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DISCLAIMER

This Unified Guidance has been prepared to assist EPA’s Regions, the States and the regulated
community in testing and evaluating groundwater monitoring data under 40 CFR Parts 264 and 265 and
40 CFR Part 258. This guidance is not a rule, is not legally enforceable, and does not confer legal rights
or impose legal obligations on any member of the public, EPA, the States or any other agency. While
EPA has made every effort to ensure the accuracy of the discussion in this guidance, the obligations of
the regulated community are determined by the relevant statutes, regulations, or other legally binding
requirements. The use of the term “should” when used in this guidance does not connote a requirement.
This guidance may not apply in a particular situation based on the circumstances. Regional and State
personnel retain the discretion to adopt approaches on a case-by-case basis that differ from this guidance
where appropriate.

It should be stressed that this guidance is a work in progress. Given the complicated nature of
groundwater and geochemical behavior, statistical applications describing and evaluating data patterns
have evolved over time. While many new approaches and a conceptual framework have been provided
here based on our understanding at the time of publication, outstanding issues remain. The Unified
Guidance sets out mostly classical statistical methods using reasonable interpretations of existing
regulatory objectives and constraints. But even these highly developed mathematical models deal
primarily with sorting out chance effects from potentially real differences or trends. They do not exhaust
the possibilities of groundwater definition using other technical or scientific techniques (e.g.,
contaminant modeling or geostatistical evaluations). While providing a workable decision framework,
the models and approaches offered within the Unified Guidance are only approximations of a complex
underlying reality.

While providing a basic understanding of underlying statistical principles, the guidance doesn’t
attempt to provide the reader with more thorough explanations and derivations found in standard texts
and papers. It also doesn’t comprehensively cover all potential statistical approaches, and confines itself
to reasonable and current methods, which will work in the present RCRA groundwater context. While it
is highly likely that methods promoted in this guidance will be applied using commercial or proprietary
statistical software, a detailed discussion of software applications is beyond the scope of this document.

This document has been reviewed by the Office of Resource Conservation and Recovery (former
Office of Solid Waste), U.S. Environmental Protection Agency, Washington, D.C., and approved for
publication. Mention of trade names, commercial products, or publications does not constitute
endorsement or recommendation for use.

“It is far better to have an approximate answer to the right
question than a precise answer to the wrong question...” — John
Hauser
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EXECUTIVE SUMMARY

The Unified Guidance provides a suggested framework and recommendations for the statistical
analysis of groundwater monitoring data at RCRA facility units subject to 40 CFR Parts 264 and 265
and 40 CFR Part 258, to determine whether groundwater has been impacted by a hazardous constituent
release. Specific statistical methods are identified in the RCRA regulations, but their application is not
described in any detail. The Unified Guidance provides examples and background information that will
aid in successfully conducting the required statistical analyses. The Unified Guidance draws upon the
experience gained in the last decade in implementing the RCRA Subtitle C and D groundwater
monitoring programs and new research that has emerged since earlier Agency guidance.

The guidance is primarily oriented towards the groundwater monitoring statistical analysis
provisions of 40 CFR Parts 264.90 to .100. Similar requirements for groundwater monitoring at solid
waste landfill facilities under 40 CFR Part 258 are also addressed. These regulations govern the
detection, characterization and response to releases from regulated units into the uppermost aquifer.
Some of the methods and strategies set out in this guidance may also be appropriate for analysis of
groundwater monitoring data from solid waste management units subject to 40 CFR 264.101. Although
the focus of this guidance is to address the RCRA regulations, it can be used by the CERCLA program
and for improving remedial actions at other groundwater monitoring programs.

Part I of the Unified Guidance introduces the context for statistical testing at RCRA facilities. It
provides an overview of the regulatory requirements, summarizing the current RCRA Subtitle C and D
regulations and outlining the statistical methods in the final rules, as well as key regulatory sections
affecting statistical decisions. It explains the basic groundwater monitoring framework, philosophy and
intent of each stage of monitoring — detection, compliance (or assessment), and corrective action —
and certain features common to the groundwater monitoring environment. Underlying statistical ideas
common to all statistical test procedures are identified, particularly issues involving false positives
arising from multiple statistical comparisons and statistical power to detect contamination.

A new component of the Unified Guidance addresses issues of statistical design: what factors are
important in constructing a reasonable and effective statistical monitoring program. These include the
establishment and updating of background data, designing an acceptable detection monitoring plan, and
statistical strategies for compliance/assessment monitoring and corrective action. This part also includes
a short summary of statistical methods recommended in the Unified Guidance, detailing conditions for
their appropriate use.

Part II of the Unified Guidance covers diagnostic evaluations of historical facility data for the
purpose of checking key assumptions implicit in the recommended statistical tests and for making
appropriate adjustments to the data (e.g., consideration of outliers, seasonal autocorrelation, or non-
detects). Also included is a discussion of groundwater sampling and how hydrologic factors such as
flow and gradient can impact the sampling program. Concepts of statistical and physical independence
are compared, with caveats provided regarding the impact of dependent data on statistical test results.
Statistical methods are suggested for identifying special kinds of dependence known as spatial and
temporal variation, including reasonable approaches when these dependencies are observed. Tests for
trends are also included in this part.
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Part III of the Unified Guidance presents a range of detection monitoring statistical procedures.
First, there is a discussion of the Student’s #-test and its non-parametric counterpart, the Wilcoxon rank-
sum test, when comparing two groups of data (e.g., background versus one downgradient well). This
part defines both parametric and non-parametric prediction limits, and their application to groundwater
analysis when multiple comparisons are involved. A variety of prediction limit possibilities are
presented to cover likely interpretations of sampling and testing requirements under the RCRA
regulations.

Substantial detailed guidance is offered for using prediction limits with retesting procedures, and
how various retesting algorithms might be constructed. The final chapter of this Part considers another
statistical method especially useful for intrawell comparisons, namely the Shewhart-CUSUM control
chart. A brief discussion of analysis of variance [ANOVA] and tolerance limit tests identified in the
RCRA regulations is also provided.

Part IV of the Unified Guidance is devoted to statistical methods recommended for compliance
or assessment monitoring and corrective action. Compliance monitoring typically involves a
comparison of downgradient well data to a groundwater protection standard [GWPS], which may be a
limit derived from background or a fixed concentration limit (such as in 40 CFR 264.94 Table 1, an
MCL, a risk-based limit, an alternate concentration limit, or a defined clean-up standard under
corrective action). The key statistical procedure is the confidence interval, and several confidence
interval tests (mean, median, or upper percentile) may be appropriate for compliance evaluation
depending on the circumstances. The choice depends on the distribution of the data, frequency of non-
detects, the type of standard being compared, and whether or not the data exhibit a significant trend.
Discussions in this part consider fixed compliance standards used in a variety of EPA programs and
what they might represent in statistical terms. Strategies for corrective action differ from those
appropriate for compliance monitoring primarily because statistical hypotheses are changed, although
the same basic statistical methods may be employed.

Since some programs will also utilize background as standards for compliance and corrective
action monitoring, those tests and discussions under Part III detection monitoring (including statistical
design in Part I) may pertain in identifying the appropriate standards and tests.

A glossary of important statistical terms, references and a subject index are provided at the end
of the main text. The Appendices contain additional notes on a number of topics including previous
guidance, a special study for the guidance, more detailed statistical power discussions, and an extensive
set of statistical tables for implementing the methods outlined in the Unified Guidance. Some tables,
especially those for prediction limit retesting procedures, have been extended within the Unified
Guidance beyond published sources in order to cover a wider variety of plausible scenarios.
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PART I. STATISTICAL DESIGN AND
PHILOSOPHY

Chapter 1 provides introductory information, including the purposes and goals of the guidance, as
well as its potential applicability to other environmental programs. Chapter 2 presents a brief discussion
of the existing regulations and identifies key portions of these rules which need to be addressed from a
statistical standpoint, as well as some recommendations. In Chapter 3, fundamental statistical principles
are highlighted which play a prominent role in the Unified Guidance including the notions of individual
test false positive and negative decision errors and the accumulation of such errors across multiple tests
or comparisons. Chapter 4 sets the groundwater monitoring program context, the nature of formal
statistical tests for groundwater and some caveats in identifying statistically significant increases.
Typical groundwater monitoring scenarios also are described in this chapter. Chapter 5 describes how
to establish background and how to periodically update it. Chapters 6 and 7 outline various factors to be
considered when designing a reasonable statistical strategy for use in detection monitoring,
compliance/assessment monitoring, or corrective action. Finally, Chapter 8 summarizes the
recommended statistical tests and methods, along with a concise review of assumptions, conditions of
use, and limitations.
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CHAPTER 1. OBJECTIVES AND POTENTIAL USE OF THIS
GUIDANCE

R R O ==l 1V =1 TSR 1-1
1.2  APPLICABILITY TO OTHER ENVIRONMENTAL PROGRAMS ....ociiiiiiiiiititiiie e e sttt e e s s e s sibbaie e e e s s s ssababas s s e s s seannnes 1-3

1.1 OBJECTIVES

The fundamental goals of the RCRA groundwater monitoring regulations are fairly
straightforward. Regulated parties are to accurately characterize existing groundwater quality at their
facility, assess whether a hazardous constituent release has occurred and, if so, determine whether
measured levels meet the compliance standards. Using accepted statistical testing, evaluation of
groundwater quality should have a high probability of leading to correct decisions about a facility’s
regulatory status.

To implement these goals, EPA first promulgated regulations in 1980 (for interim status
facilities) and 1982 (permitted facilities) for detecting contamination of groundwater at hazardous waste
Subtitle C land disposal facilities. In 1988, EPA revised portions of those regulations found at 40 CFR
Part 264, Subpart F. A similar set of regulations applying to Subtitle D municipal and industrial waste
facilities was adopted in 1991 under 40 CFR Part 258. In April 2006, certain modifications were made
to the 40 CFR Part 264 groundwater monitoring regulations affecting statistical testing and decision-
making.

EPA released the Interim Final Guidance [IFG] in 1989 for implementing the statistical
methods and sampling procedures identified in the 1988 rule. A second guidance document followed in
July 1992 called Addendum to Interim Final Guidance [Addendum], which expanded certain
techniques and also served as guidance for the newer Subpart D regulations.

As the RCRA groundwater monitoring program has matured, it became apparent that the existing
guidance needed to be updated to adequately cover statistical methods and issues important to detecting
changes in groundwater.! Research conducted in the area of groundwater statistics since 1992 has
provided a number of improved statistical techniques. At the same time, experience gained in applying
the regulatory statistical tests in groundwater monitoring contexts has identified certain constraints.
Both needed to be factored into the guidance. This Unified Guidance document addresses these
concerns and supercedes both the earlier IFG and Addendum.

The Unified Guidance offers guidance to owners and operators, EPA Regional and State
personnel, and other interested parties in selecting, using, and interpreting appropriate statistical
methods for evaluating data under the RCRA groundwater monitoring regulations. The guidance

! Some recommendations in EPA’s Statistical Training Course on Groundwater Monitoring were developed to better
reflect the reality of groundwater conditions at many sites, but were not generally available in published form. See RCRA
Docket # EPA\530-R-93-003, 1993
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identifies recent approaches and recommends a consistent framework for applying these methods. One
key aspect of the Unified Guidance is providing a systematic application of the basic statistical principle
of balancing false positives and negative errors in designing good testing procedures (i.e., minimizing
both the risk of falsely declaring a site to be out-of-compliance and of missing real evidence of an
adverse change in the groundwater). Topics addressed in the guidance include basic statistical concepts,
sampling design and sample sizes, selection of appropriate statistical approaches, how to check data and
run statistical tests, and the interpretation of results. References for the suggested procedures and to
more general statistical texts are provided. The guidance notes when expert statistical consultation may
be advisable. Such guidance may also have applicability to other remedial activities as well.

Enough commonality exists in sampling, analysis, and evaluation under the RCRA regulatory
requirements that the Unified Guidance often suggests relatively general strategies. At the same time,
there may be situations where site-specific considerations for sampling and statistical analysis are
appropriate or needed. EPA policy has been to promulgate regulations that are specific enough to
implement, yet flexible in accommodating a wide variety of site-specific environmental factors. Usually
this is accomplished by specifying criteria appropriate for the majority of monitoring situations, while at
the same time allowing alternatives that are also protective of human health and the environment.

40 CFR Parts 264 and 258 allow the use of other sampling procedures and test methods? beyond
those explicitly identified in the regulations,® subject to approval by the Regional Administrator or state
Director. Alternative test methods must be able to meet the performance standards at 8264.97(i) or
8258.53(h). While these performance standards are occasionally specific, they are much less so in other
instances. Accordingly, further guidance is provided concerning the types of procedures that should
generally satisfy such performance standards.

Although the Part 264 and 258 regulations explicitly identify five basic formal statistical
procedures for testing two- or multiple-sample comparisons characteristic of detection monitoring, the
rules are silent on specific tests under compliance or corrective action monitoring when a groundwater
protection standard is fixed (a one-sample comparison). The rules also require consideration of data
patterns (normality, independence, outliers, non-detects, spatial and temporal dependence), but do not
identify specific tests. This document expands the potential statistical procedures to cover these
situations identified in earlier guidance, thus providing a comprehensive single EPA reference on
statistical methods generally recommended for RCRA groundwater monitoring programs. Not every
technique will be appropriate in a given situation, and in many cases more than one statistical approach
can be used. The Unified Guidance is meant to be broad enough in scope to cover a high percentage of
the potential situations a user might encounter.

The Unified Guidance is not designed as a treatise for statisticians; rather it is aimed at the
informed groundwater professional with a limited background in statistics. Most methods discussed are
well-known to statisticians, but not necessarily to regulators, groundwater engineers or scientists. A key
thrust of the Unified Guidance has been to tailor the standard statistical techniques to the RCRA
groundwater arena and its unique constraints. Because of this emphasis, not every variation of each test

% For example, §264.97(g)(2), §264.97(h)(5) and §258.53(g)(5)

® §264.97(g)(1), §264.97(h)(1-4), and §258.53(g)(1-4) respectively
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is discussed in detail. For example, groundwater monitoring in a detection monitoring program is
generally concerned with increases rather than decreases in concentration levels of monitored
parameters. Thus, most detection monitoring tests in the Unified Guidance are presented as one-sided
upper-tailed tests. In the sections covering compliance and corrective action monitoring (Chapters 21
and 22 in Part V), either one-sided lower-tail or upper-tail tests are recommended depending on the
monitoring program. Users requiring two-tailed tests or additional information may need to consult
other guidance or the statistical references listed at the end of the Unified Guidance.

The Unified Guidance is not intended to cover all statistical methods that might be applicable to
groundwater. The technical literature is even more extensive, including other published frameworks for
developing statistical programs at RCRA facilities. Certain statistical methods and general strategies
described in the Unified Guidance are outlined in American Society for Testing and Materials [ASTM]
documents entitled Standard Guide for Developing Appropriate Statistical Approaches for
Groundwater Detection Monitoring Programs (D6312-98[2005]) (ASTM, 2005) and Standard Guide
for Applying Statistical Methods for Assessment and Corrective Action Environmental Monitoring
Programs (D7048-04) (ASTM, 2004).

The first of these ASTM guidelines primarily covers strategies for detection monitoring,
emphasizing the use of prediction limits and control charts. It also contains a series of flow diagrams
aimed at guiding the user to an appropriate statistical approach. The second guideline covers statistical
strategies useful in compliance/assessment monitoring and corrective action. While not identical to
those described in the Unified Guidance, the ASTM guidelines do provide an alternative framework for
developing statistical programs at RCRA facilities and are worthy of careful consideration.

EPA’s primary consideration in developing the Unified Guidance was to select methods both
consistent with the RCRA regulations, as well as straightforward to implement. We believe the methods
in the guidance are not only effective, but also understandable and easy to use.

1.2 APPLICABILITY TO OTHER ENVIRONMENTAL PROGRAMS

The Unified Guidance is tailored to the context of the RCRA groundwater monitoring
regulations. Some of the techniques described are unique to this guidance. Certain regulatory
constraints and the nature of groundwater monitoring limit how statistical procedures are likely to be
applied. These include typically small sample sizes during a given evaluation period, a minimum of
annual monitoring and evaluation and typically at least semi-annual, often a large number of potential
monitoring constituents, background-to-downgradient well comparisons, and a limited set of identified
statistical methods. There are also unique regulatory performance constraints such as §264.97(i)(2),
which requires a minimum single test false positive o level of 0.01 and a minimum 0.05 level for
multiple comparison procedures such as analysis of variance [ANOVA].

There are enough commonalities with other regulatory groundwater monitoring programs (e.g.,
certain distributional features of routinely monitored background groundwater constituents) to allow for
more general use of the tests and methods in the Unified Guidance. Many of these test methods and the
consideration of false positive and negative errors in site design are directly applicable to corrective
action evaluations of solid waste management units under 40 CFR 264.101 and Comprehensive

1-3 March 2009



Chapter 1. Objectives Unified Guidance

Environmental Response, Compensation, and Liability Act [CERCLA] groundwater monitoring
programs.

There are also comparable situations involving other environmental media to which the Unified
Guidance statistical methods might be applied. Groundwater detection monitoring involves either a
comparison between different monitoring stations (i.e., downgradient compliance wells vs. upgradient
wells) or a contrast between past and present data within a given station (i.e., intrawell comparisons).
To the extent that an environmental monitoring station is essentially fixed in location (e.g., air quality
monitors, surface water stations) and measurements are made over time, the same statistical methods
may be applicable.

The Unified Guidance also details methods to compare background data against measurements
from regulatory compliance points. These procedures (e.g., Welch’s t-test, prediction limits with
retesting, etc.) are designed to contrast multiple groups of data. Many environmental problems involve
similar comparisons, even if the groups of data are not collected at fixed monitoring stations (e.g., as in
soil sampling). Furthermore, the guidance describes diagnostic techniques for checking the assumptions
underlying many statistical procedures. Testing of normality is ubiquitous in environmental statistical
analysis. Also common are checks of statistical independence in time series data, the assumption of
equal variances across different populations, and the need to identify outliers. The Unified Guidance
addresses each of these topics, providing useful guidance and worked out examples.

Finally, the Unified Guidance discusses techniques for comparing datasets against fixed
numerical standards (as in compliance monitoring or corrective action). Comparison of data against a
fixed standard is encountered in many regulatory programs. The methods described in Part IV of the
Unified Guidance could therefore have wider applicability, despite being tailored to the groundwater
monitoring data context.

EPA recognizes that many guidance users will make use of either commercially available or
proprietary statistical software in applying these statistical methods. Because of their wide range of
diversity and coverage, the Unified Guidance does not evaluate software usage or applicability. Certain
software is provided with the guidance. The guidance limits itself to describing the basic statistical
principles underlying the application of the recommended tests.
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CHAPTER 2. REGULATORY OVERVIEW
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This chapter generally summarizes the RCRA groundwater monitoring regulations under 40 CFR
Parts 264, 265 and 258 applicable to this guidance. A second section identifies the most critical
regulatory statistical issues and how they are addressed by this guidance. Finally, recommendations
regarding interim status facilities and certain statistical methods in the regulations are presented at the
end of the chapter.

2.1 REGULATORY SUMMARY

Section 3004 of RCRA directs EPA to establish regulations applicable to owners and operators
of facilities that treat, store, or dispose of hazardous waste as may be necessary to protect human health
and the environment. Section 3005 provides for the implementation of these standards under permits
issued to owners and operators by EPA or authorized States. These regulations are codified in 40 CFR
Part 264. Section 3005 also provides that owners and operators of facilities in existence at the time of
the regulatory or statutory requirement for a permit, who apply for and comply with applicable
requirements, may operate until a permit determination is made. These facilities are commonly known
as interim status facilities, which must comply with the standards promulgated in 40 CFR Part 265.

EPA first promulgated the groundwater monitoring regulations under Part 265 for interim status
surface impoundments, landfills and land treatment units (“regulated units”) in 1980.! Intended as a
temporary system for units awaiting full permit requirements, the rules set out a minimal detection and
assessment monitoring system consisting of at least a single upgradient and three downgradient wells.
Following collection of the minimum number of samples prescribed in the rule for four indicator
parameters — pH, specific conductance, total organic carbon (TOC) and total organic halides (TOX) —
and certain constituents defining overall groundwater quality, the owner/operator of a land disposal
facility is required to implement a detection monitoring program. Detection monitoring consists of
upgradient-to-downgradient comparisons using the Student’s t-test of the four indicator parameters at
no less than a .01 level of significance (o). The regulations refer to the use of “replicate” samples for
contaminant indicator comparisons. Upon failure of a single detection-level test, as well as a repeated

' [45 FR 33232ff, May 19, 1980] Interim status regulations; later amended in 1983 and 1985
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follow-up test, the facility is required to conduct an assessment program identifying concentrations of
hazardous waste constituents from the unit in groundwater. A facility can return to detection monitoring
if none of the latter constituents are detected. These regulations are still in effect today.

Building on the interim status rules, Subtitle C regulations for Part 264 permitted hazardous
waste facilities followed in 1982, where the basic elements of the present RCRA groundwater
monitoring program are defined. In 8264.91, three monitoring programs — detection monitoring,
compliance monitoring, and corrective action — serve to protect groundwater from releases of
hazardous waste constituents at certain regulated land disposal units (surface impoundments, waste
piles, landfills, and land treatment). In developing permits, the Regional Administrator/State Director
establishes groundwater protection standards [GWPS] under 8264.92 using concentration limits
[8264.94] for certain monitoring constituents [§264.93]. Compliance well monitoring locations are
specified in the permit following the rules in 8264.95 for the required compliance period [8264.96].
General monitoring requirements were established in 8264.97, along with specific detection [8264.98],
compliance [§264.99], and corrective action [8264.100] monitoring requirements. Facility owners and
operators are required to sample groundwater at specified intervals and to use a statistical procedure to
determine whether or not hazardous wastes or constituents from the facility are contaminating the
groundwater.

As found in §8264.91, detection monitoring is the first stage of monitoring when no or minimal
releases have been identified, designed to allow identification of significant changes in the groundwater
when compared to background or established baseline levels. Downgradient well observations are
tested against established background data, including measurements from upgradient wells. These are
known as two- or multiple-sample tests.

If there is statistically significant evidence of a release of hazardous constituents [8264.91(a)(1)
and (2)], the regulated unit must initiate compliance monitoring, with groundwater quality
measurements compared to the groundwater protection standards [GWPS]. The owner/operator is
required to conduct a more extensive Part 261 Appendix VI (later Part 264 Appendix 1X)* evaluation
to determine if additional hazardous constituents must be added to the compliance monitoring list.

Compliance/assessment as well as corrective action monitoring differ from detection monitoring
in that groundwater well data are tested against the groundwater protection standards [GWPS] as
established in the permit. These may be fixed health-based standards such as Safe Drinking Water Act
[SDWA] maximum concentration limits [MCLs], 8264.94 Table 1 values, a value defined from
background, or alternate-concentration limits as provided in 8264.94(a). Statistically, these are
considered single-sample tests against a fixed limit (a background limit can either be a single- or two-
sample test depending on how the limit is defined). An exceedance occurs when a constituent level is
shown to be significantly greater than the GWPS or compliance standard.

