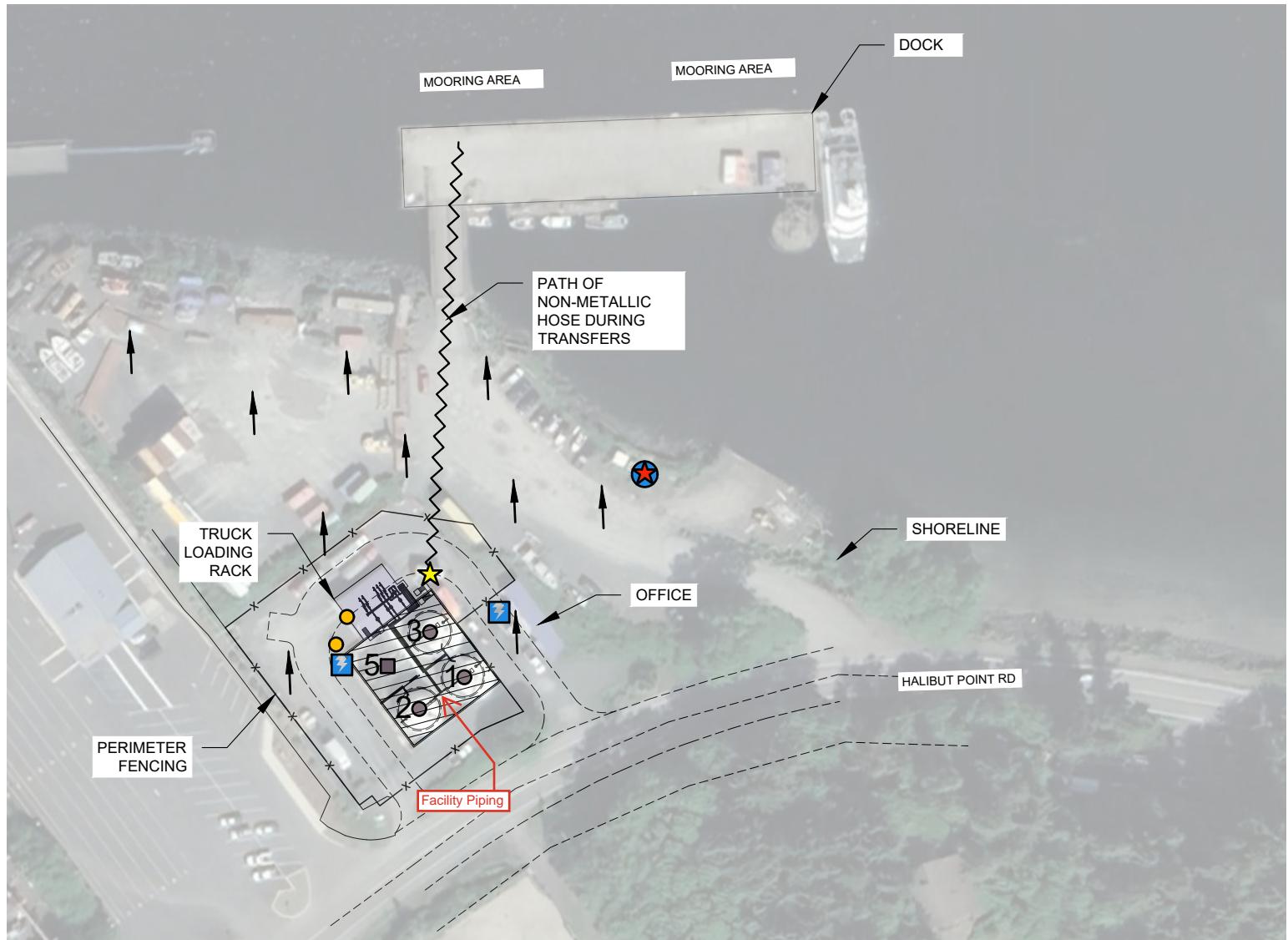
Table 1-1: Designated QI Names & Phone Numbers

Primary	Cell Phone Number	Office Phone Number
Christina Bentz	907-331-8075	907-265-3836
Wyatt Morgan	907-280-8038	907-265-3825
Garret Lyons	907-841-5348	907-265-3838
Dominic Masinelli	907-351-5862	
Samantha Hinze	907-231-3533	
Ben Collins	907-341-7516	

Table 1-2B: Government Agency Phone Numbers

Type	Entity Name	Phone #	Phone # Notes
Emergency Planning	Emergency Planning	907-225-9616	
Emergency Planning	Local Emergency Planning Committee (LEPC)	907-747-1811	
Emergency Planning	SERC	907-428-7000	
Federal Agency	CG Marine Safety Detachment (MSD) Sitka	907-966-5454	
Federal Agency	CG Sector Juneau	907-463-2980	
Federal Agency	EPA Anchorage	907-271-5083	
Federal Agency	EPA Region 10	206-553-1263	
Federal Agency	US Fish & Wildlife Service (USF&W)	907-242-6893	
Federal Agency	US National Marine Fisheries (NMFS)	907-957-8147	907-271-5006 or 323-366-9150
State Agency	ADEC Southeast Region Day Time Reporting	907-465-5340	
State Agency	ADEC After Hours	1-800-478-9300	
State Agency	Alaska Department of Natural Resources (ADNR) Office of History and Archeology	907-269-8728	or 907-269-8718
State Agency	Alaska Department of Natural Resources (ADNR) Office of History and Archeology	907-269-8721	OHA Desk
State Agency	Alaska Department of Natural Resources (ADNR) Statewide Abatement of Impaired Land	907-465-3513	907-465-3400 or 907-465-3513
State Agency	Alaska Department of Fish and Game (ADF&G) Anchorage Juneau	907-465-4105	907-267-2541
State Agency	Alaska (AK) Division of Homeland Security/Emergency Management	907-428-7000	

1.3 Safety Plan


18 AAC 75.449(a)(3)

Safety of personnel, responders, and the public are prioritized in the event of a spill. In the event of a spill for which a full incident management team (IMT)/spill management team (SMT) activation is needed, an incident-specific safety plan may be developed by the assigned Safety Officer (SO) or designee. DW anticipates utilizing the Incident Command System (ICS) Form 208, if needed⁶.

In developing the incident specific safety plan, the following listed information should be considered:

- Identification of SO including contact information
- Objectives of the Operations (Example Objectives Listed Below)
 - Spill Containment/Cleanup
 - Controlled Entry
 - First aid/Rescue
 - Fire Suppression
- Hazard Identification and Evaluation
 - Chemical Hazards (Listing Levels of the Chemical and Level Related to Flammability, Corrosive, Toxicity etc.)
 - Physical Agents (Including, Hypothermia, Noise, Slips/Trips Falls etc.)
 - Other Hazards (Biological, Confined Space, etc.)
- Site Access and Control Information
 - Site Map
 - Command Post Location
 - Medical Service (for Responders) Location
- Weather and Environmental Conditions (such as: Temperature, Sea State, Wind Speed and Direction etc.)
- Emergency Contacts for Local Response Support (Fire, Hospital/Clinic)
- Routes, Exposure, and Information for (Substance) Found on Safety Data Sheet (SDS)
- Air Monitoring/Respiratory Protection Information including limits in parts per million (ppm) for exposure and monitoring intervals
- Safety/Personal Protective Equipment (Hard Hat, Work Gloves, Tyvek Suit) for different Work Areas (Exclusion/Hot Zone, Decontamination Zone)
- A written description or diagram for Decontamination of Responders Leaving the Exclusion/Hot Zone

⁶ Any written incident-specific safety plan will be written to meet the requirements of the Hazardous Waste Operations and Emergency Response regulation (29 CFR 1910.120).