If a hazardous monitoring constituent under compliance monitoring statistically exceeds the
GWPS at any compliance well, the facility is subject to corrective action and monitoring under
8264.100. Following remedial action, a return to compliance consists of a statistical demonstration that

2 [47 FR 32274ff, July 26, 1982] Permitting Requirements for Land Disposal Facilities
® [52 FR 25942, July 9, 1987] List (Phase 1) of Hazardous Constituents for Groundwater Monitoring; Final Rule
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the concentrations of all relevant hazardous constituents lie below their respective standards. Although
the rules define a three-tiered approach, the Regional Administrator or State Director can assess
available information at the time of permit development to identify which monitoring program is
appropriate [8264.91(b)].

Noteworthy features of the 1982 rule included retaining use of the four Part 265 indicator
parameters, but allowing for additional constituents in detection monitoring. The number of upgradient
and downgradient wells was not specified; rather the requirement is to have a sufficient number of
wells to characterize upgradient and downgradient water quality passing beneath a regulated unit.
Formalizing the “replicate” approach in the 1980 rules and the use of Student’s t-test, rules under
8264.97 required the use of aliquot replicate samples, which involved analysis of at least four physical
splits of a single volume of water. In addition, Cochran’s Approximation to the Behrens-Fisher [CABF]
Student’s t-test was specified for detection monitoring at no less than a .01 level of significance (a).
Background sampling was specified for a one-year period consisting of four quarterly samples (also
using the aliquot approach). The rules allowed use of a repeated, follow-up test subsequent to failure of
a detection monitoring test. A minimum of semi-annual sampling was required.

In response to a number of concerns with these regulations, EPA amended portions of the 40
CFR Part 264 Subpart F regulations including statistical methods and sampling procedures on October
11, 1988.* Modifications to the regulations included requiring (if necessary) that owners and/or
operators more accurately characterize the hydrogeology and potential contaminants at the facility. The
rule also identifies specific performance standards in the regulations that all the statistical methods and
sampling procedures must meet (discussed in a following section). That is, it is intended that the
statistical methods and sampling procedures meeting these performance standards defined in 8264.97
have a low probability both of indicating contamination when it is not present (Type | error), and of
failing to detect contamination that actually is present (Type Il error). A facility owner and/or operator
must demonstrate that a procedure is appropriate for the site-specific conditions at the facility, and
ensure that it meets the performance standards. This demonstration applies to any of the statistical
methods and sampling procedures outlined in the regulation as well as any alternate methods or
procedures proposed by facility owners and/or operators.

In addition, the amendments removed the required use of the CABF Student’s t-test, in favor of
five different statistical methods deemed to be more appropriate for analyzing groundwater monitoring
data (discussed in a following section). The CABF procedure is still retained in Part 264, Appendix 1V,
as an option, but there are no longer specific citations in the regulations for this test. These newer
procedures offer greater flexibility in designing a groundwater statistical program appropriate to site-
specific conditions. A sixth option allows the use of alternative statistical methods, subject to approval
by the Regional Administrator. EPA also instituted new groundwater monitoring sampling
requirements, primarily aimed at ensuring adequate statistical sample sizes for use in analysis of
variance [ANOVA] procedures, but also allowing alternative sampling plans to be approved by the
Regional Administrator. The requirements identify the need for statistically independent samples to be
used during evaluation. The Agency further recognizes that the selection of appropriate hazardous

* [53 FR 39720, October 11, 1988] 40 CFR Part 264: Statistical Methods for Evaluating Groundwater Monitoring From
Hazardous Waste Facilities; Final Rule
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constituent monitoring parameters is an essential part of a reliable statistical evaluation. EPA addressed
this issue in a 1987 Federal Register notice.’

§264.101 requirements for corrective action at non-regulated units were added in 1985 and later.®
The Agency determined that since corrective action at non-regulated units would work under a different
program, these units are not required to follow the detailed steps of Subpart F monitoring.

In 1991, EPA promulgated Subtitle D groundwater monitoring regulations for municipal solid
waste landfills in 40 CFR Part 258." These rules also incorporate a three-tiered groundwater monitoring
strategy (detection monitoring, assessment monitoring, and corrective action), and describe statistical
methods for determining whether background concentrations or the groundwater protection standards
[GWPS] have been exceeded.

The statistical methods and related performance standards in 40 CFR Part 258 essentially mirror
the requirements found as of 1988 at 40 CFR Part 264 Subpart F, with certain differences. Minimum
sampling frequencies are different than in the Subtitle C regulations. The rules also specifically provide
for the GWPS using either current MCLs or standardized risk-based limits as well as background
concentrations. In addition, a specific list of hazardous constituent analytes is identified in 40 CFR Part
258, Appendix | for detection-level monitoring, including the use of unfiltered (total) trace elements.

The 1988 and 1991 rule amendments identify certain statistical methods and sampling
procedures believed appropriate for evaluating groundwater monitoring data under a variety of
situations. Initial guidance to implement these methods was released in 1989 as: Statistical Analysis of
Groundwater Monitoring Data at RCRA Facilities: Interim Final Guidance [IFG]. The IFG covered
basic topics such as checking distributional assumptions, selecting one of the methods and sampling
frequencies. Examples were provided for applying the recommended statistical procedures and
interpreting the results. Two types of compliance tests were provided for comparison to the GWPS —
mean/median confidence intervals and upper limit tolerance intervals.

Given additional interest from users of the comparable regulations adopted for Subtitle D solid
waste facilities in 1991, and with experience gained in implementing various tests, EPA actively sought
to improve existing groundwater statistical guidance. This culminated in a July 1992 publication of:
Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities: Addendum to Interim
Final Guidance [Addendum].

The 1992 Addendum included a chapter devoted to retesting strategies, as well as new guidance
on several non-parametric techniques not covered within the IFG. These included the Wilcoxon rank-
sum test, non-parametric tolerance intervals, and non-parametric prediction intervals. The Addendum
also included a reference approach for evaluating statistical power to ensure that contamination could
be adequately detected. The Addendum did not replace the IFG — the two documents contained
overlapping material but were mostly intended to complement one another based on newer information

® [52 FR 25942, July 9, 1987] op. cit.
® [50 FR 28747, July 15, 1985] Amended in 1987, 1993, and 1998

" [56 FR 50978, October 9, 1991] 40 CFR Parts 257 & 258: Solid Waste Disposal Facility Criteria: Final Rule, especially
Part 258 Subpart E Groundwater Monitoring and Corrective Action
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and comments from statisticians and users of the guidance. However, the Addendum changed several
recommendations within the IFG and replaced certain test methods first published in the IFG. The two
documents provided contradictory guidance on several points, a concern addressed by this guidance.

More recently in April 2006, EPA promulgated further changes to certain 40 CFR Part 264
groundwater monitoring provisions as part of the Burden Reduction Initiative Rule.® A brief summary
of the regulatory changes and the potential effects on existing RCRA groundwater monitoring programs
is provided. Four items of specific interest are:

% Elimination of the requirements to sample four successive times per statistical evaluation
under §8264.98(d) and §264.99(f) in favor of more flexible, site-specific options as identified
in §264.97(g)(1)&(2);

s Removal of the requirements in 8264.98(g) and 8264.99(g) to annually sample all
monitoring wells for Part 264 Appendix IX constituents in favor of a specific subset of
wells;

% Modifications of these provisions to allow for a specific subset of Part 264 Appendix 1X
constituents tailored to site needs; and

% A change in the resampling requirement in §264.98(g)(3) from “within a month” to a site-
specific schedule.

These changes to the groundwater monitoring provisions require coordination between the
regulatory agency and owner/operator with final approval by the agency. Since the regulatory changes
are not issued under the 1984 Hazardous and Solid Waste Amendments [HSWA] to RCRA, authorized
State RCRA program adoption of these rules is discretionary. States may choose to maintain more
stringent requirements, particularly if already codified in existing regulations. Where EPA has direct
implementation authority, the provisions would go into effect following promulgation.

The first provision reaffirms the flexible approach in the Unified Guidance for detection
monitoring sampling frequencies and testing options. State RCRA programs using the four-successive
sampling requirements can still continue to do so under §264.97(g)(1), but the rule now allows for
alternate sampling frequencies under §264.97(g)(2) in both detection and compliance monitoring. The
second and third provisions provide more site- and waste-specific options for Part 264 Appendix IX
compliance monitoring. The final provision provides more flexibility when resampling these Appendix
IX constituents.

Since portions of the earlier and the most recent rules are still operative, all are considered in the
present Unified Guidance. The effort to create this guidance began in 1996, with a draft release in
December 2004, a peer review in 2005, and a final version completed in 20009.

8 [71 FR 16862-16915] April 4, 2006
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2.2 SPECIFIC REGULATORY FEATURES AND STATISTICAL ISSUES

This section describes critical portions of the RCRA groundwater monitoring regulations which
the present guidance addresses. The regulatory language is provided below in bold and italics.” A brief
discussion of each issue is provided in statistical terms and how the Unified Guidance deals with it.

2.2.1 STATISTICAL METHODS IDENTIFIED UNDER §264.97(h) AND §258.53(Q)

The owner or operator will specify one of the following statistical methods to be used in
evaluating groundwater monitoring data for each hazardous constituent which, upon
approval by the Regional Administrator, will be specified in the unit permit. The statistical test
chosen shall be conducted separately for each hazardous constituent in each well...

1. A parametric analysis of variance (ANOVA) followed by multiple comparison procedures
to identify statistically significant evidence of contamination. The method must include
estimation and testing of the contrasts between each compliance well’s mean and the
background mean levels for each constituent.

2. An analysis of variance (ANOVA) based on ranks followed by multiple comparison
procedures to identify statistically significant evidence of contamination. The method
must include estimation and testing of the contrasts between each compliance well’s
median and the background median levels for each constituent.

3. A tolerance interval or prediction interval procedure in which an interval for each
constituent is established from the distribution of the background data, and the level of
each constituent in each compliance well is compared to the upper tolerance or prediction
limit.

4. A control chart approach that gives control limits for each constituent.

5. Another statistical method submitted by the owner or operator and approved by the
Regional Administrator.

Part 111 of the Unified Guidance addresses these specific tests, as applied to a detection
monitoring program. It is assumed that statistical testing will be conducted separately for each hazardous
constituent in each monitoring well. The recommended non-parametric ANOVA method based on ranks
is identified in this guidance as the Kruskal-Wallis test. ANOVA tests are discussed in Chapter 17.
Tolerance interval and prediction limit tests are discussed separately in Chapters 17 and 18, with
particular attention given to implementing prediction limits with retesting when conducting multiple
comparisons in Chapter 19. The recommended type of control chart is the combined Shewhart-CUSUM
control chart test, discussed in Chapter 20. Where a groundwater protection standard is based on
background levels, application of these tests is discussed in Part I, Chapter 7 and Part IV, Chapter 22.

° The following discussions somewhat condense the regulatory language for ease of presentation and understanding. Exact
citations for regulatory text should be obtained from the most recent Title 40 Code of Federal Regulations.
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If a groundwater protection standard involves a fixed limit, none of the listed statistical methods in
these regulations directly apply. Consequently, a number of other single-sample tests for comparison
with a fixed limit are recommended in Part V. Certain statistical limitations encountered when using
ANOVA and tolerance level tests in detection and compliance monitoring are also discussed in these
chapters. Additional use of ANOVA tests for diagnostic identification of spatial variation or temporal
effects is discussed in Part |1, Chapters 13 and 14.

2.2.2 PERFORMANCE STANDARDS UNDER §264.97(i) AND §258.53(h)

Any statistical method chosen under 8264.97(h) [or 8258.53(g)] for specification in the unit
permit shall comply with the following performance standards, as appropriate:

1.

The statistical method used to evaluate ground-water monitoring data shall be appropriate
for the distribution of chemical parameters or hazardous constituents. If the distribution of
the chemical parameters or hazardous constituents is shown by the owner or operator to be
inappropriate for a normal theory test, then the data should be transformed or a
distribution-free test should be used. If the distributions for the constituents differ, more
than one statistical method may be needed.

If an individual well comparison procedure is used to compare an individual compliance
well constituent concentration with background constituent concentrations or a
groundwater protection standard, the test shall be done at a Type | error level no less than
0.01 for each testing period. If a multiple comparisons procedure is used, the Type |
experiment-wise error rate for each testing period shall be no less than 0.05; however, the
Type | error of no less than 0.01 for individual well comparisons must be maintained. This
performance standard does not apply to control charts, tolerance intervals, or prediction
intervals.

If a control chart approach is used to evaluate groundwater monitoring data, the specific
type of control chart and its associated parameter values shall be proposed by the owner or
operator and approved by the Regional Administrator if he or she finds it to be protective
of human health and the environment.

If a tolerance interval or a prediction interval is used to evaluate groundwater monitoring
data, the levels of confidence, and for tolerance intervals, the percentage of the population
that the interval must contain, shall be proposed by the owner or operator and approved by
the Regional Administrator if he or she finds it protective of human health and the
environment. These parameters will be determined after considering the number of
samples in the background data base, the data distribution, and the range of the
concentration values for each constituent of concern.

The statistical method shall account for data below the limit of detection with one or more
procedures that are protective of human health and the environment. Any practical
quantification limit (pgl) approved by the Regional Administrator under §264.97(h) [or
8258.53(g)] that is used in the statistical method shall be the lowest concentration level that
can be reliably achieved within specified limits of precision and accuracy during routine
laboratory operating conditions available to the facility.
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6. If necessary, the statistical method shall include procedures to control or correct for
seasonal and spatial variability as well as temporal correlation in the data.

These performance standards pertain to both the listed tests as well as others (such as those
recommended in Part 1V of the guidance for comparison to fixed standards). Each of the performance
standards is addressed in Part | of the guidance for designing statistical monitoring programs and in
Part |1 of the guidance covering diagnostic testing.

The first performance standard considers distributional properties of sample data; procedures for
evaluating normality, transformations to normality, or use of non-parametric (distribution-free) methods
are found in Chapter 10. Since some statistical tests also require an assumption of equal variances
across groups, Chapter 11 provides the relevant diagnostic tests. Defining an appropriate distribution
also requires consideration of possible outliers. Chapter 12 discusses techniques useful in outlier
identification.

The second performance standard identifies minimum false positive error rates required when
conducting certain tests. “Individual well comparison procedures” cited in the regulations include
various ANOVA-type tests, Student’s t-tests, as well as one-sample compliance monitoring/corrective
action tests against a fixed standard. Per the regulations, these significance level (o) constraints do not
apply to the other listed statistical methods — control charts, tolerance intervals, or prediction intervals.

When comparing an individual compliance well against background, the probability of the test
resulting in a false positive or Type | error should be no less than 1 in 100 (1%). EPA required a
minimum Type | error level for a given test and fixed sample size because false positive and negative
rates are inversely related. By limiting Type | error rates to 1%, EPA felt that the risk of incurring false
positives would be sufficiently low, while providing sufficient statistical power (i.e., the test’s ability to
control the false negative rate, that is, the rate of missing or not detecting true changes in groundwater

quality).

Though a procedure to test an individual well like the Student’s t-test may be appropriate for the
smallest of facilities, more extensive networks of groundwater monitoring wells and monitoring
parameters will generally require a multiple comparisons procedure. The 1988 regulations recognized
this need in specifying a one-way analysis of variance [ANOVA] procedure as the method of choice for
replacing the CABF Student’s t-test. The F-statistic in an analysis of variance [ANOVA] does indeed
control the site-wide or experiment-wise error rate when evaluating multiple upgradient and
downgradient wells, at least for a single constituent. Using this technique allowed the Type |I
experiment-wise error rate for each constituent to be controlled to about 5% for each testing period.

To maintain adequate statistical power, the regulations also mandate that the ANOVA procedure
be run at a minimum 5% false positive rate per constituent. But when a full set of well-constituent
combinations are considered (particularly large suites of detection monitoring analytes at numerous
compliance wells), the site-wide false positive rate can be much greater than 5%. The one-way ANOVA
is inherently an interwell technique, designed to simultaneously compare datasets from different well
locations. Constituents with significant natural spatial variation are likely to trigger the ANOVA F-
statistic even in the absence of real contamination, an issue discussed in Chapter 13.
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Control charts, tolerance intervals, and prediction intervals provide alternate testing strategies for
simultaneously controlling false positive rates while maintaining adequate power to detect contamination
during detection monitoring. Although the rules do not require a minimum nominal false positive rate as
specified in the second performance standard, use of tolerance or prediction intervals combined with a
retesting strategy can result in sufficiently low experiment-wise Type | error rates and the ability to
detect real contamination. Chapters 17, 18 and 20 consider how tolerance limits, control charts, and
prediction limits can be designed to meet the third and fourth performance standards specific to these
tests considering the number of samples in background, the data distribution, and the range of
concentration values for each constituent of concern [COC]. Chapters 19 and 20 on multiple
comparison procedures using prediction limits or control charts identify how retesting can be used to
enhance power and meet the specified false positive objectives.

The fifth performance standard requires statistical tests to account for non-detect data. Chapter 15
provides some alternative approaches for either adjusting or modeling sample data in the presence of
reported non-detects. Other chapters include modifications of standard tests to properly account for the
non-detect portion of data sets.

The sixth performance standard requires consideration of spatial or temporal (including seasonal)
variation in the data. Such patterns can have major statistical consequences and need to be carefully
addressed. Most classical statistical tests in this guidance require assumptions of data independence and
stationarity. Independence roughly means that observing a given sample measurement does not allow a
precise prediction of other sample measurements. Drawing colored balls from an urn at random
illustrates and fits this requirement; in groundwater, sample volumes are assumed to be drawn more or
less at random from the population of possible same-sized volumes comprising the underlying aquifer.
Stationarity assumes that the population being sampled has a constant mean and variance across time
and space. Spatial or temporal variation in the well means and/or variances can negate these test
assumptions. Chapter 13 considers the use of ANOVA techniques to establish evidence of spatial
variation. Modification of the statistical approach may be necessary in this case; in particular,
background levels will need to be established at each compliance well for future comparisons (termed
intrawell tests). Control chart, tolerance limit, and prediction limit tests can be designed for intrawell
comparisons; these topics are considered in Part 111 of this guidance.

Temporal variation can occur for a number of reasons — seasonal fluctuations, autocorrelation,
trends over time, etc. Chapter 14 addresses these forms of temporal variation, along with recommended
statistical procedures. In order to achieve stationarity and independence, sample data may need to be
adjusted to remove trends or other forms of temporal dependence. In these cases, the residuals remaining
after trend removal or other adjustments are used for formal testing purposes. Correlation among
monitoring constituents within and between compliance wells can occur, a subject also treated in this
chapter.

When evaluating statistical methods by these performance standards, it is important to recognize
that the ability of a particular procedure to operate correctly in minimizing unnecessary false positives
while detecting possible contamination depends on several factors. These include not only the choice of
significance level and test hypotheses, but also the statistical test itself, data distributions, presence or
absence of outliers and non-detects, the presence or absence of spatial and temporal variation, sampling
requirements, number of samples and comparisons to be made, and frequency of sampling. Since all of
these statistical factors interact to determine the procedure’s effectiveness, any proposed statistical
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procedure needs to be evaluated in its entirety, not by individual components. Part |, Chapter 5
discusses evaluation of potential background databases considering all of the performance criteria.

2.2.3 HYPOTHESIS TESTS IN DETECTION, COMPLIANCE/ASSESSMENT, AND
CORRECTIVE ACTION MONITORING

The Part 264 Subpart F groundwater monitoring regulations do not specifically identify the test
hypotheses to be used in detection monitoring (8264.98), compliance monitoring (§264.99), and
corrective action (8264.100). The same is true for the parallel Part 258 regulations for detection
monitoring (8258.54), assessment monitoring (8258.55), and assessment of corrective measures
(8258.56), as well as for evaluating interim status indicator parameters (8265.93) or Appendix IlI
constituents. However, the language of these regulations as well as accepted statistical principles allow
for clear definitions of the appropriate test hypotheses. Two- or multiple-sample comparisons
(background vs. downgradient well data) are usually involved in detection monitoring (the comparison
could also be made against an ACL limit based on background data). Units under detection monitoring
are initially presumed not to be contributing a release to the groundwater unless demonstrated otherwise.
From a statistical testing standpoint, the population of downgradient well measurements is assumed to
be equivalent to or no worse than those of the background population; typically this translates into an
initial or null hypothesis that the downgradient population mean is equal to or less than the background
population mean. Demonstration of a release is triggered when one or more well constituents indicate
statistically significant levels above background.

Compliance and corrective action tests generally compare single sets of sample data to a fixed limit
or a background standard. The language of 8264.99 indicates that a significant increase above a GWPS
will demonstrate the need for corrective action. Consequently, the null hypothesis is that the compliance
population mean (or perhaps an upper percentile) is at or below a given standard. The statistical
hypothesis is thus quite similar to that of detection monitoring. In contrast, once an exceedance has been
established and 8264.100 is triggered, the null hypothesis is that a site is contaminated unless
demonstrated to be significantly below the GWPS. The same principles apply to Part 258 monitoring
programs. In Part 265, the detection monitoring hypotheses apply to an evaluation of the contaminant
indicator parameters. The general subject of hypothesis testing is discussed in Chapter 3, and specific
statistical hypothesis formulations are found in Parts|11 and IV of this guidance.

2.2.4 SAMPLING FREQUENCY REQUIREMENTS

Each of the RCRA groundwater monitoring regulations defines somewhat different minimum
sampling requirements. §264.97(g)(1) & (2) provides two main options:

1. Obtaining a sequence of at least four samples taken at an interval that ensures, to the
greatest extent technically feasible, that a statistically independent sample is obtained, by
reference to the uppermost aquifer effective porosity, hydraulic conductivity, and
hydraulic gradient, and the fate and transport characteristics of potential contaminants;
or

2. An alternate sampling procedure proposed by the owner or operator and approved by the
Regional Administrator if protective of human health and the environment.
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Additional regulatory language in detection [8264.98(d)] and compliance [8264.99(f)]
monitoring reaffirms the first approach:

[A] a sequence of at least four samples from each well (background and compliance wells)
must be collected at least semi-annually during detection/compliance monitoring...

Interim status sampling requirements under §265.92[c] read as follows:

(1) For all monitoring wells, the owner or operator must establish initial background
concentrations or values of all parameters specified in paragraph (b) of this section. He
must do this quarterly for one year;

(2) For each of the indicator parameters specified in paragraph (b)(3) of this section, at
least four replicate measurements must be obtained for each sample and the initial
background arithmetic mean and variance must be determined by pooling the replicate
measurements for the respective parameter concentrations or values in samples obtained
from upgradient wells during the first year.

The requirements under Subtitle D §258.54(b) are somewhat different:

The monitoring frequency for all constituents listed in Appendix I to this part,... shall be at
least semi-annual during the active life of the facility.... A minimum of four independent
samples from each well (background and downgradient) must be collected and analyzed
for the Appendix I constituents... during the first semi-annual event. At least one sample
from each well (background and downgradient) must be collected and analyzed during
subsequent semi-annual events...

The 1980 and 1982 regulations required four analyses of essentially a single physical sample for
certain constituents, i.e., the four contaminant indicator parameters. The need for statistically
independent data was recognized in the 1988 revisions to Part 264 and in the Part 258 solid waste
requirements. In the latter rules, only a minimum single sample is required in successive semi-annual
sampling events. Individual Subtitle C programs have also made use of the provision in §264.97(g)(2) to
allow for fewer than four samples collected during a given semi-annual period, while other State
programs require the four successive sample measurements. As noted, by the recent changes in the April
2006 Burden Reduction Rule, the explicit requirements to obtain at least four samples during the next
evaluation period under 40 CFR 8264.98(d) and §264.99(f) have been removed, allowing more general
flexibility under the §264.97(g) sampling options. Individual State RCRA programs should be consulted
as to whether these recent rule changes may be applicable.

The requirements of Parts 264 and 258 were generally intended to provide sufficient data for
ANOVA-type tests in detection monitoring. However, control chart, tolerance limit, and prediction limit
tests can be applied with as few as one new sample per evaluation, once background data are established.
The guidance provides maximum flexibility in offering a range of prediction limit options in Chapter
18 in order to address these various sample size requirements. Although not discussed in detail, the same
conclusions pertain to the use of control charts or tolerance limits.

The use of the term “replicate” in the Part 265 interim status regulations can be a significant
problem, if interpreted to mean repeat analyses of splits (or aliquots) of a single physical sample. The
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regulations indicate the need for statistical independence among sample data for testing purposes. This
guidance discusses the technical statistical problems that arise if replicate (aliquot) sample data are used
with the required Student’s t-test in Part 265. Thus, the guidance recommends, if possible, that interim
status statistical evaluations be based on independent sample data as discussed in Chapters 13 and 14
and at the end of this chapter. A more standardized Welch’s version of the Student-t test for unequal
variances is provided as an alternative to the CABF Student’s t-test.

2.2.5 GROUNDWATER PROTECTION STANDARDS

Part 265 does not use the term groundwater protection standards. A first-year requirement under
§265.92(c)(1) is:

For all monitoring wells, the owner or operator must establish background
concentrations or values of all parameters specified in paragraph (b) of this section. He
must do this quarterly for one year.

Paragraph (b) includes water supply parameters listed in Part 265 Appendix Ill, which also
provides a Maximum Level for each constituent. If a facility owner or operator does not develop and
implement an assessment plan under 8265.93(d)(4), there is a requirement in 8265.94(a)(2) to report the
following information to the Regional Administrator:

(i) During the first year when initial background concentrations are being established for
the facility: concentrations or values of the parameters listed in §265.92(b)(1) for each
groundwater monitoring well within 15 days after completing each quarterly analysis. The
owner or operator must separately identify for each monitoring well any parameters whose
concentrations or value has been found to exceed the maximum contaminant levels in
Appendix I11.

Since the Part 265 regulations are explicit in requiring a one-to-one comparison, no statistical
evaluation is needed or possible.

8264.94(a) identifies the permissible concentration limits as a GWPS under §264.92:

The Regional Administrator will specify in the facility permit concentrations limits in the
groundwater for hazardous constituents established under §264.93. The concentration of a
constituent:

(1) must not exceed the background level of that constituent in the groundwater at the time
the limit is specified in the permit; or

(2) for any of the constituents listed in Table 1, must not exceed the respective value given
in that table if the background level is below the value given in Table 1; or

(3) must not exceed an alternate limit established by the Regional Administrator under
paragraph (b) of this section.
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The RCRA Subtitle D regulations establish the following standards under §258.55(h) and (i):

(h) The owner or operator must establish a groundwater protection standard for each
Appendix Il constituent detected in groundwater. The groundwater protection standard
shall be:

(1) For constituents for which a maximum contaminant level (MCL) has been
promulgated under Section 1412 of the Safe Drinking Water Act (codified) under 40
CFR Part 141, the MCL for that constituent;

(2) for constituents for which MCLs have not been promulgated, the background
concentration for the constituent established from wells in accordance with
§258.51(a)(1); or

(3) for constituents for which the background level is higher than the MCL identified
under paragraph (h)(1) of this section or health based levels identified under
§258(i)(1), the background concentration.

(i) The Director of an approved State program may establish an alternative groundwater
protection standard for constituents for which MCLs have not been established. These
groundwater protection standards shall be appropriate health based levels that satisfy the
following criteria:

(1) the level is derived in a manner consistent with Agency guidelines for assessing
health risks or environmental pollutants [51 FR 33992, 34006, 34014, 34028, Sept. 24,
1986]

(2) to (4)... [other detailed requirements for health risk assessment procedures]

The two principal alternatives for defining a groundwater protection standard [GWPS] are either
a limit based on background data or a fixed health-based value (e.g., MCLs, 8264.94 Table 1 values, or a
calculated risk limit). The Unified Guidance discusses these two basic kinds of standards in Chapters 7
and 21. If a background limit is applied, some definition of how the limit is constructed from prior
sample data is required at the time of development. For fixed health-based limits, the regulatory program
needs to consider the statistical characteristic of the data (e.g., mean, median, upper percentile) that best
represents the standard in order to conduct appropriate statistical comparisons. This subject is also
discussed in Chapter 21; the guidance provides a number of testing options in this regard.

2.3 UNIFIED GUIDANCE RECOMMENDATIONS
2.3.1 INTERIM STATUS MONITORING

As discussed in Chapter 14, replicates required for the four contaminant indicator parameters are
not statistically independent when analyzed as aliquots or splits from a single physical sample. This
results in incorrect estimates of variance and the degrees of freedom when used in a Student’s t-test. One
of the most important revisions in the 1988 regulations was to require that successive samples be
independent.  Therefore, at a minimum, the Unified Guidance recommends that only independent
water quality sample data be applied to the detection monitoring Student’s t-tests in Chapter 16.
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There are other considerations limiting the application of these tests as well. As noted in Chapter
5, at least two of the indicator parameters (pH and specific conductance) are likely to exhibit natural
spatial differences among monitoring wells. Depending on site groundwater characteristics, TOC and
TOX may also vary spatially. TOX analytical limitations described in SW-846' also note that levels of
TOX are affected by inorganic chloride levels, which themselves can vary spatially by well. In short, all
four indicator parameters may need to be evaluated on an intrawell basis, i.e., using historical data from
compliance monitoring wells.

Since this option is not identified in existing Part 265 regulations for indicator detection
monitoring, a more appropriate strategy is to develop an alternative groundwater quality assessment
monitoring plan under 8265.90(d)(3) and (4) and 8265.93(d)(3) and (4). These sections of the
regulations require evaluation of hazardous waste constituents reasonably derived from the regulated
unit (either those which served as a basis for listing in Part 265 Appendix VII or which are found in
8261.24 Table 1). Interim status units subject to a permit are also subject to the groundwater
contaminant information collection provisions under 8270.14[c], which potentially include all hazardous
constituents (a wider range of contaminants, e.g., Part 264 Appendix IX) reasonably expected from the
unit. While an interim status facility can return to indicator detection monitoring if no hazardous
constituent releases have been identified, such a return is itself optional.

EPA recommends that interim status facilities develop the 8265.90(d)(3) & (4) alternative
groundwater quality assessment monitoring plan, if possible, using principles and procedures found in
this guidance for monitoring design and statistical evaluation. Unlike Part 264 monitoring, there are no
formal compliance/corrective action steps associated with statistical testing. A regulatory agency may
take appropriate enforcement action if data indicate a release or significant adverse effect. The
monitoring plan can be applied for an indefinite period until permit development. Multi-year collection
of semi-annual or quarterly hazardous constituent data is more determinative of potential releases. The
facility or the regulatory agency may also wish to continue evaluation of some or all of the Part 265
water quality indicators. Eventually these groundwater data can be used to establish which monitoring
program(s) may be appropriate at the time of permit development under §264.91(b).

2.3.2 PARTS 264 AND 258 DETECTION MONITORING METHODS

As described in Chapter 13, many of the commonly monitored inorganic analytes exhibit natural
spatial variation among wells. Since the two ANOVA techniques in 8264.97(h) and §258.53(g) depend
on an assumption of a single common background population, these tests may not be appropriate in
many situations. Additionally, at least 50% of the data should be detectable in order to compare either
well means or medians. For many hazardous trace elements, detectable percentages are considerably
lower. Interwell ANOVA techniques would also not be generally useful in these cases. ANOVA may
find limited applicability in detection monitoring with trace organic constituents, especially where
downgradient levels are considerably higher than background and there is a high percentage of detects.
Based on ranks alone, it may be possible to determine that compliance well(s) containing one or more
hazardous constituents exceed background. However, the Unified Guidance recommends avoiding
ANOVA techniques in the limiting situations just described.

10 Test Methods for Evaluating Solid Waste (SW-846), EPA OSWER, 3" Edition and subsequent revisions, Method 9020B,
September 1994
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Another detection monitoring method receiving less emphasis in this guidance is the tolerance
limit. In previous guidance, an upper tolerance limit based on background was suggested to identify
significant increases in downgradient well concentration levels. While still acceptable by regulation
(e.g., under existing RCRA permits), use of prediction limits are preferable to tolerance limits in
detection monitoring for the following reasons. The construction of a tolerance limit is nearly identical
to that of a prediction limit. In parametric normal distribution applications, both methods use the general
formula: X +xs. The kappa (k) multiplier varies depending on the coverage and confidence levels
desired, but in both cases some multiple of the standard deviation (s) is added or subtracted from the
sample mean (X ). For non-parametric limits, the similarity is even more apparent. Often the identical
statistic (e.g., the maximum observed value in background) can either be used as an upper prediction
limit or an upper tolerance limit, with only a difference in statistical interpretation.

More fundamentally, given the wide variety of circumstances in which retesting strategies are now
encouraged and even necessary, the mathematical underpinnings of retesting with prediction limits are
well established while those for retesting with tolerance limits are not. Monte Carlo simulations were
originally conducted for the 1992 Addendum to develop appropriate retesting strategies involving
tolerance limits. Such simulations were found insufficient for the Unified Guidance.™

While the simultaneous prediction limits presented in the Unified Guidance consider the actual
number of comparisons in defining exact false positive error rates, some tolerance limit approaches
(including past guidance) utilized an approximate and less precise pre-selected low level of probability.
On balance, there is little practical need for recommending two highly similar (but not identical)
methods in the Unified Guidance, both for the reasons just provided and to avoid confusion of which
method to use. The final regulation-specified detection monitoring method — control charts — is
comparable to prediction limits, but possesses some unique benefits and so is also recommended in this
guidance.

2.3.3 PARTS 264 AND 258 COMPLIANCE/ASSESSMENT MONITORING

A second use of tolerance limits recommended in earlier guidance was for comparing
downgradient monitoring well data to a fixed limit during compliance/assessment monitoring. In this
case, an upper tolerance limit constructed on each compliance well data set could be used to identify
non-compliance with a fixed GWPS limit. Past guidance also used upper confidence limits around an
upper proportion in defining these tolerance limits. A number of problems were identified using this
approach.

A tolerance limit makes statistical sense if the limit represents an upper percentile, i.e., when a
limit is not to be exceeded by more than, for instance, 1% or 5% or 10% of future individual
concentration values. However, GWPS limits can also be interpreted as long-term averages, e.g., chronic
risk-based values, which are better approximated by a statistic like the mean or median. Chapters 7 &

'11) there were minor errors in the algorithms employed; 2) Davis and McNichols (1987) demonstrated how to compute exact
kappa multipliers for prediction limits using a numerical algorithm instead of employing an inefficient simulation strategy;
and 3) further research (as noted in Chapter 19) done in preparation of the guidance has shown that repeated prediction
limits are more statistically powerful than retesting strategies using tolerance limits for detecting changes in groundwater
quality.
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22 discuss important considerations when identifying the appropriate statistical parameter to be
compared against a fixed GWPS limit.

More importantly, since the upper confidence level of tolerance limit overestimates the true
population proportion by design, demonstrating an exceedance of a GWPS by this limit does not
necessarily indicate that the corresponding population proportion also exceeds the standard, leading to a
high false positive rate. Therefore, the Unified Guidance recommends that the compliance/assessment
monitoring null hypothesis be structured so that the compliance population characteristic (e.g., mean,
median, upper percentile) is assumed to be less than or equal to the fixed standard unless demonstrated
otherwise. The correct test statistic in this situation is then the lower confidence limit. The upper
confidence limit is used in corrective action to identify whether a constituent has returned to compliance.

To ensure consistency with the underlying statistical presumptions of compliance/assessment
monitoring (see Chapter 4) and to maintain control of false positive rates, the Unified Guidance
recommends that this tolerance interval approach be replaced with a more coherent and comprehensive
strategy based on the use of confidence intervals (see Chapters 21 and 22). Confidence intervals can be
applied in a consistent fashion to GWPS concentration limits representing either long-term averages or
upper percentiles.
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CHAPTER 3. KEY STATISTICAL CONCEPTS
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The success of any discipline rests on its ability to accurately model and explain real problems.
Spectacular successes have been registered during the past four centuries by the field of mathematics in
modeling fundamental processes in mechanics and physics. The last century, in turn, saw the rise of
statistics and its fundamental theory of estimation and hypothesis testing. All of the tests described in the
Unified Guidance are based upon this theory and involve the same key concepts. The purpose of this
chapter is to summarize the statistical concepts underlying the methods presented in the Unified
Guidance, and to consider each in the practical context of groundwater monitoring. These include:

Statistical inference: the difference between samples and populations; the concept of sampling.

Common statistical assumptions used in groundwater monitoring: statistical independence,
stationarity, lack of outliers, and normality.

Frequently-used statistical measures: mean, standard deviation, percentiles, correlation
coefficient, coefficient of variation, etc.

Hypothesis testing: How probability distributions are used to model the behavior of groundwater
concentrations and how the statistical evidence is used to “prove” or “disprove” the validity of
competing models.

Errors in hypothesis testing: What false positives (Type | errors) and false negatives (Type Il
errors) really represent.

Sampling distributions and the Central Limit Theorem: How the statistical behavior of test
statistics differs from that of individual population measurements.

Statistical power and power curves: How the ability to detect real contamination depends on the
size or degree of the concentration increase.

Type | vs. Type Il errors: The tradeoff between false positives and false negatives; why it is
generally impossible to minimize both kinds of error simultaneously.
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3.1 INTRODUCTION TO GROUNDWATER STATISTICS

This section briefly covers some basic statistical terms and principles used in this guidance. All of
these topics are more thoroughly discussed in standard textbooks. It is presumed that the user already has
some familiarity with the following terms and discussions.

Statistics is a branch of applied mathematics, dealing with the description, understanding, and
modeling of data. An integral part of statistical analysis is the testing of competing mathematical models
and the management of data uncertainty. Uncertainty is present because measurement data exhibit
variability, with limited knowledge of the medium being sampled. The fundamental aim of almost every
statistical analysis is to draw inferences. The data analyst must infer from the observed data something
about the physical world without knowing or seeing all the possible facts or evidence. So the question
becomes: how closely do the measured data mimic reality, or put another way, to what extent do the data
correctly identify a physical truth (e.g., the compliance well is contaminated with arsenic above
regulatory limits)?

One way to ascertain whether an aquifer is contaminated with certain chemicals would be to
exhaustively sample and measure every physical volume of groundwater underlying the site of interest.
Such a collection of measurements would be impossible to procure in practice and would be infinite in
size, since sampling would have to be continuously conducted over time at a huge number of wells and
sampling depths. However, one would possess the entire population of possible measurements at that
site and the exact statistical distribution of the measured concentration values.

A statistical distribution is an organized summary of a set of data values, sorted into the relative
frequencies of occurrence of different measurement levels (e.g., concentrations of 5 ppb or less occur
among 30 percent of the values, or levels of 20 ppb or more only occur 1 percent of the time). More
generally, a distribution may refer to a mathematical model (known as a probability distribution) used to
represent the shape and statistical characteristics of a given population and chosen according to one’s
experience with the type of data involved.

By contrast to the population, a statistical sample is a finite subset of the population, typically
called a data set. Note that the statistical definition of sample is usually different from a geological or
hydrological definition of the same term. Instead of a physical volume or mass, a statistical sample is a
collection of measurements, i.e., a set of numbers. This collection might contain only a single value, but
more generally has a number of measurements denoted as the sample size, n.

Because a sample is only a partial representation of the population, an inference is usually desired
in order to conclude something from the observed data about the underlying population. One or more
numerical characteristics of the population might be of interest, such as the true average contaminant
level or the upper 95th percentile of the concentration distribution. Quantities computed from the sample
data are known as statistics, and can be used to reasonably estimate the desired but unknown population
characteristics. An example is when testing sample data against a regulatory standard such as a
maximum concentration limit [MCL] or background level. A mean sample estimate of the average
concentration can be used to judge whether the corresponding population characteristic — the true mean
concentration (denoted by the Greek letter p) — exceeds the MCL or background limit.

The accuracy of these estimates depends on how representative the sample measurements of the
underlying population are. In a representative sample, the distribution of sample values have the best
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chance of closely matching the population distribution. Unfortunately, the degree of representativeness
of a given sample is almost never known. So it quite important to understand precisely how the sample
values were obtained from the population and to explore whether or not they appear representative.
Though there is no guarantee that a sample will be adequate, the best protection against an
unrepresentative sample is to select measurements from the population at random. A random sample
implies that each potential population value has an equivalent chance of being selected depending only
on its likelihood of occurrence. Not only does random sampling guard against selection of an
unrepresentative portion of the population distribution, it also enables a mathematical estimate to be
drawn of the statistical uncertainty associated with the ability of a given sample to represent the desired
characteristic of the population. It can be very difficult to gauge the uncertainty surrounding a sample
collected haphazardly or by means of professional judgment.

As a simple example, consider an urn filled with red and green balls. By thoroughly mixing the urn
and blindly sampling (i.e., retrieving) 10 percent of the balls, a very nearly random sample of the
population of balls will be obtained, allowing a fair estimate of the true overall proportion of one color
or the other. On the other hand, if one looked into the urn while sampling and only picked red balls or
tried to alternate between red and green, the sample would be far from random and likely
unrepresentative of the true proportions.

At first glance, groundwater measurements obtained during routine monitoring would not seem to
qualify as random samples. The well points are generally not placed in random locations or at random
depths, and the physical samples are usually collected at regular, pre-specified intervals. Consequently,
further distinctions and assumptions are necessary when performing statistical evaluations of
groundwater data. First, the distribution of a given contaminant may not be spatially uniform or
homogeneous. That is, the local distribution of measured values at one well may not be the same as at
other wells. Because this is often true for naturally-occurring groundwater constituents, the statistical
population(s) of interest may be well-specific. A statistical sample gathered from a particular well must
then be treated as potentially representative only of that well’s local population. On the other hand,
samples drawn from a number of reference background wells for which no significant differences are
indicated, may permit the pooled data to serve as an estimate of the overall well field behavior for that
particular monitoring constituent.

The distribution of a contaminant may also not be temporally uniform or stationary over time. If
concentration values indicates a trend, perhaps because a plume intensifies or dissipates or natural in-situ
levels rise or fall due to drought conditions, etc., the distribution is said to be non-stationary. In this
situation, some of the measurements collected over time may not be representative of current conditions
within the aquifer. Statistical adjustments might be needed or the data partitioned into usable and
unusable values.

A similar difficulty is posed by cyclical or seasonal trends. A long-term constituent concentration
average at a well location or the entire site may essentially be constant over time, yet temporarily
fluctuate up and down on a seasonal basis. Given a fixed interval between sampling events, some of this
fluctuation may go unobserved due to the non-random nature of the sampling times. This could result in
a sample that is unrepresentative of the population variance and possibly of the population mean as well.
In such settings, a shorter (i.e., higher frequency) or staggered sampling interval may be needed to better
capture key characteristics of the population as a part of the distribution of sample measurements.
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The difficulties in identifying a valid statistical framework for groundwater monitoring highlight a
fundamental assumption governing almost every statistical procedure and test. It is the presumption that
sample data from a given population should be independent and identically distributed, commonly
abbreviated as i.i.d. All of the mathematics and statistical formulas contained in this guidance are built
on this basic assumption. If it is not satisfied, statistical conclusions and test results may be invalid or in
error. The associated statistical uncertainty may be different than expected from a given test procedure.

Random sampling of a single, fixed, stationary population will guarantee independent, identically-
distributed sample data. Routine groundwater sampling typically does not. Consequently, the Unified
Guidance discusses both below and in later chapters what assumptions about the sample data must be
routinely or periodically checked. Many but not all of these assumptions are a simple consequence of the
I.i.d. presumption. The guidance also discusses how sampling ought to be conducted and designed to get
as close as possible to the i.i.d. goal.

3.2 COMMON STATISTICAL ASSUMPTIONS

Every statistical test or procedure makes certain assumptions about the data used to compute the
method. As noted above, many of these assumptions flow as a natural consequence of the presumption
of independent, identically-distributed data (i.i.d.). The most common assumptions are briefly described
below:

3.2.1 STATISTICAL INDEPENDENCE

A major advantage of truly random sampling of a population is that the measurements will be
statistically independent. This means that observing or knowing the value of one measurement does not
alter or influence the probability of observing any other measurement in the population. After one value
is selected, the next value is sampled again at random without regard to the previous measurement, and
so on. By contrast, groundwater samples are not chosen at random times or at random locations. The
locations are fixed and typically few in number. The intervals between sampling events are fixed and
fairly regular. While samples of independent data exhibit no pairwise correlation (i.e., no statistical
association of similarity or dissimilarity between pairs of sampled measurements), non-independent or
dependent data do exhibit pairwise correlation and often other, more complex forms of correlation.
Aliquot split sample pairs are generally not independent because of the positive correlation induced by
the splitting of the same physical groundwater sample. Split measurements tend to be highly similar,
much more so than the random pairings of data from distinct sampling events.

In a similar vein, measurements collected close together in time from the same well tend to be
more highly correlated than pairs collected at longer intervals. This is especially true when the
groundwater is so slow-moving that the same general volume of groundwater is being sampled on
closely-spaced consecutive sampling events. Dependence may also be exhibited spatially across a well
field. Wells located more closely in space and screened in the same hydrostratigraphic zone may show
greater similarity in concentration patterns than wells that are farther apart. For both of these temporal or
time-related and spatial dependencies, the observed correlations are a result not only of the non-random
nature of the sampling but also the fact that many groundwater populations are not uniform throughout
the subsurface. The aquifer may instead exhibit pockets or sub-zones of higher or lower concentration,
perhaps due to location-specific differences in natural geochemistry or the dynamics of contaminant
plume behavior over time.
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As a mathematical construct, statistical independence is essentially impossible to check directly in
a set of sample data — other than by ensuring ahead of time that the measurements were collected at
random. However, non-zero pairwise correlation, a clear sign of dependent data, can be checked and
estimated in a variety of ways. The Unified Guidance describes two methods for identifying temporal
correlation in Chapter 14: the rank von Neumann ratio test and the sample autocorrelation function.
Measurable correlation among consecutive sample pairs may dictate the need for decreasing the
sampling frequency or for a more complicated data adjustment.