0 100' 200'

FACILITY SITE LAYOUT

- EMERGENCY STOP
- BULK FUEL STORAGE TANK - VERTICAL
- BULK FUEL STORAGE TANK - HORIZONTAL
- ELECTRICAL DISCONNECT
- SURFACE DRAINAGE DIRECTION
- ★ FIRST VALVE

- SPILL RESPONSE EQUIPMENT

2 Prevention Plan

18 AAC 75.450(a), 18 AAC 75.450(b), 18 AAC 75.005(a)

The Prevention Plan which comprises Section 2 of this plan is designed to demonstrate that DW meets all applicable requirements of 18 AAC 75.005 through 18 AAC 75.085.

The following cross reference tables are provided to direct the reader to the appropriate information⁹.

18 AAC 75 Article 1

Citation	Description	Plan Section
.005	Responsibility	2
.007	General oil pollution prevention requirements	2
.015	Waiver	Not Applicable
.020	Oil discharge prevention training and recordkeeping	2.1.1
.025	Transfer requirements	2.1.5
.027	Requirements for laden tank vessels	Not Applicable
.037	Requirements for laden oil barges	Not Applicable
.045	Operating requirements for exploration and production facilities	Not Applicable
.047	Requirements for flow lines at production facilities	Not Applicable
.055	Leak detection, monitoring, and operating requirements for crude oil transmission pipelines	Not Applicable
.065	Field-constructed aboveground oil storage tank requirements	2.1.52.1.6.1
.066	Shop-fabricated aboveground oil storage tanks	2.1.52.1.6.2
.075	Secondary containment requirements for aboveground oil storage tanks	2.1.52.1.6.3
.080	Requirements for facility oil piping	2.1.52.1.6.4
.085	Requirements for railroad tank cars and operations by rail	Not Applicable

⁹ In some cases, the information required by this section to demonstrate that DW meets all the applicable requirements of 18 AAC 75.005 - 18 AAC 75.085 is also required under other CPLAN sections. Information has been placed where it is believed to be most appropriate.

Oil Discharge Prevention & Contingency Plan (CPLAN)	
Document Number	SIT-CPLAN-01; Rev. 0
Revision Date	August December 2025

FCAST Discharge Prevention

18 AAC 75.065(j), 18 AAC 75.065(k), 18 AAC 75.065(l)

Tanks 1, 2, and 3 at the Sitka Samson Bulk Facility were originally constructed in 1953. FCAST construction standards, known, or estimated, are presented in Table 2-4. Tanks 1, 2, and 3 are not riveted nor bolted and cathodic protection and corrosion protection are not required.

Leak detection is provided by the foundation system of Tanks 1, 2, and 3. The tanks are set on concrete ringwalls with infill slabs and a 2" ABS pipe under the tanks that allow for visual observation of a leak. ~~set on raised concrete pads with a leak detection sump and drain.~~

Additionally, each FCAST tank is equipped with one or more means of preventing discharges. The types of devices utilized on the FCAST tanks at the Sitka Samson Bulk Facility include:

High liquid level alarms	Tanks 1 thru 3 are equipped with a VEGAPULS 6X radar for real time liquid level, high, and high-high level monitoring. <u>To manually test the high liquid level alarm, the sensor's output may be forced to a specific level value that would trigger the alarm system.</u> ¹⁸
Means of immediately determining the liquid level in each bulk storage tank	Tanks 1 thru 3 are equipped with a VEGA VCCS13e display panel mounted to the exterior wall of the TTLR that communicates liquid level, and controls audible and visual high-level functions from the 6X radars. On a monthly basis the VEGAPULS 6x tank level gauge readings are compared with manual hand tape gauging for each tank to test and confirm the accuracy of the radar gauge system. Adjustments are made, as needed.

Alarm features are tested before each transfer operation and/or monthly, whichever is less frequent.

¹⁸ Manual testing of the high liquid level alarm is not frequently conducted as the sensor's output may only be forced to a different level by moving the sensor inside the tank which is not routinely feasible.