Defining and modeling wellfield spatial correlation is beyond the scope of this guidance, but is
very much the purview of the field of geostatistics. The Unified Guidance instead looks for evidence of
well-to-well spatial variation, i.e., statistically identifiable differences in mean and/or variance levels
across the well field. If evident, the statistical approach would need to be modified so that distinct wells
are treated as individual populations with statistical testing being conducted separately at each one (i.e.,
intrawell comparisons).

3.2.2 STATIONARITY

A stationary statistical distribution is one whose population characteristics do not change over time
and/or space. In a groundwater context, this means that the true population distribution of a given
contaminant is the same no matter where or when it is sampled. In the strictest form of stationarity, the
full distribution must be exactly the same at every time and location. However, in practice, a weaker
form is usually assumed: that the population mean () and variance (denoted by the Greek symbol ¢%)
are the same over time and/or space.

Stationarity is important to groundwater statistical analysis because of the way that monitoring
samples must be collected. If a sample set somehow represented the entire population of possible aquifer
values, stationarity would not be an issue in theory. A limited number of physical groundwater samples,
however, must be individually collected from each sampled location. To generate a statistical sample,
the individual measurements must be pooled together over time from multiple sampling events within a
well, or pooled together across space by aggregating data from multiple wells, or both.

As long as the contaminant distribution is stationary, such pooling poses no statistical problem. But
with a non-stationary distribution, either the mean and/or variance is changing over time in any given
well, or the means and variances differ at distinct locations. In either case, the pooled measurements are
not identically-distributed even if they may be statistically independent.

The effects of non-stationarity are commonly seen in four basic ways in the groundwater context:
1) as spatial variability, 2) in the existence of trends and/or seasonal variation, 3) via other forms of
temporal variation, and 4) in the lack of homogeneity of variance. Spatial variability (discussed more
extensively in Chapter 13) refers to statistically identifiable differences in mean and/or variance levels
(but usually means) across the well field (i.e., spatial non-stationarity). The existence of such variation
often precludes the pooling of data across multiple background wells or the proper upgradient-to-
downgradient comparison of background wells against distinct compliance wells. Instead, the usual
approach is to perform intrawell comparisons, where well-specific background data is culled from the
early sampling history at each well. Checks for spatial variability are conducted graphically with the aid
of side-by-side box plots (Chapter 9) and through the use of analysis of variance [ANOVA, Chapter
13].
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A trend over time at a given well location indicates that the mean level is not stationary but is
instead rising or falling. A seasonal trend is similar in that there are periodic increases and decreases.
Pooling several sampling events together thus mixes measurements with differing statistical
characteristics. This can violate the identically-distributed presumption of almost all statistical tests and
usually leads to an inflated estimate of the current population variance. Trends or seasonal variations
identified in (upgradient) background wells or in intrawell background data from compliance wells can
severely impact the accuracy and effectiveness of statistical procedures described in this guidance if data
are pooled over time to establish background limits. The approach that should be taken will vary with
the circumstance. Sometimes the trend component might need to be estimated and removed from the
original data, so that what gets tested are the data residuals (i.e., values that result from subtracting the
estimated trend from the original data) instead of the raw measurements. In other cases, an alternate
statistical approach might be needed such as a test for (positive) trend or construction of a confidence
band around an estimated trend. More discussion of these options is presented in Chapters 6, 7, 14, and
21.

To identify a linear trend, the Unified Guidance describes simple linear regression and the Mann-
Kendall test in Chapter 17. For seasonal patterns or a combination of linear and seasonal trend effects,
the guidance discusses the seasonal Mann-Kendall test and the use of ANOVA tests to identify seasonal
effects. These diagnostic procedures are also presented in Chapter 14.

Temporal variations are distinguished in this guidance from trends or seasonal effects by the lack
of a regular or identifiable pattern. Often a temporal effect will be observed as a temporary shift in
concentration levels that is similar in magnitude and direction at multiple wells. This can occur at some
sites, for instance, due to rainfall or recharge events. Because the mean level changes at least
temporarily, pooling data over time again violates the assumption of identically-distributed data. In this
case, the temporal effect can be identified by looking for parallel traces on a time series plot of multiple
wells and then more formally by performing a one-way ANOVA for temporal effects. These procedures
are described in Chapter 14. Once identified, the residuals from the ANOVA can be used for
compliance testing, since the common temporal effect has been removed.

Lastly, homogeneity of variance is important in ANOVA tests, which simultaneously evaluates
multiple groups of data each representing a sample from a distinct statistical population. In the latter
test, well means need not be the same; the reason for performing the test in the first place is to find out
whether the means do indeed differ. But the procedure assumes that all the group variances are equal or
homogeneous. Lack of homogeneity or stationarity in the variances causes the test to be much less
effective at discovering differences in the well means. In extreme cases, the concentration levels would
have to differ by large amounts before the ANOVA would correctly register a statistical difference. Lack
of homogeneity of variance can be identified graphically via the use of side-by-side box plots and then
more formally with the use of Levene’s test. Both these methods are discussed further in Chapter 11.
Evidence of unequal variances may necessitate the use of a transformation to stabilize the variance prior
to running the ANOVA. It might also preclude use of the ANOVA altogether for compliance testing, but
require intrawell approaches to be considered instead.

ANOVA is not the only statistical procedure which assumes homogeneity of variance. Prediction
limits and control charts require a similar assumption between background and compliance well data.
But if only one new sample measurement is collected per well per evaluation period (e.g., semi-
annually) it can be difficult to formally test this assumption with the diagnostic methods cited above. As
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an alternative, homogeneity of variance can be periodically tested when a sufficient sample size has been
collected for each compliance well (see Chapter 6).

3.2.3 LACK OF STATISTICAL OUTLIERS

Many authors have noted that outliers — extreme, unusual-looking measurements — are a regular
occurrence among groundwater data (Helsel and Hirsch, 2002; Gibbons and Coleman, 2001). Sometimes
an outlier results from nothing more than a typographical error on a laboratory data sheet or file. In
others, the fault is an incorrectly calibrated measuring device or a piece of equipment that was not
properly decontaminated. An unusual measurement might also reflect the sampling of a temporary, local
‘hot spot” of higher concentration. In each of these situations, outliers in a statistical context represent
values that are inconsistent with the distribution of the remaining measurements. Tests for outliers thus
attempt to infer whether the suspected outlier could have reasonably been drawn from the same
population as the other measurements, based on the sample data observed up to that point. Statistical
methods to help identify potential outliers are discussed in Chapter 12, including both Dixon’s and
Rosner’s tests, as well as references to other methods.

The basic problem with including statistical outliers in analyzing groundwater data is that they do
not come from the same distribution as the other measurements in the sample and so fail the identically-
distributed presumption of most tests. The consequences can be dramatic, as can be seen for instance
when considering non-parametric prediction limits. In this testing method, one of the largest values
observed in the background data such as the maximum, is often the statistic selected as the prediction
limit. If a large outlier is present among the background measurements, the prediction limit may be set to
this value despite being unrepresentative of the background population. In effect, it arises from another
population, e.g., the ‘population’ of typographical errors. The prediction limit could then be much higher
than warranted based on the observed background data and may provide little if any probability that truly
contaminated compliance wells will be identified. The test will then have lower than expected statistical
power.

Overall, it pays to try to identify possible outliers and to either correct the value(s) if possible, or
exclude known outliers from subsequent statistical analysis. It is also possible to select a statistical
method that is resistant to the presence of outliers, so that the test results are still likely to be accurate
even if one or more outliers is unidentified. Examples of this last strategy include setting non-parametric
prediction limits to values other than the background maximum using repeat testing (see Chapter 18) or
using Sen’s slope procedure to estimate the rate of change in a linear trend (Chapter 17).

3.2.4 NORMALITY

Probability distributions introduced in Section 3.1 are mathematical models used to approximate
or represent the statistical characteristics of populations. Knowing the exact form and defining equation
of a probability distribution allows one to assess how likely or unlikely it will be to observe particular
measurement values (or ranges of values) when selecting or drawing independent, identically distributed
[i.i.d.] samples from the associated population. This can be done as follows. In the case of a continuous
distributional model, a curve can be drawn to represent the probability distribution by plotting
probability values along the y-axis and measurement or concentration values along the x-axis. Since the
continuum of x-values along this curve is infinite, the probability of occurrence of any single possible
value is negligible (i.e., zero), and does not equal the height of the curve. Instead, positive probabilities
can be computed for ranges of possible values by summing the area under the distributional curve
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associated with the desired range. Since by definition the total area under any probability distribution
curve sums to unity, all probabilities are then numbers between 0 and 1.

Probability distributions form the basic building blocks of all statistical testing procedures. Every
test relies on comparing one or more statistics computed from the sample data against a reference
distribution. The reference distribution is in turn a probability distribution summarizing the expected
mathematical behavior of the statistic(s) of interest. A formal statistical test utilizes this reference
distribution to make inferences about the sample statistic in terms of two contrasting conditions or
hypotheses.

In any event, probability distributions used in statistical testing make differing assumptions about
how the underlying population of measurements is distributed. A case in point is simultaneous
prediction limits using retesting (Chapter 19). The first and most common version of this test (Davis
and McNichols, 1987) is based on an assumption that the sample data are drawn from a normal
probability distribution. The normal distribution is the well-known bell-shaped curve, perhaps the single
most important and frequently-used distribution in statistical analysis. However, it is not the only one.
Bhaumik and Gibbons (2006) proposed similar prediction limits for data drawn from a gamma
distribution and Cameron (2008) did the same for Weibull-distributed measurements. This more recent
research demonstrates that prediction limits with similar statistical decision error rates can vary greatly
in magnitude, depending on the type of data distribution assumed.

Because many tests make an explicit assumption concerning the distribution represented by the
sample data, the form and exact type of distribution often has to be checked using a goodness-of-fit test.
A goodness-of-fit test assesses how closely the observed sample data resemble a proposed distributional
model. Despite the wide variety of probability distributions identified in the statistical literature, only a
very few goodness-of-fit tests generally are needed in practice. This is because most tests are based on an
assumption of normally-distributed or normal data. Even when an underlying distribution is not normal,
it is often possible to use a mathematical transformation of the raw measurements (e.g., taking the
natural logarithm or log of each value) to normalize the data set. The original values can be
transformed into a set of numbers that behaves as if drawn from a normal distribution. The transformed
values can then be utilized in and analyzed with a normal-theory test (i.e., a procedure that assumes the
input data are normal).

Specific goodness-of-fit tests for checking and identifying data distributions are found in Chapter
10 of this guidance. These methods all are designed to check the fit to normality of the sample data.
Besides the normal, the lognormal distribution is also commonly used as a model for groundwater data.
This distribution is not symmetric in shape like the bell-shaped normal curve, nor does it have similar
statistical properties. However, a simple log transformation of lognormal measurements works to
normalize such a data set. The transformed values can be tested using one of the standard goodness-of-
fit tests of normality to confirm that the original data were indeed lognormal.

More generally, if a sample shows evidence of non-normality using the techniques in Chapter 10,
the initial remedy is to try and find a suitable normalizing transformation. A set of useful possible
transformations in this regard has been termed the ladder of powers (Helsel and Hirsch, 2002). It
includes not only the natural logarithm, but also other mathematical power transformations such as the
square root, the cube root, the square, etc. If none of these transformations creates an adequately
normalized data set, a second approach is to consider what are known as non-parametric tests. Normal-
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theory and other similar parametric statistical procedures assume that the form of the underlying
probability distribution is known. They are called parametric because the assumed probability
distribution is generally characterized by a small set of mathematical parameters. In the case of the
normal distribution, the general formula describing its shape and properties is completely specified by
two parameters: the population mean (u) and the population variance (c?). Once values for these
quantities are known, the exact distribution representing a particular normal population can be computed
or analyzed.

Most parametric tests do not require knowledge of the exact distribution represented by the sample
data, but rather just the type of distribution (e.g., normal, lognormal, gamma, Weibull, etc.). In more
formal terms, the test assumes knowledge of the family of distributions indexed by the characterizing
parameters. Every different combination of population mean and variance defines a different normal
distribution, yet all belong to the normal family. Nonetheless, there are many data sets for which a
known distributional family cannot be identified. Non-parametric methods may then be appropriate,
since a known distributional form is not assumed. Non-parametric tests are discussed in various chapters
of the Unified Guidance. These tests are typically based on either a ranking or an ordering of the sample
magnitudes in order to assess their statistical performance and accuracy. But even non-parametric tests
may make use of a normal approximation to define how expected rankings are distributed.

One other common difficulty in checking for normality among groundwater measurements is the
frequent presence of non-detect values, known in statistical terms as left-censored measurements. The
magnitude of these sample concentrations is known only to lie somewhere between zero and the
detection or reporting limit; hence the true concentration is partially ‘hidden’ or censored on the left-
hand side of the numerical concentration scale. Because the most effective normality tests assume that
all the sample measurements are known and quantified and not censored, the Unified Guidance suggests
two possible approaches in this circumstance. First, it is usually possible to simply assume that the true
distributional form of the underlying population cannot be identified, and to instead apply a non-
parametric test alternative. This solution is not always ideal, especially when using prediction limits and
the background sample size is small, or when using control charts (for which there is no current non-
parametric alternative to the Unified Guidance recommended test).

As a second alternative, Chapter 10 discusses methods for assessing approximate normality in the
presence of non-detects. If normality can be established, perhaps through a normalizing transformation,
Chapter 15 describes methods for estimating the mean and variance parameters of the specific normal
distribution needed for constructing tests (such as prediction limits or control charts), even though the
exact value of each non-detect is unknown.

3.3 COMMON STATISTICAL MEASURES

Due to the variety of statistical tests and other methods presented in the Unified Guidance, there
are a large number of equations and formulas of relevance to specific situations. The most common
statistical measures used in many settings are briefly described below.

Sample mean and standard deviation — the mean of a set of measurements of sample size n is
simply the arithmetic average of each of the numbers in the sample (denoted by x;), described by formula
[3.1] below. The sample mean is a common estimate of the center or middle of a statistical distribution.
That is, X is an estimate of p, the population mean. The basic formula for the sample standard deviation
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is given in equation [3.2]. The sample standard deviation is an estimate of the degree of variability
within a distribution, indicating how much the values typically vary from the average value or mean.
Thus, the standard deviation s is an estimate of the population standard deviation . Note that another
measure of variability, the sample variance, is simply the square of the standard deviation (denoted by
s?) and serves as an estimate of the population variance o°.

7:12n:xi [3.1]

1 =
S:\/mg(xi—X)z [32]

Coefficient of Variation — for positively-valued measurements, the sample coefficient of
variation provides a quick and useful indication of the relative degree of variability within a data set. It is

computed as s/X and so indicates whether the amount of ‘spread’ in the sample is small or large relative

to the average observed magnitude. Sample coefficients of variation can also be calculated for other
distributions such as the logarithmic (see discussion on logarithmic statistics below and Chapter 10,
Section 10.4).

Sample percentile — the pth percentile of a sample (denoted as X) is the value such that
px100 % of the measurements are no greater than X, while (1— p)x 100 % of the values are no less

than X,. Sample percentiles are computed by making an ordered list of the measurements (termed the

order statistics of the sample) and either selecting an observed value from the sample that comes closest
to satisfying the above definition or interpolating between the pair of sample values closest to the
definition if no single value meets it.

Slightly different estimates of the sample percentile are used to perform the interpolation
depending on the software package or statistics textbook. The Unified Guidance follows Tukey’s (1977)
method for computing the lower and upper quartiles (i.e., the 25th and 75th sample percentiles, termed
hinges by Tukey) when constructing box plots (Chapter 9). In that setting, the pair of sample values
closest to the desired percentile is simply averaged. Another popular method for more generally
computing sample percentiles is to set the rank of the desired order statistic as k = (n+1) x p. If k is not
an integer, perform linear interpolation between the pair of ordered sample values with ranks just below
and just above k.

Median and interquartile range — the sample median is the 50th percentile of a set of
measurements, representing the midpoint of an ordered list of the values. It is usually denoted as X or
X, and represents an alternative estimate of the center of a distribution. The interquartile range [IQR] is

the difference between the 75th and 25th sample percentiles, thus equal to (X, — X ;). The IQR offers an

alternative estimate of variability in a population, since it represents the measurement range of the
middle 50% of the ordered sample values. Both the median and the interquartile range are key statistics
used to construct box plots (Chapter 9).

3-10 March 2009



Chapter 3. Key Statistical Concepts Unified Guidance

The median and interquartile range can be very useful as alternative estimates of data centrality and
dispersion to the mean and standard deviation, especially when samples are drawn from a highly skewed
(i.e., non-symmetric) distribution or when one or more outliers is present. The table below depicts two
data sets, one with an obvious outlier, and demonstrates how these statistical measures compare.

The median and interquartile ranges are not affected by the inclusion of an outlier (perhaps an
inadvertent reporting of units in terms of ppb rather than ppm). Large differences between the mean and
median, as well as between the standard deviation and interquartile range in the second data set can
indicate that an anomalous data point may be present.

Data Set #1 Data Set #2
5 5
10 10
15 15
15 15
15 15
20 20
25 25,000
X =15 X > 3,500
X =15 X =15
s=6.5 s > 9,000
IQR =10 IQR =10

L og-mean, log-standard deviation and Coefficient of Variation — The lognormal distribution
is a frequently-used model in groundwater statistics. When lognormally distributed data are
transformed, the normally-distributed measurements can then be input into normal-theory tests. The
Unified Guidance frequently makes use of quantities computed on log-transformed values. Two of these
quantities, the log-mean and the log-standard deviation, represent the sample mean and standard
deviation computed using log-transformed values instead of the raw measurements. Formulas for these
quantities — denoted y and sy to distinguish them from the measurement-scale mean (X ) and standard
deviation (s) — are given below. Prior to calculating the logarithmic mean and standard deviation, the
measurement scale data must first be log-transformed. Taking logarithms of the sample mean (X ) and
the sample standard deviation (s) based on the original measurement-scale data, will not give the correct
result.

Vz%ilog (xi) [3.3]

i=1

s, = \/ni_lé(log (x)- 7)2 [3.4]

A population logarithmic coefficient of variation can be estimated from the logarithmically

transformed data as: CV,,,=+/e” 1. It is based solely on the logarithmic standard deviation, s, and

represents the intrinsic variability of the untransformed data.
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Sample correlation coefficient — correlation is a common numerical measure of the degree of
similarity or linear association between two random variables, say x and y. A variety of statistics are used
to estimate the correlation depending on the setting and how much is known about the underlying
distributions of x and y. Each measure is typically designed to take on values in the range of -1 to +1,
where —1 denotes perfect inverse correlation (i.e., as x increases, y decreases, and vice-versa), while +1
denotes perfect correlation (i.e., x and y increase or decrease together), and 0 denotes no correlation (i.e.,
x and y behave independently of one another). The most popular measure of linear correlation is
Pearson’s correlation coefficient (r), which can be computed for a set of n sample pairs (x;, yi) as:

r= zin:l(xi - 7)(yi - y)
V6 -3 S - 9)

[3.5]

3.4 HYPOTHESIS TESTING FRAMEWORK

An important component of statistical analysis involves the testing of competing mathematical
models, an activity known as hypothesis testing. In hypothesis testing, a formal comparison is made
between two mutually exclusive possible statements about reality. Usually these statements concern the
type or form of underlying statistical population from which the sample data originated, i.e., either the
observed data came from one statistical population or from another, but not both. The sample data are
used to judge which statistical model identified by the two hypotheses is most consistent with the
collected observations.

Hypothesis testing is similar in nature to what takes place in a criminal trial. Just as one of the two
statements in an hypothesis test is judged true and the other false, so the defendant is declared either
innocent or guilty. The opposing lawyers each develop their theory or model of the crime and what really
happened. The jury must then decide whether the available evidence better supports the prosecution’s
theory or the defense’s explanation. Just as a strong presumption of innocence is given to a criminal
defendant, one of the statements in a statistical hypothesis is initially favored over the other. This
statement, known as the null hypothesis [Ho], is only rejected as false if the sample evidence strongly
favors the other side of the hypothesis, known as the alternative hypothesis [Ha].

Another important parallel is that the same mistakes which can occur in statistical hypothesis
testing are made in criminal trials. In a criminal proceeding, the innocent can falsely be declared guilty or
the guilty can wrongly be judged innocent. In the same way, if the null hypothesis [Ho] is a true
statement about reality but is rejected in favor of the alternative hypothesis [Ha], a mistake akin to
convicting the innocent has occurred. Such a mistake is known in statistical terms as a false positive or
Type | error. If the alternative hypothesis [Ha] is true but is rejected in favor of Hy, the mistake is akin to
acquitting the guilty. This mistake is known as a false negative or Type Il error.

In a criminal investigation, the test hypotheses can be reversed. A detective investigating a crime
might consider a list of probable suspects as potentially guilty (the null hypothesis [Ho]), until substantial
evidence is found to exclude one or more suspects [Ha]. The burden of proof for accepting the
alternative hypothesis and the kinds of errors which can result are the opposite from a legal trial.
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Certain steps are involved in conducting any statistical hypothesis test. First, the null hypothesis
Ho must be specified and is given presumptive weight in the hypothesis testing framework. The observed
sample (or a statistic derived from these data) is assumed to follow a known statistical distribution,
consistent with the distributional model used to describe reality under Ho. In groundwater monitoring, a
null hypothesis might posit that concentration measurements of benzene, for instance, follow a normal
distribution with zero mean. This statement is contrasted against the alternative hypothesis, which is
constructed as a competing model of reality. Under Ha, the observed data or statistic follows a different
distribution, corresponding to a different distributional model. In the simple example above, Ha might
posit that benzene concentrations follow a normal distribution, but this time with a mean no less than 20
ppb, representing a downgradient well that has been contaminated.

Complete descriptions of statistical hypotheses are usually not made. Typically, a shorthand
formula is used for the two competing statements. Denoting the true population mean as the Greek letter
w and a possible value of this mean as iy, a common specification is:

Hy:u<w,vs.H, . u>u, [3.6]

This formulation clearly distinguishes between the location (i.e., magnitude) of the population mean p
under the two competing models, but it does not specify the form of the underlying population itself. In
most parametric tests, as explained in Section 3.2, the underlying model is assumed to be the normal
distribution, but this is not a necessary condition or the basic assumption in all tests. Note also that a
family of distributions is specified by the hypothesis, not two individual, specific distributions. Any
distribution with a true mean no greater than po satisfies the null hypothesis, while any distribution from
the same family with true mean larger than p satisfies the alternative hypothesis.