	Oil Discharge Prevention & Contingency Plan (CPLAN)	
	Document Number	SIT-CPLAN-01; Rev. 0
	Revision Date	August December 2025

Citation	Description
(c)	Vaulted SFAST requirements
(d)	Self-diked SFAST requirements
(i)	Non-elevated SFAST requirements
(k)	SFASTs \geq 75,000 gallons

As much of the applicability of this section is based on the type of SFASTs and the date the tanks were placed into service, an SFAST summary (Table 2-6) is provided on the following page.²⁰

²⁰ Four (4) ISO tanks with capacities of less than 10,000 gallons may also be stored onsite temporarily as needed to support facility operations. Any loading or offloading takes place onsite inside the temporary secondary containment structure. These tanks are transportation-related and subject to regulation by the U.S. Department of Transportation and are not part of the facility. Transfers into these tanks will follow the shore-to-vessel transfer procedures outlined in Section 2.1.5.7. These ISO tanks will not be discussed further in this Plan.

SFAST Discharge Prevention

18 AAC 75.066(g), 18 AAC 75.066(h)

Each SFAST tank is equipped with one or more means of preventing discharges. The types of devices utilized on the SFAST tanks at the Sitka Samson Bulk Facility include:

High liquid level alarms	Tank 5 is equipped with a battery powered overfill alarm.
Means of immediately determining the liquid level in each bulk storage tank	Tank 5 is equipped with a visual liquid float level tank auto gauging system with an audible alarm.

Additionally, Tank 5, installed after December 30, 2008, is equipped with a fixed spill containment system designed to prevent a discharge when a transfer hose or pipe is detached from the fill pipe.

High liquid level alarms are tested monthly by pushing the test button. Alarm mechanisms may be tested mechanically by manually adjusting the liquid level rod that emits sound when in contact with product.

2.1.6.3 Secondary Containment Structures

The Sitka Samson Bulk Facility is equipped with one or more secondary containment structures as required by 18 AAC 75.075; to assist in demonstrating DW's conformance to these requirements. The applicability of each paragraph of 18 AAC 75.075 is shown below and on the following page.

18 AAC 75.075

The following sections of the 18 AAC 75.075 are applicable to the Sitka Samson Bulk Facility.

Citation	Description
(a)	General secondary containment requirements
(c)	Maintenance
(d)	Drainage of accumulated water
(e)	Installations placed in service on or after 5-14-1992
(g)	Rail tank car and tank truck loading / unloading areas

The following sections of the 18 AAC 75.075 are not applicable to the Sitka Samson Bulk Facility.

Oil Discharge Prevention & Contingency Plan (CPLAN)	
Document Number	SIT-CPLAN-01; Rev. 0
Revision Date	August December 2025

3.5 Response Equipment

18 AAC 75.451(g)

As demonstrated in the response scenario required by 18 AAC 75.449(a)(6), DW has ready access to enough equipment to meet the applicable RPS using mechanical methods of control, containment, and cleanup. This equipment is considered to reflect the best available technology (BAT) at the time this plan was renewed. The complete list of contracted³² or other response equipment to meet the applicable RPS, to protect and recover wildlife, and to protect environmentally sensitive areas (ESAs) and areas of public concern that may be reasonably expected to be impacted by a spill of the RPS volume before oil reaches them is contained on the ICS-201 Page 4 form provided in the Response Scenario³³.

In addition to the response equipment listed in the response scenario (described above), DW maintains a supply of personal protective equipment, hand tools, and other consumable supplies that can be used in the event of a spill.