Once the statistical hypothesis has been specified, the next step is to actually collect the data and
compute whatever test statistic is required based on the observed measurements and the kind of test.
The pattern of the observed measurements or the computed test statistic is then compared with the
population model predicted or described under Ho. Because this model is specified as a statistical
distribution, it can be used to assign probabilities to different results. If the observed result or pattern
occurs with very low probability under the null hypothesis model (e.g., with at most a 5% or 1%
chance), one of two outcomes is assumed to have occurred. Either the result is a “chance” fluctuation in
the data representing a real but unlikely outcome under Ho, or the null hypothesis was an incorrect
model to begin with.

A low probability of occurrence under Hy is cause for rejecting the null hypothesis in favor of Ha,
as long as the probability of occurrence under the latter alternative is also not too small. Still, one should
be careful to understand that statistics involves the art of managing uncertainty. The null hypothesis may
indeed be true, even if the measured results seem unlikely to have arisen under the Hy model. A small
probability of occurrence is not the same as no possibility of occurrence. The judgment in favor of Ha
should be made with full recognition that a false positive mistake is always possible even if not very
likely.

Consider the measurement of benzene in groundwater in the example above. Given natural
fluctuations in groundwater composition from week-to-week or month-to-month and the variability
introduced in the lab during the measurement process, the fact that one or two samples show either non-
detect or very low levels of benzene does not guarantee that the true mean benzene concentration at the
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well is essentially zero. Perhaps the true mean is higher, but the specific sample values collected were
gotten from the “lower tail” of the benzene distribution just by chance or were measured incorrectly in
the lab. Figure 3-1 illustrates this possibility, where the full benzene distribution is divided into a lower
tail portion that has been sampled and a remaining portion that has not so far been observed. The
sampled values are not representative of the entire population distribution, but only of a small part of it.

Along a similar vein, if the observed result or pattern can occur with moderate to high probability
under the null hypothesis, the model represented by Hp is accepted as consistent with the sample
measurements. Again, this does not mean the null hypothesis is necessarily true. The alternative
hypothesis could be true instead, in which case the judgment to accept Ho would be considered a false
negative. Nevertheless the sample data do not provide sufficient evidence or justification to reject the
initial presumption.

Figure 3-1. Actual, But Unrepresentative Benzene Measurements
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3.5 ERRORS IN HYPOTHESIS TESTING

In order to properly interpret the results of any statistical test, it is important to understand the risks
of making a wrong decision. The risks of the two possible errors or mistakes mentioned above are not
fixed quantities; rather, false positive and false negative risks are best thought of as statistical parameters
that can be adjusted when performing a particular test. This flexibility allows one, in general, to
“calibrate” any test to meet specific risk or error criteria. However, it is important to recognize what the
different risks represent. RCRA groundwater regulations stipulate that any test procedure maintain a
“reasonable balance” between the risks of false positives and false negatives. But how does one decide
on a reasonable balance? The answer lies in a proper understanding of the real-life implications attached
to wrong judgments.
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3.5.1 FALSE POSITIVES AND TYPE I ERRORS

A false positive or Type | error occurs whenever the null hypothesis [Ho] is falsely rejected in
favor of the alternative hypothesis [Ha]. What this means in terms of the underlying statistical models is
somewhat different for every test. Many of the tests in the Unified Guidance are designed to address the
basic groundwater detection monitoring framework, namely, whether the concentrations at downgradient
wells are significantly greater than background. In this case, the null hypothesis is that the background
and downgradient wells share the same underlying distribution and that downgradient concentrations
should be consistent with background in the absence of any contamination. The alternative hypothesis
presumes that downgradient well concentrations are significantly greater than background and come
from a distribution with an elevated concentration.

Given this formulation of Hy and Ha, a Type | error occurs whenever one decides that the
groundwater at downgradient locations is significantly higher than background when in reality it is the
same in distribution. A judgment of this sort concerns the underlying statistical populations and not the
observed sample data. The measurements at a downgradient well may indeed be higher than those
collected in background. But the disparity must be great enough to decide with confidence that the
underlying populations also differ. A proper statistical test must account for not just the difference in
observed mean levels but also variability in the data likely to be present in the underlying statistical
populations.

False positive mistakes can cause regulated facilities to incur substantial unnecessary costs and
oversight agencies to become unnecessarily involved. Consequently, there is usually a desire by
regulators and the regulated community alike to minimize the false positive rate (typically denoted by
the Greek letter o). For reasons that will become clear below, the false positive rate is inversely related
to the false negative rate for a fixed sample size n. It is impossible to completely eliminate the risk of
either Type | or Type Il errors, hence the regulatory mandate to minimize the inherent tradeoff by
maintaining a “reasonable balance” between false positives and false negatives.

Type | errors are strictly defined in terms of the hypothesis structure of the test. While the
conceptual groundwater detection monitoring framework assumes that false positive errors are incorrect
judgments of a release when there is none, Type | errors in other statistical tests may have a very
different meaning. For instance, in tests of normality (Chapter 10) the null hypothesis is that the
underlying population is normally-distributed, while the alternative is that the population follows some
other, non-normal pattern. In this setting, a false positive represents the mistake of falsely deciding the
population to be non-normal, when in fact it is normal in distribution. The implication of such an error is
quite different, perhaps leading one to select an alternate test method or to needlessly attempt a
normalizing transformation of the data.

As a matter of terminology, the false positive rate o is also known as the significance level of the
test. A test conducted at the o = .01 level of significance means there is at most a 1% chance or
probability that a Type I error will occur in the results. The test is likely to lead to a false rejection of the
null hypothesis at most about 1 out of every 100 times the same test is performed. Note that this last
statement says nothing about how well the test will work if Ha is true, when Hg should be rejected. The
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false positive rate strictly concerns those cases where Hy is an accurate reflection of the physical reality,
but the test rejects Hy anyway.

3.5.2 SAMPLING DISTRIBUTIONS, CENTRAL LIMIT THEOREM

The false positive rate of any statistical test can be calibrated to meet a given risk criterion. To see
how this is done, it helps to understand the concept of sampling distribution. Most statistical test
decisions are based on the magnitude of a particular test statistic computed from the sample data.
Sometimes the test statistic is relatively simple, such as the sample mean (X ), while in other instances
the statistic is more complex and non-intuitive. In every case, however, the test statistic is formulated as
it is for a specific purpose: to enable the analyst to identify the distributional behavior of the test statistic
under the null hypothesis. Unless one knows the expected behavior of a test statistic, probabilities cannot
be assigned to specific outcomes for deciding when the probability is too low to be a chance fluctuation
of the data.

The distribution of the test statistic is known as its sampling distribution. It is given a special
name, in part, to distinguish the behavior of the test statistic from the potentially different distribution of
the individual observations or measurements used to calculate the test. Once identified, the sampling
distribution can be used to establish critical points of the test associated with specific maximal false
positive rates for any given o level of significance. For most tests, a single level of significance is
generally chosen.

An example of this idea can be illustrated via the F-test. It is used for instance in parametric
analysis of variance [ANOVA] to identify differences in the population means at three or more
monitoring wells. Although ANOVA assumes that the individual measurements input to the test are
normally-distributed, the test statistic under a null hypothesis [Ho] of no differences between the true
means follows an F-distribution. More specifically, it applies to one member of the F-distribution family
(an example using 5 wells and 6 measurements per well is pictured in Figure 3-2). As seen in the right-
hand tail of this distribution by summing the area under the distributional curve, large values of the F-
statistic become less and less probable as they increase in magnitude. For a given significance level (o),
there is a corresponding F-statistic value such that the probability of exceeding this cutoff value is o or
less. In such situations, there is at most an o x 100% chance of observing an F-statistic under Hy that is
as large or larger than the cutoff (shaded area in Figure 3-2). If a is quite small (e.g., 5% or 1%), one
may then judge the null hypothesis to be an untenable model and accept Ha. As a consequence, the
cutoff value can be defined as an a-level critical point for the F-test.

Because test statistics can be quite complicated, there is no easy rule for determining the sampling
distribution of a particular test. However, the sampling behavior of some statistics is a consequence of a
fundamental result known as the Central Limit Theorem. This theorem roughly states that averages or
sums of identically-distributed random variables will follow an approximate normal distribution,
regardless of the distributional behavior of the individual measurements. This averaged distribution will
have the same mean p as the population of individual measurements and whose variance, compared to
the underlying population variance o, is scaled by a factor of the sample size n on which the average or

sum is based. Specifically, the variance is greater by a factor of n in the case of a sum(n'o-z) and

smaller by a factor of n in the case of an average (o-z/n). The approximation of the averages or sums to
the normal distribution improves as sample size increases (also see the power discussion on page 3-21).
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Figure 3-2. F-Distribution with 4 and 25 Degrees of Freedom
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Because of the Central Limit Theorem, a number of test statistics at least approximately follow the
normal distribution. This allows critical points for these tests to be determined from a table of the
standard normal distribution. The Central Limit Theorem also explains why sample means provide a
better estimate of the true population mean than individual measurements drawn from the same
population (Figure 3-3). Since the sampling distribution of the mean is centered on the true average (W)
of the underlying population and the variance is lower by a factor of n, the sample average X will tend to
be much closer to u than a typical individual measurement.
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Figure 3-3. Effect of Central Limit Theorem
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3.5.3 FALSE NEGATIVES, TYPE II ERRORS, AND STATISTICAL POWER

False negatives or Type Il errors are the logical opposites of false positive errors. An error of this
type occurs whenever the null hypothesis [Ho] is accepted, but instead the alternative hypothesis [Ha] is
true. The false negative rate is denoted by the Greek letter B. In terms of the groundwater detection
monitoring framework, a Type Il error represents a mistake of judging the compliance point
concentrations to be consistent with background, when in reality the compliance point distribution is
higher on average. False negatives in this context describe the risk of missing or not identifying
contaminated groundwater when it really exists. EPA has traditionally been more concerned with such
false negative errors, given its mandate to protect human health and the environment.

Statistical power is an alternate way of describing false negative errors. Power is merely the
complement of the false negative rate. If B is the probability of a false negative, (1-) is the statistical
power of a particular test. In terms of the hypothesis structure, statistical power represents the probability
of correctly rejecting the null hypothesis. That is, it is the minimum chance that one will decide to accept
Ha, given that Ha is true. High power translates into a greater probability of identifying contaminated
groundwater when it really exists.

A convenient way to keep track of the differences between false positives, false negatives, and
power is via a Truth Table (Figure 3-4). A truth table distinguishes between the underlying truth of each
hypothesis Hy or Ha and the decisions made on the basis of statistical testing. If Ho is true, then a
decision to accept the alternative hypothesis (Ha) is a false positive error which will occur with a
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probability of at most a. Because only one of two decisions is possible, Hy will also be accepted with a
probability of at least (1—a). This is also known as the confidence probability or confidence level of the
test, associated with making a ‘true negative’ decision. Similarly if Ha is actually true, making a false
negative decision error by accepting the null hypothesis (Hp) has at most a probability of . Correctly
accepting Ha when true then has a probability of at least (1- ) and is labeled a True positive "decision.
This probability is also known as the statistical power of the test.

For any application of a test to a particular sample, only one of the two types of decision errors can
occur. This is because only one of the two mutually exclusive hypotheses will be a true statement. In the
detection monitoring context, this means that if a well is uncontaminated (i.e., Ho is true), it may be
possible to commit a Type | false positive mistake, but it is not possible to make a Type Il false negative
error. Similarly, if a contaminated well is tested (i.e., Ha is true), Type | false positive errors cannot
occur, but a Type 1l false negative error might occur.

Figure 3-4. Truth Table in Hypothesis Testing
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Since the false positive rate can be fixed in advance of running most statistical tests by selecting o,
one might think the same could be done with statistical power. Unfortunately, neither statistical power
nor the false negative rate can be fixed in advance for a number of reasons. One is that power and the
false negative rate depends on the degree to which the true mean concentration level is elevated with
respect to the background null condition. Large concentration increases are easier to detect than small
increments. In fact, power can be graphed as an increasing function of the true concentration level in
what is termed a power curve (Figure 3-5). A power curve indicates the probability of rejecting Ho in
favor of the alternative Ha for any given alternative to the null hypothesis (i.e., for a range of possible
mean-level increases above background).
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In interpreting the power curve below, note that the x-axis is labeled in terms of relative
background standard deviation units (c) above the true background population mean (u). The zero point
along the x-axis is associated with the background mean itself, while the kth positive unit along the axis
represents a ‘true’ mean concentration in the compliance well being tested equal to # + ko . This mode of

scaling the graph allows the same power curve to be potentially applied to any constituent of interest
subject to the same test conditions. This is true no matter what the typical background concentration
levels of a chemical typically found in groundwater may be. But it also means that the same point along
the power curve will represent different absolute concentrations for different constituents. Even if the
background means are the same, a two standard deviation increase in a chemical with highly variable
background concentrations will correspond to a larger population mean increase at a compliance well
than the same relative increase in a less variable constituent.

As a simple example, if the background population averages for arsenic and manganese both
happen to be 10 ppb, but the arsenic standard deviation is 5 ppb while that for manganese is only 2 ppb,
then a compliance well with a mean equivalent to a three standard deviation increase over background
would have an average arsenic level of 25 ppb, but an average manganese level of only 16 ppb. For both
constituents, however, there would be approximately a 50% probability of detecting a difference
between the compliance well and background.

Figure 3-5. Example Power Curve
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Because the power probability depends on the relative difference between the actual downgradient
concentration level and background, power cannot typically be fixed ahead of time like the critical false
positive rate for a test. The true concentration level (and associated power) in a compliance well is
unknown. If it were known, no hypothesis test would be needed. Additionally, it is often not clear what
specific magnitude of increase over background is environmentally significant. A two standard
deviation increase over the background average might not be protective of human health and/or the
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environment for some monitoring situations. For others, a four standard deviation increase or more may
be tolerable before any threat is posed.

Since the exact ramifications of a particular concentration increase are uncertain, it points to the
difficulty in setting a minimum power requirement (or a maximum false negative rate) for a given
statistical test. Some State statutes contain water quality non-degradation provisions, for which any
measurable increase might be of concern. By emphasizing relative power as in Figure 3-5, all detection
monitoring constituents can be evaluated for significant concentration increases on a common footing,
subject only to differences in measurement variability.

Another key factor affecting statistical power is sample size. All other test conditions being equal, larger
sample sizes provide higher statistical power and the lower the false negative rate (). Statistical tests
perform more accurately with larger data sets, leading to greater power and fewer errors in the process.
The Central Limit Theorem illustrates why this is true. Even if a downgradient well mean level is only
slightly greater than background, upgradient and downgradient well sample means will have so little
variance in their sampling distributions with enough measurements that they will tend to hover very
close to their respective population means. True mean differences in the underlying populations can be
distinguished with higher probability as sample sizes increase. In Figure 3-6, the sampling distributions
of means of size 5 and 10 between two different normal populations are provided for illustration. The
narrower width of the distribution for the n = 10 sample means are more clearly distinguished from each
other than for means of sample size n = 5. This implies higher probability and power to distinguish
between the two population means.

Figure 3-6. Why Statistical Power Increases with Sample Size
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3.5.4 BALANCING TYPE I AND TYPE II ERRORS

In maintaining an appropriate balance between false positive and false negative error rates, one
would ideally like to simultaneously minimize both kinds of errors. However, both risks are inherent to
any statistical test procedure, and the risk of committing a Type | error is indirectly but inversely related
to the risk of a Type Il error unless the sample size can be increased. It is necessary to find a balance
between the two error rates. But given that the false negative rate depends largely on the true
compliance point concentrations, it is first necessary to designate what specific mean difference (known
as an effect size) between the background and compliance point populations should be considered
environmentally important. A minimum power requirement can be based on this difference (see
Chapter 6).

» EXAMPLE 3-1

Consider a simple example of using the downgradient sample mean to test the proposition that the
downgradient population mean is 4 ppb larger than background. Assume that extensive sampling has
demonstrated that the background population mean is equal to 1 ppb. If the true downgradient mean
were the same as the background level, curves of the two sampling distributions would coincide (as
depicted in Figure 3-7). Then a critical point (e.g., CP = 4.5 ppb) can be selected so that the risk of a
false positive mistake is a. The critical point establishes the decision criteria for the test. If the observed
sample mean based on randomly selected data from the downgradient sampling distribution exceeds the
critical point, the downgradient population will be declared higher in concentration than the background,
even though this is not the case. The frequency that such a wrong decision will be made is just the area
under the sampling distribution to the right of the critical point equal to c.

Figure 3-7. Relationship Between Type I and Type II Errors, Part A
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CP = Critical Point

If the true downgradient mean is actually 5 ppb, the sampling distribution of the mean will instead
be centered over 5 ppb as in the right-hand curve (i.e., the downgradient population) in Figure 3-8.
Since there really is a difference between the two populations, the alternative hypothesis and not the null
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hypothesis is true. Thus, any observed sample mean drawn from the downgradient population then
falling below the critical point is a false negative mistake. Consequently, the area under the right-hand
sampling distribution in Figure 3-8 to the left of the critical point represents the frequency of Type Il
errors (P).

The false negative rate (B) in Figure 3-8 is obviously larger than the false positive rate (o) of
Figure 3-7. This need not be the case in general, but the key point is to understand that for a fixed
sample size, the Type | and Type Il error rates cannot be simultaneously minimized. If o is increased, by
selecting a lower critical point in Figure 3-7, the false negative rate will also be lowered in Figure 3-8.
Likewise, if o is decreased by selecting a higher critical point, B will be enlarged. If the false positive
rate is indiscriminately lowered, the false negative rate (or reduced power) will likely reach unacceptable
levels even for mean concentration levels of environmental importance. Such reasoning lay behind
EPA’s decision to mandate minimum false positive rates for t-tests and ANOVA procedures in both the
revised 1988 and 1991 RCRA rules.

Figure 3-8. Relationship Between Type I and Type II Errors, Part B
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CHAPTER 4. GROUNDWATER MONITORING PROGRAMS
AND STATISTICAL ANALYSIS
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This chapter provides an overview of the basic groundwater monitoring framework, explaining the
intent of the federal groundwater statistical regulations and offering insight into the key identification
mechanism of groundwater monitoring, the statistically significant increase [SSI]:

+« What are statistically significant increases and how should they be interpreted?
+«+ What factors, both statistical and non-statistical can cause SSIs?

+« What factors should be considered when demonstrating that an SSI does not represent evidence
of actual contamination?

4.1 THE GROUNDWATER MONITORING CONTEXT

The RCRA regulations frame a consistent approach to groundwater monitoring, defining the
conditions under which statistical testing takes place. Upgradient and downgradient wells must be
installed to monitor the uppermost aquifer in order to identify releases or changes in existing conditions
as expeditiously as possible. Geological and hydrological expertise is needed to properly locate the
monitoring wells in the aquifer passing beneath the monitored unit(s). The regulations identify a variety
of design and sampling requirements for groundwater monitoring (such as measuring well piezometric
surfaces and identifying flow directions) to assure that this basic goal is achieved. Indicator or hazardous
constituents are measured in these wells at regular time intervals; these sample data serve as the basis for
statistical comparisons. For identifying releases under detection monitoring, the regulations generally
presume comparisons of observations from downgradient wells against those from upgradient wells
(designated as background). The rules also recognize certain situations (e.g., mounding effects) when
other means to define background may be necessary.

The Unified Guidance may apply to facility groundwater monitoring programs straddling a wide
range of conditions. In addition to units regulated under Parts 264 and 265 Subpart F and Part 258 solid
waste landfills, other non-regulated units at Subtitle C facilities or CERCLA sites may utilize similar
programs. Monitoring can vary from a regulatory minimum of one upgradient and three downgradient
wells, to very large facilities with multiple units, and perhaps 50-200 upgradient and downgradient
wells. Although the rules presume that monitoring will occur in the single uppermost aquifer likely to be
affected by a release, complex geologic conditions may require sampling and evaluating a number of
aquifers or strata.
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Detection monitoring constituents may include indicators like common ions and other general
measures of water quality, pH, specific conductance, total organic carbon [TOC] and total organic
halides [TOX]. Quite often, well monitoring data sets are obtained for filtered or unfiltered trace
elements (or both) and sizeable suites of hazardous trace organic constituents, including volatiles, semi-
volatiles, and pesticide/herbicides. Measurement and analysis of hazardous constituents using standard
methods (in SW-846 or elsewhere) have become fairly routine over time. A large number of analytes
may be potentially available as monitoring constituents for statistical testing, perhaps 50-100 or more.
Identification of the most appropriate constituents for testing depends to a great extent on the
composition of the managed wastes (or their decomposition products) as measured in leachate analyses,
soil gas sampling, or from prior knowledge.

Nationally, enough groundwater monitoring experience has been gained in using routine
constituent lists and analytical techniques to suggest some common underlying patterns. This is
particularly true when defining background conditions in groundwater. Sampling frequencies have also
been standardized enough (e.g., semi-annual or quarterly sampling) to enable reasonable computation of
the sorts of sample sizes that can be used for statistical testing. Nevertheless, complications can and do
occur over time — in the form of changes in laboratories, analytical methods, sampled wells, and
sampling frequencies — which can affect the quality and availability of sample data.

Facility status can also affect what data are potentially available for evaluation and testing — from
lengthy regulated unit monitoring records under the Part 265 interim status requirements at sites awaiting
either operational or post-closure 264 permits or permit re-issuance, to a new solid waste facility located
in a zone of uncontaminated groundwater with little prior data. Some combined RCRA/CERCLA
facilities may have collected groundwater information under differing program requirements.
Contamination from offsite or non-regulated units (or solid waste management units) may complicate
assessment of likely contaminant sources or contributions.

Quite often, regulators and regulated parties find themselves with considerable amounts of
historical constituent-well monitoring data that must be assessed for appropriate action, such as a permit,
closure, remedial action or enforcement decision. Users will need to closely consider the diagnostic
procedures in Part 11 of the Unified Guidance, with an eye towards selection of one or more appropriate
statistical tests in Parts |11 and V. Selection will depend on key factors such as the number of wells and
constituents, statistical characteristics of the observed data, and historical patterns of contamination (if
present), and may also reflect preferences for certain types of tests. While the Unified Guidance
purposely identifies a range of tests which might fit a situation, it is generally recommended that one set
of tests be selected for final implementation, in order to avoid “test-shopping” (i.e., selecting tests during
permit implementation based on the most favorable outcomes). EPA recognizes that the final permit
requirements are approved by the regulatory agency.

All of the above situations share some features in common. A certain number of facility wells will
be designated as compliance points, i.e., those locations considered as significant from a regulatory
standpoint for assessing potential releases. Similarly, the most appropriate and critical indicator and/or
hazardous constituents for monitoring will be identified. If detection monitoring (i.e., comparative
evaluations of compliance wells against background) is deemed appropriate for some or all wells and
constituents, definitions of background or reference comparison levels will need to be established.
Background data can be obtained either from the upgradient wells or from the historical sampling
database as described in Chapter 5. Choice of background will depend on how statistically comparable
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the compliance point data are with respect to background and whether individual constituents exhibit
spatial or temporal variability at the facility.

Compliance/assessment or corrective action monitoring may be appropriate choices when there is a
prior or historical indication of hazardous constituent releases from a regulated unit. In those situations,
the regulatory agency will establish GWPS limits. Typically, these limits are found in established tables,
in SDWA drinking water MCLs, through risk-based calculations or determined from background data.
For remedial actions, site-specific levels may be developed which account not only for risk, but
achievability and implementation costs as well. Nationally, considerable experience has been gathered in
identifying cleanup targets which might be applicable at a given facility, as well as how practical those
targets are likely to be.

Use of the Unified Guidance should thus be viewed in an overall context. While the guidance
offers important considerations and suggestions in selecting and designing a statistically-based approach
to monitoring, it is important to realize that it is only a part of the overall decision process at a facility.
Geologic and hydrologic expertise, risk-based decisions, and legal and practical considerations by the
regulated entity and regulatory agency are fundamental in developing the final design and
implementation. The guidance does not attempt to address the many other relevant decisions which
impact the full design of a monitoring system.

4.2 RCRA GROUNDWATER MONITORING PROGRAMS

Under the RCRA regulations, some form of statistical testing of sample data will generally be
needed to determine whether there has been a release, and if so, whether concentration levels lie below
or above a protection standard. The regulations frame the testing programs as detection,
compliance/assessment, and corrective action monitoring.

Under RCRA permit development and during routine evaluations, all three monitoring program
options may need to be simultaneously considered. Where sufficient hazardous constituent data from site
monitoring or other evidence of a release exists, the regulatory agency can evaluate which monitoring
program(s) are appropriate under 8264.91. Statistical principles and testing provided in the Unified
Guidance can be used to develop presumptive evidence for one program over another.

In some applications, more than one monitoring program may be appropriate. Both the number of
wells and constituents to be tested can vary among the three monitoring programs at a given site. The
types of non-hazardous indicator constituents used for detection monitoring might not be applied in
compliance or corrective action monitoring. The latter focus is on hazardous constituents. Only a few
compliance well constituents may exceed their respective GWPSs. The focus in a corrective action
monitoring program might then be placed on the latter, with the remaining well constituents evaluated
under the other monitoring schemes. But following the general regulatory structure, the three monitoring
systems are presented below and elsewhere in the guidance as an ordered sequence:

Detection monitoring is appropriate either when there is no evidence of a release from a
regulated unit, or when the unit situated in a historically contaminated area is not impacted by current
RCRA waste management practices. Care must be taken to avoid a situation where the constituents
might reasonably have originated offsite or from units not subject to testing, since any adverse change in
groundwater quality would be attributed to on-site causes. Whether an observed change in groundwater
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quality is in fact due to a release from on-site waste activities at the facility may be open to dispute
and/or further demonstration. However, this basic framework underlies each of the statistical methods
used in detection monitoring.

A crucial step in setting up a detection monitoring program is to establish a set of background
measurements, a baseline or reference level for statistical comparisons (see Chapter 5). Groundwater
samples from compliance wells are then compared against this baseline to measure changes in
groundwater quality. If at least one chemical parameter on the monitoring indicates a statistically
significant increase above the baseline [SSI, see Section 4.3], the facility or regulated unit moves into
the next phase: compliance or assessment monitoring.

Compliance or assessment monitoring" is appropriate when there is reliable statistical evidence
that a concentration increase over the baseline has occurred. The purpose of compliance/assessment
monitoring is two-fold: 1) to assess the extent of contamination (i.e., the size of the increase, the
chemical parameters involved, and the locations on-site where contamination is evident); and 2) to
measure compliance with pre-established numerical concentration limits generally referred to as
GWRPSs. Only the second purpose is fully addressed using formal statistical tests. While important
information can be gleaned from compliance well data, more complex analyses (e.g., contaminant
modeling) may be needed to address the first goal.

GWPSs can be fixed health- or risk-based limits, against which single-sample tests are made. At
some sites, no specific fixed concentration limit may be assigned or readily available for one or more
monitoring parameters. Instead, the comparison is made against a limit developed from background data.
In this case, an appropriate statistical approach might be to use the background measurements to
compute a statistical limit and set it as the GWPS. See Chapter 7 for further details. Many of the
detection monitoring design principles (Chapter 6) and statistical tests (Part 111) can also be applied to
a set of constituents defined by a background-type GWPS.

The RCRA Parts 264 and 258 regulations require an expanded analysis of potential hazardous
constituents (Part 258 Appendix Il for municipal landfills or Part 264 Appendix IX for hazardous waste
units) when detection monitoring indicates a release and compliance monitoring is potentially triggered.
The purpose is to better gauge which hazardous constituents have actually impacted groundwater. Some
detection monitoring programs may require only limited testing of indicator parameters. This additional
sampling can be used to determine which wells have been impacted and provide some understanding of
the on-site distribution of hazardous constituent concentrations in groundwater. . The course of action
decided by the Regional Administrator or State Director will depend on the number of such chemicals
that are present in quantifiable levels and the actual concentration levels.

! The terms compliance monitoring (§264.99 & 100) and assessment monitoring (§258.55 & 56) are used interchangeably in
this document to refer to RCRA monitoring programs. Compliance monitoring is generally used for permitted hazardous
waste facilities under RCRA Subtitle C, while assessment monitoring is applied to municipal solid waste landfills regulated
under RCRA Subtitle D. The term “assessment” is also used in 40 CFR 265 Subpart F for a second phase of additional
analyte testing. Occasional use is also made of the term “compliance wells,” which refers to downgradient monitoring wells
located at the point(s) of compliance under §264.95 (any of the three monitoring programs may apply when evaluating
these wells).
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Following the occurrence of a valid statistically significant increase [SSI] over baseline during
detection monitoring, the statistical presumption in compliance/assessment monitoring is quite similar to
the detection stage. Given G as a fixed compliance or background-derived GWPS, the null hypothesis is
that true concentrations (of the underlying compliance point population) are no greater than G. This
compares to the detection monitoring presumption that concentration levels do not exceed background.
One reason for the similarity is that compliance limits may be higher than background levels in some
situations. An increase over background in these situations does not necessarily imply an increase over
the compliance limit, and the latter must be formally tested. On the other hand, if a health- or risk-based
limit is below a background level, the RCRA regulations provide that the GWPS should be based on
background.

The Subtitle D regulations for municipal solid waste landfills [MSWLF] stipulate® that if “the
concentrations of all Appendix Il constituents are shown to be at or below background values, using the
statistical procedures in §258.53(g), for two consecutive sampling events, the owner or operator... may
return to detection monitoring.” In other words, assessment monitoring may be exited in favor of
detection monitoring when concentrations at the compliance wells are statistically indistinguishable from
background for two consecutive sampling periods. While a demonstration that concentration levels are
below background would generally not be realistic, it may be possible to show that compliance point
levels of contaminants do not exceed an upper limit computed from the background data. Conformance
to the limit would then indicate an inability to statistically distinguish between background and
compliance point concentration levels.

If a hazardous constituent under compliance or assessment monitoring statistically exceeds a
GWHPS, the facility is subject to corrective action. Remedial activities must be undertaken to remove
and/or prevent the further spread of contamination into groundwater. Monitoring under corrective
action is used to track the progress of remedial activities and to determine if the facility has returned to
compliance. Corrective action is usually preceded or accompanied by a formal Remedial Investigation
[RI] or RCRA Facility Investigation [RFI] to further delineate the nature and extent of the contaminated
plume. Corrective action may be confined to a single regulated unit if only that unit exhibits SSlIs above
a standard during the detection and compliance/assessment monitoring phases.

Often, clean-up levels are established by the Regional Administrator or State Director during
corrective action. Remediation must continue until these clean-up levels are met. The focus of remedial
action and monitoring would be on those hazardous constituents and well locations exceeding the
GWPSs. If specific clean-up levels have not been met, corrective action must continue until there is
evidence of a statistically significant decrease [SSD] below the compliance limit for three consecutive
years. At this point, corrective action may be exited and compliance monitoring re-started. (As
described above and in Chapter 7, the protocol for assessing corrective action compliance with a
background-type standard can differ). If subsequent concentrations are statistically indistinguishable
from background or no detectable concentrations can be demonstrated for three consecutive years in any
of the contaminants that triggered corrective measures in the first place, corrective action may be exited
in favor of detection monitoring.

% [56 FR 51016] October 9, 1991
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4.3 STATISTICAL SIGNIFICANCE IN GROUNDWATER TESTING

The outcome of any statistical test is judged either to be statistically significant or non-significant.
In groundwater monitoring, a valid statistically significant result can force a change in the monitoring
program, perhaps even leading to remedial activity. Consequently, it is important to understand what
statistically significant results represent and what they do not. In the language of groundwater hypothesis
testing (Chapter 3), a statistically significant test result is a decision to reject the null hypothesis (Ho)
and to accept the alternative hypothesis (Ha), based on the observed pattern of the sample data. At the
most elementary level, a statistically significant increase [SSI] (the kind of result typically of interest
under RCRA detection and compliance monitoring) represents an observed increase in concentration at
one or more compliance wells. In order to be declared an SSI, the change in concentration must be large
enough after accounting for variability in the sample data, that the result is unlikely to have occurred
merely by chance. What constitutes a statistically significant result depends on the phase of monitoring
and the type of statistical test being employed.

If the detection monitoring statistical test being used is a t-test or Wilcoxon rank-sum test
(Chapter 16), an SSI occurs whenever the t-statistic or W-statistic is larger than an o-level critical point
for the test. If a retesting procedure is chosen using a prediction limit (Chapter 19), an SSI occurs only
when both the initial compliance sample or initial mean/median and one or more resamples all exceed
the upper prediction limit. For control charts (Chapter 20), an SSI occurs whenever either the CUSUM
or Shewhart portions of the chart exceed their respective control limits. In another variation, an SSI only
occurs if one or another of the CUSUM or Shewhart statistics exceeds the control limits when
recomputed using one or more resamples. For tests of trend (Chapter 17), an SSl is declared whenever
the slope is significantly greater than zero at some significance level .

In compliance/assessment monitoring, tests are often made against a fixed compliance limit or
GWHPS. In this setting, one can utilize a confidence interval around a mean, median, upper percentile or a
trend line (Chapter 21). A confidence interval is an estimated concentration or measurement range
intended to contain a given statistical characteristic of the population from which the sample is drawn. A
most common formulation is a two-way confidence interval around a normally-distributed mean y, as
shown below:

X_

S S
X—t — < u < —
( 1-a,n-1 /—n a,n-1 /—n J

where X is the mean of a sample of size n, s is the sample standard deviation, and t;_, n-1 IS an upper
percentile selected from a Student’s t-distribution. By constructing a range around the sample mean (X ),
this confidence interval is designed to locate the true population mean (u) with a high degree of
statistical confidence(1-2a) or conversely, with a low probability of error (2a). If a one-way lower
confidence interval is used, the right-hand term in equation [4.1] would be replaced by +e at confidence
level 1-a. In a similar fashion, the upper 1-a confidence interval would be defined in the range from -0
for the left-hand term to the right hand term in equation [4.1].

X+t [4.1]

When using a lower confidence interval on the mean, median, or upper percentile, an SSI occurs
whenever the lower edge of the confidence interval range exceeds the GWPS. For a confidence interval
around a trend line, an SSI is declared whenever the lower confidence limit around the estimated trend
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line first exceeds the GWPS at some point in time. By requiring that a lower confidence limit be used as
the basis of comparison, the statistical test will account for data variability and ensure that the apparent
violation is unlikely to have occurred by chance. Figure 4-1 below visually depicts a comparison to a
fixed GWPS for both lower confidence intervals for a stationary test like a mean, and around an
increasing trend. Where the confidence interval straddles the limit, the test results are inconclusive. In
similar fashion, an SSD can be identified by using upper confidence intervals.

Figure 4-1. Confidence Intervals Around Means, Percentiles, or Trend Lines

Means, Percentiles

_______ Lot -

Out-of-Compliance

Time ——

GWPS

Increasing Trend

Time ——

SSls offer the primary statistical justification for moving from detection monitoring to compliance
monitoring, or from compliance/assessment monitoring to corrective action. However, it is important
that an SSI be interpreted correctly. Any SSI at a compliance well represents a probable increase in
concentration level, but it does not automatically imply or prove that contaminated groundwater from
the facility is the cause of the increase. Due to the complexities of the groundwater medium and the
nature of statistical testing, there are numerous reasons why a test may exhibit a statistically significant
result. These may or may not be indications of an actual release from a regulated unit.
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It is always reasonable to allow for a separate demonstration once an SSI occurs, to determine
whether or not the increase is actually due to a contaminant release. Such a demonstration will rely
heavily on hydrological and geochemical evidence from the site, but could include additional statistical
factors. Key questions and factors to consider are listed in the following sections.

4.3.1 STATISTICAL FACTORS

Is the result a false positive? That is, were the data tested simply an unusual sample of the
underlying population triggering an SSI? Generally, this can be evaluated with repeat sampling.

Did the test correctly identify an actual release of an indicator or hazardous constituent?

Avre there corresponding SSls in upgradient or background wells? If so, there may be evidence of
a natural in-situ concentration increase, or perhaps migration from an off-site source.

Is there evidence of significant concentration differences between separate upgradient or
background wells, particularly for inorganic constituents? If so, there may be natural spatial
variations between distinct well locations that have not been accounted for. These spatial
differences could be local or systematic (e.g., upgradient wells in one formation or zone;
downgradient wells in another).

Could observed SSls for naturally occurring analytes be due to longer-term (i.e., seasonal or
multi-year) variation? Seasonal or other cyclical patterns should be observable in upgradient
wells. Is this change occurring in both upgradient and downgradient wells? Depending on the
statistical test and frequency of sampling involved, an observed SSI may be entirely due to
temporal variation not accounted for in the sampling scheme.

Do time series plots of the sampling data show parallel “spikes” in concentration levels from
both background and compliance well samples that were analyzed at about the same time?
Perhaps there was an analytical problem or change in lab methodology.

Are there substantial correlations among within-well constituents (in both upgradient and
downgradient wells)? Highly correlated analytes treated as independent monitoring constituents,
may generate incorrect significance levels for individual tests.

Were trends properly accounted for, particularly in the background data?

Was a correct assumption made concerning the underlying distribution from which the
observations were drawn (e.g., was a normal assumption applied to lognormal data)?

Was the test computed correctly?
Were the data input to the test of poor quality? (see various factors below)

4.3.2 WELL SYSTEM DESIGN AND SAMPLING FACTORS

X/
A X4

X/
**

X/
A X4

Were early sample data following well installation utilized in statistical testing? Initial well
measurements are sometimes highly variable during a *break in’ sampling and analysis period
and potentially less trustworthy.

Was there an effect attributable to recent well development, perhaps due to the use of hazardous
constituent chemicals during development or present in drilling muds?

Are there multiple geological formations at the site, leading to incorrect well placements?
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Has there been degradation of the well casings and screens (e.g., PVC pipe)? Deteriorating PVC
materials can release organic constituents under certain conditions. Occasionally, even stainless
steel can corrode and release a number of metallic trace elements.

Have there been changes in well performance over time?
Were there excessive holding times or incorrect use of preservatives, cooling, €etc.

Was there incorrect calibration or drift in the field instrumentation? This effect should be
observable in both upgradient and downgradient data and possibly over a number of sample
events. The data itself may be compromised or useless.

Have there been “‘mid-stream’ changes in sampling procedures, e.g., increased or decreased well
purging? Have sampling or purging techniques been consistently applied from well to well or
from sampling event to sampling event?

4.3.3 HYDROLOGICAL FACTORS

R/
A X4

Does the site have a history of previous waste management activity (perhaps prior to RCRA), and
is there any evidence of historical groundwater contamination? Previous contamination or waste
management contaminant levels can limit the ability to distinguish releases from the regulated
unit, particularly for those analytes found in historical contamination.

Is there evidence of groundwater mounding or other anomalies that could lead to the lack of a
reliable, definable gradient? Interwell statistical tests assume that changes in downgradient
groundwater quality only affect compliance wells and not upgradient (background) wells.
Changes that impact background wells also, perhaps in a complex manner involving seasonal
fluctuations, are often best resolved by running intrawell tests instead.

Is there hydrologic evidence of any migration of contaminants (including DNAPL) from off-site
sources or from other non-regulated units? Are any of these contaminants observed upgradient of
the regulated units?

Have there been other prior human or site-related waste management activities which could
result in the observed SSI changes for certain well locations (e.g., buried waste materials,
pipeline leaks, spills, etc.)?

Have there been unusual changes in groundwater directions and depths? Is there confidence that
the SSI did indeed correspond to a potential unit release based on observed groundwater
directions, distance of the well from the unit, other well information, etc.?

Is there evidence of migration of landfill gas affecting one or more wells?

Have there been increases in well turbidity and sedimentation, which could affect observed
contaminant levels?

Avre there preferential flow paths in the aquifer that could affect where contaminants are likely to
be observed or not observed?

Are the detected contaminants consistent with those found in the waste or leachate of the
regulated unit?

Avre there other nearby well pumping or extraction activities?
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4.3.4 GEOCHEMICAL FACTORS

X/
A X4

Were the measurements that triggered the SSI developed from unfiltered or filtered trace element
sample data? If unfiltered, is there any information regarding associated turbidity or total
suspended solid measurements? Unusual increases in well turbidity can introduce excess
naturally occurring trace elements into the samples. This can be a particularly difficult problem in
compliance monitoring when comparing data to a fixed standard, but can also affect detection
monitoring well-to-well comparisons if turbidity levels vary.

Were there changes in associated analytes at the “triggered” well consistent with local
geochemistry? For example, given an SSI for total dissolved solids [TDS], did measured
cations/anions and pH also show a consistent change? As another example, slight natural
geochemical changes can result in large specific conductance changes. Did other constituents
demonstrate a consistent change?

Is there evidence of a simultaneous release of more than one analyte, consistent with the
composition of the waste or leachate? In particular, is there corollary evidence of degradation or
daughter products for constituents like halogenated organics? For groundwater constituents with
identified SSls, is there a probable relationship to measured concentrations in waste or waste
leachate? Are leachate concentrations high enough to be detectable in groundwater?

If an SSI is observed in one or more naturally occurring species, were organic hazardous
constituents not normally present in background and found in the waste or leachate also
detected? This could be an important factor in assessing the source of the possible release.

Have aquifer mobility factors been considered? Certain soluble constituents like sodium,
chloride, or conservative volatile organics might be expected to move through the aquifer much
more quickly than easily adsorbed heavy metals or 4-5 ring polynuclear aromatic [PNA]
compounds.

Do the observed data patterns (particularly for naturally occurring constituents in upgradient
wells or other background conditions) make sense in an overall site geochemical context,
especially as compared with other available local or regional site data and published studies? If
not, suspect background data may need to be further evaluated for potential errors prior to formal
statistical comparisons.

Do constituents exhibit correlated behavior among both upgradient and downgradient wells due
to overall changes in the aquifer?

Have there been natural changes in groundwater constituents over time and space due to multi-
year, seasonal, or cyclical variation?

Avre there different geochemical regimes in upgradient vs. downgradient wells?
Has there been a release of soil trace elements due to changes in pH?

4.3.5 ANALYTICAL FACTORS

X/
%*

Have there been changes in laboratories, analytical methods, instrumentation, or procedures
including specified detection limits that could cause apparent jumps in concentration levels? In
some circumstances, using different values for non-detects with different reporting limits has
triggered SSIs. Were inexperienced technicians involved in any of the analyses?
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s Was more than one analytical method used (at different points in time) to generate the
measurements?

% Were there changes in detection/quantification limits for the same constituents?
% Were there calibration problems, e.g., drift in instrumentation?

% Was solvent or other laboratory contamination (e.g., phthalates, methylene chloride extractant,
acetone wash) introduced into any of the physical samples?

s Were there known or probable interferences among the analytes being measured?

% Were there “spikes” or unusually high values on certain sampling events (either for one
constituent among many wells or related analytical constituents) that would suggest laboratory
error?

4.3.6 DATA OR ANALYTIC ERRORS
% Were there data transcription errors (incorrect decimal places, analyte units, or data column
entries)? These data can often be identified as being highly improbable.

s Were there calculation errors in either the analytical (e.g., incorrect trace element valence
assumptions or dilution factors) or in the statistical portions (mathematical mistakes, incorrect
equation terms) of the analysis?
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This chapter discusses the importance and use of background data in groundwater monitoring.
Guidance is provided for the proper identification, review, and periodic updating of background. Key
questions to be addressed include:

+«+ How should background be established and defined?
+«+ When should existing background data sets be reviewed?
+«+ How and when should background be updated?

+« What impact does retesting have on background updating?

5.1 IMPORTANCE OF BACKGROUND

High quality background data is the single most important key to a successful statistical
groundwater monitoring program, especially for detection monitoring. All of the statistical tests listed in
the RCRA regulations are predicated on having appropriate and representative background
measurements. As indicated in Chapter 3, a statistical sample is representative if the distribution of the
sample measurements best follows the distribution of the population from which the sample is drawn.
Representative background data has a similar but slightly different connotation. The most important
quality of background is that it reflects the historical conditions unaffected by the activities it is designed
to be compared to. These conditions could range from an uncontaminated aquifer to an historically
contaminated site baseline unaffected by recent RCRA-actionable contaminant releases. Representative
background data will therefore have numerical characteristics closely matching those arising from the
site-specific aquifer being evaluated.

Background must also be appropriate to the statistical test. All RCRA detection monitoring tests
involve comparisons of compliance point data against background. If natural groundwater conditions
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have changed over time — perhaps due to cycles of drought and recharge — background measurements
from five or ten years ago may not reflect current uncontaminated conditions. Similarly, recent
background data obtained using improved analytical methods may not be comparable to older data. In
each case, older background data may have to be discarded in favor of more recent measurements in
order to construct an appropriate comparison. If intrawell tests are utilized due to strong evidence of
spatial variability, traditional upgradient well background data will not provide an appropriate
comparison. Even if the upgradient measurements are reflective of uncontaminated groundwater,
appropriate background data must be obtained from each compliance point well. The main point is that
compliance samples should be tested against data which best can represent background conditions now
and those likely to occur in the future.

5.1.1 TRACKING NATURAL GROUNDWATER CONDITIONS

Background measurements, especially from upgradient wells, can provide essential information for
other than formal statistical testing. For one, background data can be used to gauge mean levels and
develop estimates of variability in naturally occurring groundwater constituents. They can also be used
to confirm the presence or absence of anthropogenic or non-naturally occurring constituents in the site
aquifer. Ongoing sampling of upgradient background wells provides a means of tracking natural
groundwater conditions. Changes that occur in parallel between the compliance point and background
wells may signal site-wide aquifer changes in groundwater quality not specifically attributable to onsite
waste management. Such observed changes may also be indicative of analytical problems due to
common artifacts of laboratory analysis (e.g., re-calibration of lab equipment, errors in batch sample
handling, etc.), as well as indications of groundwater mounding, changes in groundwater gradients and
direction, migration of contaminants from other locations or offsite, etc.