DW owned equipment is stored at the Sitka Samson Bulk Facility³⁴ and maintained in “ready” status in secured and marked locations. Routine maintenance is performed, as required by the manufacturer, where applicable. Spill response equipment is inventoried and inspected twice a year to ensure supplies are present, accessible, undamaged, and ready to be deployed. Facility personnel also deploy a subset of their spill response equipment twice a year to periodically test it and ensure proper operation. The deployment exercise consists of the containment and recovery of a theoretical spill where boom, skimmers, and/or pumps may be utilized. If any of the spill response equipment cited in this CPLAN is non-operational, ADEC is to be notified of non-readiness, and the equipment is to undergo maintenance or be replaced.

3.6 Response Equipment Specifications

18 AAC 75.451(h)

³² DW's OSRO would provide contracted equipment and personnel through a memorandum of understanding. These resources are staged throughout Southeast Alaska. In the event of a spill event that requires additional contracted services, DW would utilize the nearest and most readily available service.

³³ As allowed by 18 AAC 75.449(a)(6), DW has prepared the response scenario as a separate document, which is incorporated by reference in Section 1.6 of this plan; in the Response Scenario refer to Sections 2.1 and 2.2 (ICS-201 Page 4) on pages 2-7 and 2-24.

³⁴ The spill response skiff is stored at the Sitka Samson Bulk Facility or the Samson Dock, depending on weather.

DELTA WESTERN™ PETROLEUM	Oil Discharge Prevention & Contingency Plan (CPLAN)	
	Document Number	SIT-CPLAN-01; Rev. 0
	Revision Date	August December 2025

The response equipment identified in this plan was chosen to meet the requirements of 18 AAC 75.451(h)³⁵; demonstration of this can be seen in the response scenario³⁶.

³⁵ Information regarding calculations for recovery capacity is included in Section 1.9 of the Response Scenario.

³⁶ As allowed by 18 AAC 75.449(a)(6), DW has prepared the response scenario as a separate document, which is incorporated by reference in Section 1.6 of this plan; in the Response Scenario refer to specific scenarios in Sections 2.1 and 2.2.

	Oil Discharge Prevention & Contingency Plan (CPLAN)	
	Document Number	SIT-CPLAN-01; Rev. 0
	Revision Date	August December 2025

3.8 Training for Discharge Response Personnel

18 AAC 75.451(j)

DW's training program for discharge response personnel is described in Section 2.1.1 of this plan.

3.9 Environmentally Sensitive Areas and Areas of Public Concern

18 AAC 75.451(k)

The Sitka Samson Bulk Facility is located within the Southeast Alaska Area Contingency Plan (SEAK ACP) which serves as guidance for a coordinated and cooperative pollution response within the Southeast Alaska Captain of the Port Zone. The United States Coast Guard (CG) and ADEC provide references and tools throughout the SEAK ACP with information used to support a response to a discharge that can supplement the information below.

ESAs and areas of public concern that might be impacted by a RPS discharge were evaluated based on modeled spill trajectory predictions of movement and spreading as developed and presented in the response scenario³⁷ and through the following cited resources.

- ADEC Alaska Sensitive Areas Compendium
- ADEC Geographic Response Strategies – Southeast Alaska
- National Oceanic and Atmospheric Administration (NOAA)
 - Environmental Sensitivity Index - Maps and Sensitive Biological Resources
- Alaska Department of Fish and Game (ADF&G)
 - Anadromous Water Maps
- NOAA Environmental Response Management Application
 - (ERMA) Arctic Mapping

The Sitka Samson Bulk Facility is located in a pre-identified geographic response strategy (GRS) zone for the listed GRS(s) and will be given priority using pre-planned strategic use of response resources.

- Middle Island (SE05-11)
- Starrigavan Bay (SE05-20)

Copies of the GRSs are provided on Pages 3-16 through 3-19.

³⁷As allowed by 18 AAC 75.449(a)(6), DW has prepared the response scenario as a separate document, which is incorporated by reference in Section 1.6 of this plan; in the Response Scenario refer to Section 1.5, and the Aerial Surveillance ICS-204a form in Section 2.1 (TF-4, page 2-12) for information and depiction of modeled trajectories.