Fixed GWPS like maximum contaminant levels [MCLs] may be contemplated for
compliance/assessment monitoring or corrective action. Background data analysis is important if it is
suspected that naturally occurring levels of the constituent(s) in question are higher than the standards or
if a given hazardous constituent does not have a health- or risk-based standard. In the first case,
concentrations in downgradient wells may indeed exceed the standard, but may not be attributable to
onsite waste management if natural background levels also exceed the standard. The Parts 264 and 258
regulations recognize these possibilities, and allow for GWPS to be based on background levels.

5.2 ESTABLISHING AND REVIEWING BACKGROUND

Establishing appropriate background depends on the statistical approach contemplated (e.g.,
interwell vs. intrawell). This section outlines the major considerations concerning how to select and
develop background data including monitoring constituents and sample sizes, statistical assumptions,
and the presence of data outliers, spatial variation or trends. Expanding and reviewing background data
are also discussed.

5.2.1 SELECTING MONITORING CONSTITUENTS AND ADEQUATE SAMPLE SIZES

Due to the cost of management, mobilization, field labor, and especially laboratory analysis,
groundwater monitoring can be an expensive endeavor. The most efficient way to limit costs and still
meet environmental performance requirements is to minimize the total number of samples which must
be sampled and analyzed. This will require tradeoffs between the number of monitoring constituents
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chosen, and the frequency of background versus compliance well testing. The number of compliance
wells and annual frequency of testing also affect overall costs, but are generally site-specific
considerations. By limiting the number of constituents and ensuring adequate background sample sizes,
it is possible to select certain statistical tests which help minimize future compliance (and total) sample
requirements.

Selection of an appropriate number of detection monitoring constituents should be dictated by the
knowledge of waste or waste leachate composition and the corresponding groundwater concentrations.
When historical background data are available, constituent choices may be influenced by their statistical
characteristics. A few representative constituents or analytes may serve to accurately assess the potential
for a release. These constituents should stem from the regulated wastes, be sufficiently mobile, stable
and occur at high enough concentrations to be readily detected in the groundwater. Depending on the
waste composition, some non-hazardous organic or inorganic indicator analytes may serve the same
purpose. The guidance suggests that between 10-15 formal detection monitoring constituents should be
adequate for most site conditions. Other constituents can still be reported but not directly incorporated
into formal detection monitoring, especially when large simultaneously analyzed suites like ICP-trace
elements, volatile or semi-volatile organics data are run. The focus of adequate background and future
compliance test sample sizes can then be limited to the selected monitoring constituents.

The RCRA regulations do not consistently specify how many observations must be collected in
background. Under the Part 265 Interim Status regulations, four quarterly background measurements are
required during the first year of monitoring. Recent modifications to Part 264 for Subtitle C facilities
require a sequence of at least four observations to be collected in background during an interval
approved by the Regional Administrator. On the other hand, at least four measurements must be
collected from each background well during the first semi-annual period along with at least one
additional observation during each subsequent period, for Subtitle D facilities under Part 258. Although
these are minimum requirements in the regulations, are they adequate sample sizes for background
definition and use?

Four observations from a population are rarely enough to adequately characterize its statistical
features; statisticians generally consider sample sizes of n < 4 to be insufficient for good statistical
analysis. A decent population survey, for example, requires several hundred and often a few to several
thousand participants to generate accurate results. Clinical trials of medical treatments are usually
conducted on dozens to hundreds of patients. In groundwater tests, such large sample sizes are a rare
luxury. However, it is feasible to obtain small sample sets of up to n = 20 for individual background
wells, and potentially larger sample sizes if the data characteristics allow for pooling of multiple well
data.

The Unified Guidance recommends that a minimum of at least 8 to 10 independent background
observations be collected before running most statistical tests. Although still a small sample size by
statistical standards, these levels allow for minimally acceptable estimates of variability and evaluation
of trend and goodness-of fit. However, this recommendation should be considered a temporary
minimum until additional background sampling can be conducted and the background sample size
enlarged (see further discussions below).

Small sample sizes in background can be particularly troublesome, especially in controlling
statistical test false positive and negative rates. False negative rates in detection monitoring, i.e., the
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statistical error of failing to identify a real concentration increase above background, are in part a
function of sample size. For a fixed false positive test rate, a smaller sample size results in a higher false
negative rate. This means a decreased probability (i.e., statistical power) that real increases above
background will be detected. With certain parametric tests, control of the false positive rate using very
small sample sets comes at the price of extremely low power. Power may be adequate using a non-
parametric test, but control of the false positive can be lost. In both cases, increased background sample
sizes result in better achievable false positive and false negative errors.

The overall recommendation of the guidance is to establish background sample sizes as large as
feasible. The final tradeoff comes in the selection of the type of detection tests to be used. Prediction
limit, control chart, and tolerance limit tests can utilize very small future sample sizes per compliance
well (in some cases a single initial sample), but require larger background sample sizes to have sufficient
power. Since background samples generally are obtained from historical data sets (plus future
increments as needed), total annual sample sizes (and costs) can be somewhat minimized in the future.

5.2.2 BASIC ASSUMPTIONS ABOUT BACKGROUND

Any background sample should satisfy the key statistical assumptions described in Chapter 3.
These include statistical independence of the background measurements, temporal and spatial
stationarity, lack of statistical outliers, and correct distribution assumptions of the background sample
when a parametric statistical approach is selected. How independence and autocorrelation impact the
establishment of background is presented below, with additional discussions on outliers, spatial
variability and trends in the following sections. Stationarity assumptions are considered both in the
context of temporal and spatial variation.

Both the Part 264 and 258 groundwater regulations require statistically independent measurements
(Chapter 2). Statistical independence is indicated by random data sets. But randomness is only
demonstrated by the presence of mean and variance stationarity and the lack of evidence for effects such
as autocorrelation, trends, spatial and temporal variation. These tests (described in Part Il of this
guidance) generally require at least 8 to 10 separate background measurements.

Depending on site groundwater velocity, too-frequent sampling at any given background well can
result in highly autocorrelated, non-independent data. Current or proposed sampling frequencies can be
tested for autocorrelation or other statistical dependence using the diagnostic procedures in Chapter 14.
Practically speaking, the best way to ensure some degree of statistical independence is to allow as much
time as possible to elapse between sampling events. But a balance must be drawn between collecting as
many measurements as possible from a given well over a specified time period, and ensuring that the
sample measurements are statistically independent. If significant dependence is identified in already
collected background, the interval between sampling events may need to be lengthened to minimize
further autocorrelation. With fewer sampling events per evaluation period, it is also possible that a
change in statistical method may be needed, say from analysis of variance [ANOVA], which requires at
least 4 new background measurements per evaluation, to prediction limits or control charts, which may
require new background only periodically (e.g., during a biennial update).

5-4 March 2009



Chapter 5. Background Unified Guidance

5.2.3 OUTLIERS IN BACKGROUND

Outliers or observations not derived from the same population as the rest of the sample violate the
basic statistical assumption of identically-distributed measurements. The Unified Guidance recommends
that testing of outliers be performed on background data, but they generally not be removed unless some
basis for a likely error or discrepancy can be identified. Such possible errors or discrepancies could
include data recording errors, unusual sampling and laboratory procedures or conditions, inconsistent
sample turbidity, and values significantly outside the historical ranges of background data. Management
of potential outliers carries both positive and negative risks, which should be carefully understood.

If an outlier value with much higher concentration than other background observations is not
removed from background prior to statistical testing, it will tend to increase both the background sample
mean and standard deviation. In turn, this may substantially raise the magnitude of a parametric
prediction limit or control limit calculated from that sample. A subsequent compliance well test against
this background limit will be much less likely to identify an exceedance. The same is true with non-
parametric prediction limits, especially when the maximum background value is taken as the prediction
limit. If the maximum is an outlier not representative of the background population, few truly
contaminated compliance wells are likely to be identified by such a test, lowering the statistical power of
the method and the overall quality of the statistical monitoring program.

Because of these concerns, it may be advisable at times to remove high-magnitude outliers in
background even if the reasons for these apparently extreme observations are not known. The overall
impact of removal will tend to improve the power of prediction limits and control charts, and thus result
in a more environmentally protective program.

But strategies that involve automated evaluation and removal of outliers may unwittingly eliminate
the evidence of real and important changes to background conditions. An example of this phenomenon
may have occurred during the 1970s in some early ozone depletion measurements over Antarctica
(http://www.nas.nasa.gov/About/Education/Ozone/history.html). Automated computer routines for
outlier detection apparently removed several measurements indicating a sharp reduction in ozone
concentrations, and thus prevented identification of an enlarging ozone hole by many years. Later
review of the raw observations revealed that these automated routines had statistically classified
measurements as outliers, which were more extreme than most of the data from that time period. Thus,
there is some merit in saving and revisiting apparent 'outliers' in future investigations, even if removed
from present databases.

In groundwater data collection and testing, background conditions may not be static over time.
Caution should be observed in removing observations which may signal a change in natural groundwater
quality. Even when conditions have not changed, an apparently extreme measurement may represent
nothing more than a portion of the background distribution that has yet to be observed. This is
particularly true if the background data set contains fewer than 20 samples.

In balancing these contrasting risks in retaining or removing one or more outliers, analyses of
historical data patterns can sometimes provide more definitive information depending on the types of
analytes and methods. For example, if a potential order-of magnitude higher outlier is identified in a
sodium data set used as a monitoring constituent, cation-anion balances can help determine if this
change is geochemically probable. In this case, changes to other intrawell ions or TDS should be
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observed. Similarly, if a trace element outlier is identified in a single well sampling event and occurred
simultaneously with other trace element maxima measured using the same analytical method (e.g., ICP-
AES) either in the same well or groups of wells, an analytical error should be strongly suspected. On
the other hand, an isolated increase without any other evidence could be a real but extreme background
measurement. Ideally, removal of one or more statistically identified outliers should be based on other
technical information or knowledge which can support that decision.

5.2.4 IMPACT OF SPATIAL VARIABILITY

In the absence of contamination, comparisons made between upgradient-to-downgradient wells
assume that the concentration distribution is spatially stationary across the well field (Chapter 3). This
implies that every well should have the same population mean and variance, unless a release occurs to
increase the concentration levels at one or more compliance wells. At many sites, this is not the case for
many naturally occurring constituents. Natural or man-made differences in mean levels — referred to as
gpatial variability or spatial variation — impact how background must be established.

Evidence of spatial variation should drive the selection of an intrawell statistical approach if
observed among wells known to be uncontaminated (e.g., among a group of upgradient background
locations). Lack of spatial mean differences and a common variance allow for interwell comparisons.
Appropriate background differs between the two approaches.

With interwell tests, background is derived from distinct, initially upgradient background wells,
which may be enhanced by data from historical compliance wells also shown not to exhibit significant
mean and variance differences. Future data from each of these compliance wells are then tested against
this common background. On the other hand, intrawell background is derived from and represents
historical groundwater conditions in each individual compliance well. When the population mean levels
vary across a well field, there is little likelihood that the upgradient background will provide an
appropriate comparison by which to judge any given compliance well.

Although spatial variability impacts the choice of background, it does so only for those constituents
which evidence spatial differences across the well field. Each monitoring constituent should be
evaluated on its own statistical merits. Spatial variation in some constituents (e.g., common ions and
inorganic parameters) does not preclude the use of interwell background for other infrequently detected
or non-naturally occurring analytes. At many sites, a mixture of statistical approaches may be
appropriate: interwell tests for part of the monitoring list and intrawell tests for another portion. Distinct
background observation sets will need to be developed under such circumstances.

Intrawell background measurements should be selected from the available historical samples at
each compliance well and should include only those observations thought to be uncontaminated.
Initially, this might result in very few measurements (e.g., 4 to 6). With such a small background sample,
it can be very difficult to develop an adequately powerful intrawell prediction limit or control chart, even
when retesting is employed (Chapter 19). Thus, additional background data will be needed to augment
the testing power. One option is to periodically augment the existing background data base with recent
compliance well samples (discussed in a further section below). Another possible remedy is to
statistically augment the available sample data by running an analysis of variance [ANOVA]
simultaneously on all the sets of intrawell background from the various upgradient and compliance wells
(see Chapter 13). The root mean squared error [RMSE] from this procedure can be used in place of the
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background standard deviation in parametric prediction and control limits to substantially increase the
effective background sample size of such tests, despite the limited number of observations available per
well.

This strategy will only work if the key assumptions of ANOVA can be satisfied (Chapter 17),
particularly the requirement of equal variances across wells. Since natural differences in mean levels
often correspond to similar differences in variability, a transformation of the data will often be necessary
to homogenize the variances prior to running the ANOVA. For some constituents, no transformation
may work well enough to allow the RMSE to be used as a replacement estimate for the intrawell
background standard deviation. In that case, it may not be possible to construct reasonably powerful
intrawell background limits until background has been updated once or twice (see Section 5.3).

5.2.5 TRENDS IN BACKGROUND

A key implication of the independent and identically distributed assumption [i.i.d.] is that a series
of sample measurements should be stationary over time (i.e., stable in mean level and variance). Data
that are trending upward or downward violate this assumption since the mean level is changing.
Seasonal fluctuations also violate this assumption since both the mean and variance will likely oscillate.
The proper handling of trends in background depends on the statistical approach and the cause of the
trend. With interwell tests and a common (upgradient) background, a trend can signify several
possibilities:

%+ Contaminated background;

% A ‘break-in’ period following new well installation;

% Site-wide changes in the aquifer;

+ Seasonal fluctuations, perhaps on the order of several months to a few years.

If upgradient well background becomes contaminated, intrawell testing may be needed to avoid
inappropriate comparisons. Groundwater flow patterns should also be re-examined to determine if
gradients are properly defined or if groundwater mounding might be occurring. With newly-installed
background wells, it may be necessary to discard initially collected observations and to wait several
months for aquifer disturbances due to well construction to stabilize. Site-wide changes in the
underlying aquifer should be identifiable as similar trends in both upgradient and compliance wells. In
this case, it might be possible to remove a common trend from both the background and compliance
point wells and to perform interwell testing on the trend residuals. However, professional statistical
assistance may be needed to do this correctly. Another option would be to switch to intrawell trend tests
(Chapter 17).

Seasonal fluctuations in interwell background which are also observed in compliance wells, can be
accommodated by modeling the seasonal trend and removing it from all background and compliance
well data. Data seasonally-adjusted in this way (see Chapter 14 for details) will generally be less
variable than the unadjusted measurements and lead to more powerful tests than if the seasonal patterns
had been ignored. For this adjustment to work properly, the same seasonal trend should be observed
across the well field and not be substantially different from well to well.
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Roughly linear trends in intrawell background usually signify the need to switch from an intrawell
prediction limit or control chart to an explicit trend test, such as linear regression or the Mann-Kendall
(Chapter 17). Otherwise the background variance will be overestimated and biased on the high side,
leading to higher than expected and ultimately less powerful prediction and control limits. Seasonal
fluctuations in intrawell background can be treated in one of two ways. A seasonal Mann-Kendall trend
test built to accommodate such fluctuations can be employed (Section 14.3.4). Otherwise, the seasonal
pattern can be estimated and removed from the background data, leaving a set of seasonally-adjusted
data to be analyzed with either a prediction limit or control chart. In this latter approach, the same
seasonal pattern needs to be extrapolated beyond the current background to more recent measurements
from the compliance well being tested. These later observations also need to be seasonally-adjusted prior
to comparison against the adjusted background, even if there is not enough compliance data yet collected
to observe the same seasonal cycles.

When trends are apparent in background, another option is to modify the groundwater monitoring
list to include only those constituents that appear to be temporally stable. Only certain analytes may
indicate evidence of trends or seasonal fluctuations. More powerful statistical tests might be constructed
on constituents that appear to be stationary. All such changes to the monitoring list and method of
testing may require approval of the Regional Administrator or State Director.

5.2.6 EXPANDING INITIAL BACKGROUND SAMPLE SIZES

In the initial development of a detection monitoring statistical program under a permit or other
legal mechanism, a period of review will identify the appropriate monitoring constituents. For new sites
with no prior data, plans for initial background definition need to be developed as part of permit
conditions. A more typical situation occurs for interim status or older facilities which have already
collected substantial historical data in site monitoring wells. For the most part, the suggestions below
cover ways of expanding background data sets from existing information.

Under the RCRA interim status regulations, only a single upgradient well is required as a
minimum. Generally speaking, a single background well will not generate observations that are
adequately representative of the underlying aquifer. A single background well draws groundwater from
only one possible background location. It is accordingly not possible to determine if spatial variation is
occurring in the upgradient aquifer. In addition, a single background well can only be sampled so often
since measurements that are collected too frequently run the risk of being autocorrelated. Background
observations collected from a single well are typically neither representative nor constitute a large
enough sample to construct powerful, accurate statistical tests. One way to expand background is to
install at least 3-4 upgradient wells and collect additional data under permit.

The early RCRA regulations also allowed for aliquot replicate sampling as a means of expanding
background and other well sample sizes. This approach consisted of analyzing splits or aliquots of
single water quality samples. As indicated in Chapter 2, this approach is not recommended in the
guidance. Generally limited analytical variability does not adequately capture the overall variation based
on independent water quality sample data, and results in incorrect estimates of variability and degrees of
freedom (a function of sample size).

Existing historical groundwater well data under consideration will need to meet the assumptions
discussed earlier in this chapter— independence, stationarity, etc., including using statistical methods

5-8 March 2009



Chapter 5. Background Unified Guidance

which can deal with outliers, spatial and temporal variation including trends. Presuming these
conditions are met, it is statistically desirable to develop as large a background sample size as practical.
But no matter how many measurements are utilized, a larger sample size is advantageous only if the
background samples are both appropriate to the tests selected and representative of baseline conditions.

In limited situations, upgradient-to-downgradient, interwell comparisons may be determined to be
appropriate using ANOVA testing of well mean differences. To ensure appropriate and representative
background, other conditions may also need to be satisfied when data from separate wells are pooled.
First, each background well should be screened at the same hydrostratigraphic position as other
background wells. Second, the groundwater chemistry at each of these wells should be similar. This can
be checked via the use of standard geochemical bar charts, pie charts, and tri-linear diagrams of the
major constituent groundwater ions and cations (Hem, 1989). Third, the statistical characteristics of the
background wells should be similar — that is, they should be spatially stationary, with approximately
the same means and variances. These conditions are particularly important for major water quality
indicators, which generally reflect aquifer-specific characteristics. For infrequently detected analytes
(e.g., filtered trace elements like chromium, silver, and zinc), even data collected from wells from
different aquifers and/or geologic strata may be statistically indistinguishable and also eligible for
pooling on an interwell basis.

If a one-way ANOVA (Chapter 13) on the set of background wells finds significant differences in
the mean levels for some constituents, and hence, evidence of spatial variability, the guidance
recommends using intrawell tests. The data gathered from the background wells will generally not be
used in formal statistical testing, but are still invaluable in ensuring that appropriate background is
selected.! As indicated in the discussions above and Chapter 13, it may be possible to pool constituent
data from a number of upgradient and/or compliance wells having a common variance when parametric
assumptions allow, even if mean differences exist.

When larger historical databases are available, the data can be reviewed and diagnostically tested
to determine which observations best represent natural groundwater conditions suitable for future
comparisons. During this review, all historical well data collected from both upgradient and compliance
wells can be evaluated for potential inclusion into background. Wells suspected of prior contamination
would need to be excluded, but otherwise each uncontaminated data point adds to the overall statistical
picture of background conditions at the site and can be used to enlarge the background database.
Measurements can be preferentially selected to establish background samples, so long as a consistent
rationale is used (e.g., newer analytical methods, substantial outliers in a portion of a data set, etc.)
Changes to an aquifer over time may require selecting newer data representing current groundwater
quality over earlier results even if valid.

1 If the spatial variation is ignored and data are pooled across wells with differing mean levels (and perhaps variances) to run
an interwell parametric prediction limit or control chart test, the pooled standard deviation will tend to be substantially
larger than expected. This will result in a higher critical limit for the test. Using pooled data with spatial variation will also
tends to increase observed maximum values in background, leading to higher and less powerful non-parametric prediction
limit tests. In either application, there will be a loss of statistical power for detecting concentration changes at individual
compliance wells. Compliance wells with naturally higher mean levels will also be more frequently determined to exceed
the limit than expected, while real increases at compliance wells with naturally lower means will go undetected more often.
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5.2.7 REVIEW OF BACKGROUND

As mentioned above, if a large historical database is available, a critical review of the data can be
undertaken to help establish initially appropriate and representative background samples. We
recommend that other reviews of background also take place periodically. These include the following
situations:

s When periodically updating background, say every 1-2 years (see Section 5.3)
% When performing a 5-10 year permit review

During these reviews, all observations designated as background should be evaluated to ensure that
they still adequately reflect current natural or baseline groundwater conditions. In particular, the
background samples should be investigated for apparent trends or outliers. Statistical outliers may need
to be removed, especially if an error or discrepancy can be identified, so that subsequent compliance
tests can be improved. If trends are indicated, a change in the statistical method or approach may be
warranted (see earlier section on “Trends in Background”).

If background has been updated or enlarged since the last review, and is being utilized in
parametric tests, the assumption of normality (or other distributional fit) should be re-checked to ensure
that the augmented background data are still consistent with a parametric approach. The presence of non-
detects and multiple reporting limits (especially with changes in analytical methods over time) can prove
particularly troublesome in checking distribution assumptions. The methods of Chapters 10 “Fitting
Distributions” and Chapter 15 “Handling Non-Detects” can be consulted for guidance.

Other periodic checks of the revised background should also be conducted, especially in relation to
accumulated knowledge from other sites regarding analyte concentration patterns in groundwater. The
following are potential sources for comparison and evaluation:

% reliable regional groundwater data studies or investigations from nearby sites;
¢+ published literature; EPA or other agency groundwater databases like STORET;

% knowledge of typical patterns for background inorganic constituents and trace elements. An
example is found in Table 5-1 at the end of this chapter. Typical surface and groundwater levels
for filtered trace elements can also be found in the published literature (e.g., Hem, 1989).

Certain common features of routine groundwater monitoring analytes summarized in Table 5-1
have been observed in Region 8 and other background data sets, which can have implications for
statistical applications. Common water quality indicators like cations and anions, pH, TDS, specific
conductance are almost always measurable (detectable) and generally have limited within-well
variability. These would be more amenable to parametric applications; however, these measurable
analytes are also most likely to exhibit well-to-well spatial variation and various kinds of within- and
between-well temporal variation including seasonal and annual trends. Many of these within-well
analytes are highly correlated, and would not meet the criterion for independent data if simultaneously
used as monitoring constituents.