Immediate shoreline habitats, known wildlife critical habitats, and endangered species that overlap with the potential trajectories of a RPS spill are presented in Table 3-4 (Page 3-20). Additional potential sites, based on concern level, that should be considered by an on-scene coordinator during a response are also identified in the table.

Additional anadromous streams that should be evaluated for response activities based on potential spill trajectories are identified in Table 3-5 (Page 3-21) and a copy of the anadromous water atlas map for Sitka is provided on Page 3-22.

Products that can potentially be stored at the Sitka Samson Bulk Facility and their toxicity category defined by 18 AAC 75.640, .650, and .660 are identified in Table 3-6 (Page 3-23). In general, the products at the Sitka Samson Bulk Facility that could result in an RPS release are moderately persistent in the environment as lighter end oils.

Seasonal conditions of resources specific to biological sensitivity and human-use in the Sitka geographic area are presented as a subset from the Environmental Sensitivity Index on Page 3-24³⁸. This resource can be utilized quickly to determine resource concerns as it relates to the time of year. The Environmental Sensitivity Index map is provided on Page 3-25.

For response strategies that require agency permitting, the Alaska Regional Response Team Wildlife Protection Guidelines for Oil Spill Response in Alaska is readily available to response personnel; a link is also provided in Section 3.12 of this CPLAN. This document contains full explanations of agency permit requirements.

The response scenarios describe the specific actions taken to protect probable immediate points of contact with ESAs and areas of public concern utilizing the resources from this section³⁹.

³⁸ In addition to the sensitive biological resources listed, pink salmon are also present in the area.

³⁹As allowed by 18 AAC 75.449(a)(6), DW has prepared the response scenario as a separate document, which is incorporated by reference in Section 1.6 of this plan; in the Response Scenario refer to Section 1.6, the ICS-204a forms for TF-5 (ESA Protective Booming) in Section 2.1 (page 2-13), and the ICS-232 form in Section 2.1 (page 2-17).

Table 3-4: Potential Areas of Concern

Immediate Shoreline Habitat(s)	Critical Habitat Area(s)	Threatened and Endangered Species	Areas of Major Concern	Areas of Moderate Concern	Areas of Lesser Concern	Areas of Local Concern
10A - Salt & Brackish-water Marsh	None	Short-Tailed Albatross	Airport/heliport	Recreational sites and facilities	Sport fishing and hunting	None
9A - Sheltered Tidal Flats		Steller's Eider	Commercial fishing			
8A - Sheltered Rocky Shores (impermeable)		Waterfowl	Fish processing			
		Blue Whale	Fish hatcheries			
		Fin Whale	Marinas			
		Gray Whale	Boat ramps			
		Humpback Whale	Anadromous fish streams			
		Killer Whale				
		North Pacific Right Whale				
		Sei Whale				
		Sperm Whale				
		Stellar Sea Lion				

Oil Discharge Prevention & Contingency Plan (CPLAN)	
Document Number	SIT-CPLAN-01; Rev. 0
Revision Date	August December 2025

4.5 BAT Analysis - Tank Leak Detection

For this facility, leak diversion to SCA observation and ~~double bottom tanks concrete ringwalls with infill slabs and a 2" ABS pipe under the tanks that allow for visual observation of a leak~~ are considered BAT. This method is currently in use by DW.

The full BAT analysis, following the layout described in Section 4, is provided in Table 4-5 on the following page.

Table 4-5: BAT Analysis - Tank Leak Detection

Short Name	Description	Type	(3)(A) - Available for use by DW?	(3)(A) - Best in use in other similar situations?	(3)(B) - Offers other environmental benefits?	(3)(B) - Provides increased spill protection?	(3)(C) - Cost to achieve BAT?	(3)(D) - Age?	(3)(E) - Practical feasibility?	(3)(D) - Condition?	BAT
Crowned Pads	Crowned pads	Alternate Method 2	Yes - DW owns and/or uses technology	Yes - Technology is readily available and widely used in the industry	Yes	Yes - Expected to increase spill prevention effectiveness	N/A - Owned by DW; Replacement, Operations, and Maintenance accounted for	Mature - Established, >20 years in operation	Yes	Excellent - Fully operational, well-maintained, meets industry standards	<input type="checkbox"/>
Sub-tank pipe	2" ABS pipe under tanks	Alternate Method 1	Yes - DW owns and/or uses technology	Yes	Yes	Yes - Expected to increase spill prevention effectiveness	Very High - Cost of initial installation	Well established - updates to technology are incorporated as needed	Yes	Good - Fully operational with minor wear	<input checked="" type="checkbox"/>
Leak Diversion to SCA Observation (FCAST)	Visual observations of leak via impermeable liner beneath tank to SCA via drainage pipe.	Existing Method 1	Yes - DW owns and/or uses technology	Yes - Technology is readily available and widely used in the industry	Yes	Yes - Expected to increase spill prevention effectiveness	N/A	5-10 years	Yes	Excellent - Fully operational, well-maintained, meets industry standards	<input checked="" type="checkbox"/>
Double Bottom Tank (SFAST)	Double bottom with leak detection ports	Existing Method 2	Yes - DW owns and/or uses technology	Yes - Technology is available	Yes	Yes - Expected to increase spill prevention effectiveness	Very High - Cost of initial installation	10-20 years	Yes	Good - Fully operational with minor wear	<input checked="" type="checkbox"/>
Leak Diversion to SCA Observation	Visual observations of leak via impermeable liner beneath tank to SCA.	Existing Method 3	Yes - DW owns and/or uses technology	Yes - Technology is readily available and widely used in the industry	Yes	Yes - Expected to increase spill prevention effectiveness	N/A	5-10 years	Yes	Excellent - Fully operational, well-maintained, meets industry standards	<input type="checkbox"/>

Table 4-6: BAT Analysis - Determining Liquid Level

Short Name	Description	Type	(3)(A) - Best in use in other similar situations?	(3)(A) - Available for use by DW?	(3)(B) - Provides increased spill protection?	(3)(B) - Offers other environmental benefits?	(3)(C) - Cost to achieve BAT?	(3)(D) - Age?	(3)(D) - Condition?	(3)(E) - Practical feasibility?	BAT
Mechanical Level Gauges (FCAST)	Pneumercator LC600 liquid level switch with audible and visible high-level alarm	Obsolete Method 1	Yes - Technology is readily available and widely used in the industry	No - Technology is not used or unavailable	Yes - Expected to increase spill prevention effectiveness	Yes	N/A	5-10 years N/A	Excellent - Fully operational, well-maintained, meets industry standards N/A	No - Cost prohibitive	<input type="checkbox"/>
Mechanical Level Gauges (SFAST)	Mechanical OPW clock-style level gauge & Morrison Bros high-level alarm set @ 95%	Existing Method 1	Yes - Technology is readily available and widely used in the industry	Yes - DW owns and/or uses technology	Yes - Expected to increase spill prevention effectiveness	Yes	N/A	5-10 years	Excellent - Fully operational, well-maintained, meets industry standards	Yes	<input checked="" type="checkbox"/>
Digital/Radar Level Gauges (FCAST)	Digital/Radar Liquid Level Gauges	Existing Method 2	Yes - Technology is available	Yes - DW owns and/or uses technology	Yes - Expected to increase spill prevention effectiveness	Yes	High - Cost of installation & maintenance	1-5 years	Excellent - Fully operational, well-maintained, meets industry standards	Yes	<input checked="" type="checkbox"/>
Digital/Radar Level Gauges (SFAST)	Digital/Radar Liquid Level Gauges	Alternate Method 2	Yes - Technology is available	No - Technology is not used or unavailable	No - Effectiveness is outweighed by constraints	No	High - Cost of installation & maintenance	N/A	N/A	No - Cost prohibitive	<input type="checkbox"/>