A second level of common indicator analytes— nitrate/nitrite species, fluoride, TOC and TOX-
are less frequently detected and subject to more analytical detection instability (higher and lower
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detection/quantitation limits). As such, these analyte data are somewhat less reliable. There is less
likelihood of temporal variation, although they can exhibit spatial well differences.

Among routinely monitored .45u-filtered trace elements, different groups stand out. Barium is
routinely detected with limited variation within most wells, but does exhibit spatial variation. Arsenic
and selenium commonly occur in groundwater as oxyanions, and data can range from virtually non-
detectable to always detected in different site wells. The largest group of trace elements can be
considered colloidal metals (Sh, Al, Be, Cd, Cr, Co, Fe, Hg, Mn, Pb, Ni, Sn, Tl, V and Zn). While Al,
Mn and Fe are more commonly detected, variability is often quite high; well-to-well spatial variability
can occur at times. The remaining colloidal metals are solubility-limited in most background
groundwater, generally <1 to < 10 ug/l. But even with filtration, some natural colloidal geologic solid
materials can often be detected in individual samples. Since naturally occurring Al, Mn and Fe soil solid
levels are much higher, the effects on measured groundwater levels are more pronounced and variable.
For most of the analytically and solubility-limited colloidal metals, there may not be any discernible well
spatial differences. Often these data can be characterized by a site-wide lognormal distribution, and may
be possible to pool individual well data to form larger background sizes.

With unfiltered trace element data, it is more difficult to generalize even regarding background
data. The method of well sample extraction and the aquifer characteristics will determine how much
solids material may be present in the samples. Excessive amounts of sample solids can result in higher
levels of detection but also elevated average values and variability even for solubility-limited trace
elements. The effect is most clearly seen when TSS is simultaneously collected with unfiltered data.
Increases are proportional to the amount of TSS and the natural background levels for trace elements in
soil/solid materials. It is recommended that TSS always be simultaneously monitored with unfiltered
trace elements.

Most trace organic monitoring constituents are absent or non-detectable under clean background
conditions. However, with existing up-gradient sources, it is more difficult to generalize. More soluble
constituents like benzene or chlorinated hydrocarbons may be amenable to parametric distributions, but
changes in groundwater levels or direction can drastically affect observed levels. For sparingly soluble
compounds like polynuclear aromatics (e.g., naphthalene), aquifer effects can result in highly variable
data less amenable to statistical applications.

Table 5-1 was based on the use of analytical methods common in the 1990’s to the present.
Detectable filtered trace element data for the most part were limited by the available analytic techniques,
generally SW-846 Method 6010 ICP-AES and select AA (atomic absorption) methods with lower
detection limits in the 1-10 ppb range. As newer methods are incorporated (particularly Method 6020
ICP-MS capable of parts-per-trillion detection limits for trace elements), higher quantification
frequencies may result in data demonstrating more complex spatial and temporal characteristics. Table
5-1 merely provides a rough guide to where various data patterns might occur. Any extension of these
patterns to other facility data sets should be determined by the formal guidance tests in Part I1.

The background database can also be specially organized and summarized to examine common
behavior among related analytes (e.g., filtered trace elements using ICP-AES) either over time or across
wells during common sampling events. Parallel time series plots (Chapter 9) are very useful in this
regard. Groups of related analytes can be graphed on the same set of axes, or groups of nearby wells for
the same analyte. With either plot, highly suspect sampling events can be identified if a similar spike in
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concentration or other unusual pattern occurs simultaneously at all the wells or in all the analytes.
Analytical measurements that appear to be in error might be removed from the background database.

Cation-anion balances and other more sophisticated geochemical analysis programs can also be
used to evaluate the reliability of existing water quality background data. A suite of tests like linear or
non-parametric correlations, simple or non-parametric ANOVA described in later chapters offer overall
methods for evaluating historical data for background suitability.

5.3 UPDATING BACKGROUND

Due both to the complex behavior of groundwater and the need for sufficiently large sample sizes,
background once obtained should not be regarded as a single fixed quantity. Background should be
sampled regularly throughout the life of the facility, periodically reviewed and revised as necessary. If a
site uses traditional, upgradient-to-downgradient comparisons, it might seem that updating of
background is conceptually simple: collect new measurements from each background well at each
sampling event and add these to the overall background sample. However, significant trends or changes
in one or more upgradient wells might indicate problems with individual wells, or be part of a larger site-
wide groundwater change. It is worthwhile to consider the following principles for updating, whether
interwell or intrawell testing is used.

5.3.1 WHEN TO UPDATE

There are no firm rules on how often to update background data. The Unified Guidance adopts the
general principle that updating should occur when enough new measurements have been collected to
allow a two-sample statistical comparison between the existing background data and a potential set of
newer data. As mentioned in the following section, trend testing might also be used. With quarterly
sampling, at least 4 to 8 new measurements should be gathered to enable such a test; this implies that
updating would take place every 1-2 years. With semi-annual sampling, the same principle would call
for updating every 2-3 years.

Updating should generally not occur more frequently, since adding a new observation to
background every one or two sampling rounds does not allow a statistical evaluation of whether the
background mean is stationary over time. Enough new data needs to be collected to ensure that a test of
means (or medians in the case of non-normal data) can be conducted. Adding individual observations to
background can introduce subtle trends that might go undetected and ultimately reduce the statistical
power of formal monitoring tests.

Another practical aspect is that when background is updated, all statistical background limits (e.g.,
prediction and control limits) needs to be recomputed to account for the revised background sample. At
complex sites, updating the limits at each well and constituent on the monitoring list may require
substantial effort. This includes resetting the cumulative sum [CUSUM] portions of control charts to
zero after re-calculating the control limits and prior to additional testing against those limits. Too-
frequent updating could thereby reduce the efficacy of control chart tests.

5.3.2 HOW TO UPDATE

Updating background is primarily a concern for intrawell tests, although some of the guidelines
apply to interwell data. The common (generally upgradient) interwell background pool can be tested for
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trends and/or changes at intervals depending on the sampling frequencies identified above. Those
recently collected measurements from the background well(s) can be added to the existing pool if a
Student’s t-test or Wilcoxon rank-sum test (Chapter 16) finds no significant difference between the two
groups at the o = 0.01 level of significance. Individual background wells should also be evaluated in the
same manner for their respective newer data. Two-sample tests of the interwell background data are
conducted to gauge whether or not background groundwater conditions have changed substantially since
the last update, and are not tests for indicating a potential release under detection monitoring. A
significant t-test or Wilcoxon rank-sum result should spur a closer investigation and review of the
background sample, in order to determine which observations are most representative of the current
groundwater conditions.

With intrawell tests using prediction limits or control charts, updating is performed both to enlarge
initially small well-specific background samples and to ensure that more recent compliance
measurements are not already impacted by a potential release (even if not triggered by the formal
detection monitoring tests). A finding of significance using the above two-sample tests means that the
most recent data should not be added to intrawell background. However, the same caveat as above
applies: these are not formal tests for determining a potential release and the existing tests and
background should continue to be used.

Updating intrawell background should also not occur until at least 4 to 8 new compliance
observations have been collected. Further, a potential update is predicated on there being no statistically
significant increase [SSI] recorded for that well constituent, including since the last update. Then a t-
test or Wilcoxon rank-sum comparison can be conducted at each compliance well between existing
intrawell background and the potential set of newer background. A non-significant result implies that
the newer compliance data can be re-classified as background measurements and added to the existing
intrawell background sample. On the other hand, a determination of significance suggests that the
compliance observations should be reviewed to determine whether a gradual trend or other change has
occurred that was missed by the intervening prediction limit or control chart tests. If intrawell tests
make use of a common pooled variance, the assumption of equal variance in the pooled wells should
also be checked with the newer data.

Some users may wish to evaluate historical and future background data for potential trends. If
plots of data versus time suggest either an overall trend in the combined data sets or distinct differences
in the respective sets, linear or non-parametric trend tests covered in Chapter 17 might be used. A
determination of a significant trend might occur even if the two-sample tests are inconclusive, but
individual group sample sizes should be large enough to avoid identifying a significant trend based on
too few samples and perhaps randomly occurring. A trend in the newer data may reflect or depart from
the historical data conditions. Some form of statistical adjustments may be necessary, but see Section
5.3.4 below.
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5.3.3 IMPACT OF RETESTING

A key question when updating intrawell background is how to handle the results of retesting.” If a
retest confirms an SSI, background should not be updated. Rather, some regulatory action at the site
should be taken. But what if an initial exceedance of a prediction or control limit is disconfirmed by
retesting? According to the logic of retesting (Chapter 19), the well passes the compliance test for that
evaluation and monitoring should continue as usual. But what should be done with the initial exceedance
when it comes time to update background at the well?

The initial exceedance may be due to a laboratory error or other anomaly that has caused the
observation to be an outlier. If so, the error should be documented and not included in the updated
background sample. But if the exceedance is not explainable as an outlier or error, it may represent a
portion of the background population that has heretofore not been sampled. In that case, the data value
could be included in the updated background sample (along with the repeat sample) as evidence of the
expanded but true range of background variation. Ultimately, it is important to characterize the
background conditions at the site as completely and accurately as possible, so as to minimize both false
positive and false negative decision errors in compliance testing.

The severity and classification of the initial exceedance will depend on the specific retesting
strategy that has been implemented (Chapter 19). Using the same background data in a parametric
prediction limit or control chart test, background limits are proportionately lower as the 1-of-m order
increases (higher m). Thus, a 1-of-4 prediction limit will be lower than a 1-of-3 limit, and similarly the
1-of-3 limit lower than for a 1-of-2 test. An initial exceedance triggered by a 1-of-4 test limit and
disconfirmed by a repeat sample, might not trigger a lower order prediction limit test. The initial sample
value may represent an upper tail value from the true distribution. Retesting schemes derive much of
their statistical power by allowing more frequent initial exceedances, even if some of these represent
possible measurements from background. The initial and subsequent resamples taken together are
designed to identify which initial exceedances truly represent SSIs and which do not. These tests
presume that occasional excursions beyond the background limit will occur. Unless the exceedance can
be documented as an outlier or other anomaly, it should probably be included in the updated intrawell
background sample.

5.3.4 UPDATING WHEN TRENDS ARE APPARENT

An increasing or decreasing trend may be apparent between the existing background and the newer
set of candidate background values, either using a time series plot or applying Chapter 17 trend
analyses. Should such trend data be added to the existing background sample? Most detection
monitoring tests assume that background is stationary over time, with no discernible trends or seasonal
variation. A mild trend will probably make very little difference, especially if a Student-t or Wilcoxon
rank-sum test between the existing and candidate background data sets is non-significant. More severe
or continuing trends are likely to be flagged as SSls by formal intrawell prediction limit or control chart
tests.

2 With interwell tests, the common (upgradient) background is rarely affected by retests at compliance point wells (unless the
latter were included in the common pool). Should retesting fail to confirm an initial exceedance , the initial value can be
reported alongside the disconfirming resamples in statistical reports for that facility.
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With interwell tests, a stronger trend in the common upgradient background may signify a change
in natural groundwater quality across the aquifer or an incomplete characterization of the full range of
background variation. If a change is evident, it may be necessary to delete some of the earlier
background values from the updated background sample, so as to ensure that compliance testing is based
on current groundwater conditions and not on outdated measures of groundwater quality.
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Table 5-1. Typical Background Data Patterns for Routine Groundwater Monitoring Analytes
Analyte Detection Rates Between Within Well Between Outlier Temporal Variation Typical Data
G Well Variability Well Problems Distribution Grouping
roups Frequency of Multiple Between Within Within Within Within L
Mean (Cvs) Equal within well
Detection Reporting : ) Well by Well Well Well Well
Differ- Variances
by Well Limiits Analyte Among Auto- Seasonal Time
ences
Group correl. Variation Correl.
Inorganic Constituents and Indicators
— - 3
Major ions, pH, High to 100% I Generally /7 v /7 "y /7 /7 /7 Normal Intrawell
TDS, Specific low
Conductance (.1-.5)
CO3, F, Some to most I y Moderate Variable I v v v Norm, Log or Intrawell/
NO2,NO3 detectable (.2-1.5) NPM Interwell
.45y Filtered Trace Elements
i [
Ba High to 100% /v SIS Low v v v v Normal Intrawell
(.1-.5)
As, Se Some wells /v v Moderate Variable /v v v Normal, Log Intrawell/
high, others (.2-1.5) or NPM Interwell
(some
low to zero
wells)
Al, Mn, Fe Low to /v v Moderate v IS v v Log or NPM Intrawell/
Moderate to high Interwell
(.3->2.0)
Sb, Be, Cd, Cr, Zero to low vy, Moderate I vy, v I v Log or NPM Interwell
Cu, Hg, Pb, Ni, to high or NDC
Ag, Tl, V, Zn (.5->2.0)
Trace Organic and Indicator Analytes (patterns at sites with prior contamination; generally absent in clean sites)
VOA’s-BETX and  |f Variable, can Variable by site and wells v Variable by site and specific wells Normal, Log | Intrawell,
Cl-Hydrocarbons be high or NPM Interwell or
NDC
BNAs, Other Generally /v v w w w w
Trace Organics low-mod
Indicators: TOX Variabl W oW oW owow w w w w
ndicators: ’ ariable v SIS w w w w

TPH, TOC, sulfide

NPM- non-parametric methods;

NDC- never-detected constituents

Checks: None- unknown, absent or infrequently occurring; « — Occasionally; v —Frequently; v v —Very Frequently
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6.1 INTRODUCTION

This chapter addresses the initial statistical design of a detection monitoring program, prior to
routine implementation. It considers what important elements should be specified in site permits,
monitoring development plans or during periodic reviews. A good statistical design can be critically
important for ensuring that the routine process of detection monitoring meets the broad objective of the
RCRA regulations: using statistical testing to accurately evaluate whether or not there is a release to
groundwater at one or more compliance wells.

This guidance recommends a comprehensive detection monitoring program design, based on two
key performance characteristics: adequate statistical power and a low predetermined site-wide false
positive rate [SWFPR]. The design approach presented in Section 6.2 was developed in response to the
multiple comparisons problem affecting RCRA and other groundwater detection programs, discussed in
Section 6.2.1. Greater detail in applying design cumulative false positives and assessing power follows
in the next three sub-sections. In Section 6.3, consideration is given to data features that impact proper
implementation of statistical testing, such as outliers and non-detects, using interwell versus intrawell
tests, as well as the presence of spatial variability or trends. Section 6.4 provides a general discussion of
specific detection testing methods listed in the regulations and their appropriate use. Finally, Section 6.5
applies the design concepts to three hypothetical site examples.

The principles and statistical tests which this chapter covers for a detection monitoring program
can also apply to compliance/corrective action monitoring when a background standard is used.
Designing a background standards compliance program is discussed in Chapter 7 (Section 7.5).
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6.2 ELEMENTS OF THE STATISTICAL PROGRAM DESIGN
6.2.1 THE MULTIPLE COMPARISONS PROBLEM

The foremost goal in detection monitoring is to identify a real release to groundwater when it
occurs. Tests must have adequate statistical power to identify concentration increases above
background. A second critical goal is to avoid false positive decision errors, evaluations where one or
more wells are falsely declared to be contaminated when in fact their concentration distribution is similar
to background. Unfortunately, there is a trade-off (discussed in Chapter 3) between maximizing power
and minimizing the false positive rate in designing a statistical testing protocol. The statistical power of
a given test procedure using a fixed background sample size (n) cannot be improved without increasing
the risk of false positive error (and vice-versa).

In RCRA and other groundwater detection monitoring programs, most facilities must monitor and
test for multiple constituents at all compliance wells one or more times per year. A separate statistical
test! for each monitoring constituent-compliance well pair is generally conducted semi-annually. Each
additional background comparison test increases the accumulative risk of making a false positive
mistake, known statistically as the multiple comparisons problem.?

The false positive rate o (or Type | error) for an individual test is the probability that the test will
falsely indicate an exceedance of background. Often, a single fixed low false positive error rate typically
found in textbooks or regulation, e.g., oo=.01 or .05, is applied to each statistical test performed for
every well-constituent pair at a facility. Applying such a common false positive rate (o) to each of
several tests can result in an acceptable cumulative false positive error if the number of tests is quite
small.

But as the number of tests increases, the false positive rate associated with the testing network as a
whole (i.e., across all well-constituent pairs) can be surprisingly high. If enough tests are run, at least
one test is likely to indicate potential contamination even if a release has not occurred. As an example, if
the testing network consists of 20 separate well-constituent pairs and a 99% confidence upper prediction
limit is used for each test (oo =.01), the expected overall network-wide false positive rate is about 18%.
There is nearly a 1 in 5 chance that one or more tests will falsely identify a release to groundwater at
uncontaminated wells. For 100 tests and the same statistical procedure, the overall network-wide false
positive rate increases to more than 63%, creating additional steps to verify the lack of contamination at
falsely triggered wells. This cumulative false positive error is also indicative of at least one well
constituent false positive error, but there could be more. Controlling this cumulative false positive error
rate is essential in addressing the multiple comparisons problem.

! The number of samples collected may not be the same as the number of statistical tests (e.g., a mean test based on 2

individual samples). It is the number of tests which affect the multiple comparisons problem.

2 To minimize later confusion, note that the Unified Guidance applies the term “comparison” somewhat differently than most
statistical literature. In statistical theory, multiple tests are synonymous with multiple comparisons, regardless of the kind of
statistical test employed. But because of its emphasis on retesting and resampling techniques, the Unified Guidance uses
"comparison" in referring to the evaluation of a single sample value or sample statistic against a prediction or control chart
limit. In many of the procedures described in Chapters 19 and 20, a single statistical test will involve two or more such
individual comparisons, yet all the comparisons are part of the same (individual) test.
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Three main strategies (or their combination) can be used to counter the excessive cumulative false
positive error rate-- 1) the number of tests can be reduced; 2) the individual test false positive rate can
be lowered, or 3) the type of statistical test can be changed. A fourth strategy to increase background
sample sizes may also be appropriate. Under an initial monitoring design, one usually works with fixed
historical sample sizes. However, background data can later be updated in periodic program reviews.

To make use of these strategies, a sufficiently low target cumulative SWFPR needs to be initially
identified for design purposes. The target cumulative error applies to a certain regular time period. The
guidance recommends and uses a value of 10% over a year period of testing. Reasons for this particular
choice are discussed in Section 6.2.2. These strategies have consequences for the overall test power of a
well monitoring network, which are considered following control of the false positive error.

The number of tests depends on the number of monitoring constituents, compliance wells and
periodic evaluations. Statistical testing on a regular basis can be limited to constituents shown to be
reliable indicators of a contaminant release (discussed further in Section 6.2.2). Depending on site
conditions, some constituents may need to be tested only at wells for a single regulated waste unit, rather
than across the entire facility well network. The frequency of evaluation is a program decision, but
might be modified in certain circumstances.

Monitoring data for other parameters should still be routinely collected and reported to trace the
potential arrival of new chemicals into the groundwater, whether from changes in waste management
practices or degradation over time into hazardous daughter products. By limiting statistically evaluated
constituents to the most useful indicators, the overall number of statistical tests can be reduced to help
meet the SWFPR objective. Fewer tests also imply a somewhat higher single test false positive error
rate, and therefore an improvement in power.

As a second strategy, the Type | error rate (ouest) applied to each individual test can be lowered to
meet the SWFPR. Using the Bonferroni adjustment (Miller, 1981), the individual test error is designed
to limit the overall (or experiment-wise) false positive rate o associated with n individual tests by
conducting each individual test at an adjusted significance level of ot = o/n. Computational details for
this approach are provided in a later section.

A full Bonferroni adjustment strategy was neither implemented in previous guidance® nor allowed
by regulation. However, the principle of partitioning individual test error rates to meet an overall
cumulative false positive error target is highly recommended as a design element in this guidance.
Because of RCRA regulatory limitations, its application is restricted to certain detection monitoring

® A Bonferroni adjustment was recommended in the 1989 Interim Final Guidance [IFG] as a post-hoc (i.e., ‘after the fact’)
testing strategy for individual background-to-downgradient well comparisons following an analysis of variance [ANOVA].
However, the adjustment does not always effectively limit the risks to the intended 5% false positive error for any ANOVA
test. If more than 5 compliance wells are tested, RCRA regulations restrict the single test error rate to a minimum of o =
1% for each of the individual post-hoc tests following the F-test. This in effect raises the cumulative ANOVA test risk
above 5% and considerably higher with a larger number of tested wells. At least one contaminated well would typically be
needed to trigger the initial F-test prior to post-hoc testing. This fact was also noted in the 1989 IFG. Additionally, RCRA
regulations mandate a minimum o error rate of 5% per constituent tested with this strategy. For sites with extensive
monitoring parameter lists, this means a substantial risk of at least one false positive test result during any statistical
evaluation.
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tests-- prediction and tolerance limits along with control charts. Where not restricted by regulation, the
Bonferroni approach could be used to design workable single-test or post-hoc testing for ANOVAs to
meet the overall SWFPR criterion.

Using this strategy of defining individual false positive test rates to meet a cumulative error
target, the effect on statistical power is direct. Given a statistical test and fixed sample size, a lower
false positive rate coincides with lower power of the test to detect contamination at the well. Some
improvement in single test power can be gained by increasing background sample sizes at a fixed test
error rate. However, the third strategy of utilizing a different or modified statistical test is generally
necessary.

This strategy involves choices among certain detection monitoring tests-- prediction limits, control
charts and tolerance intervals-- to enhance both power and false positive error control. Except for small
sites with a very limited number of tests, any of the three detection monitoring options should
incorporate some manner of retesting. Through proper design, retesting can simultaneously achieve
sufficiently high statistical power while maintaining control of the SWFPR.

RECOMMENDED GUIDANCE CRITERIA

The design of all testing strategies should specifically address the multiple comparisons problem in
light of these two fundamental concerns-- an acceptably low false positive site-wide error rate and
adequate power. The Unified Guidance accordingly recommends two statistical performance criteria
fundamental to good design of a detection monitoring program:

1. Application of an annual cumulative SWFPR design target, suggested at 10% per year.

2. Use of EPA reference power curves [ERPC] to gauge the cumulative, annual ability of any
individual test to detect contaminated groundwater when it exists. Over the course of a
single year assuming normally-distributed background data, any single test performed at
the site should have the ability to detect 3 and 4 standard deviation increases above
background at specific power levels at least as high asthereference curves.

False positive rates (or errors) apply both to individual tests and cumulatively to all tests
conducted in some time period. Applying the SWFPR annual 10% rate places different sites and state
regulatory programs on an equal footing, so that no facility is unfairly burdened by false positive test
results. Use of a single overall target allows a proper comparison to be made between alternative test
methods in designing a statistical program. Additional details in applying the SWFPR include the
following:

s The SWFPR false positive rate should be measured on a site-wide basis, partitioned among the
total number of annual statistical tests.

% The SWFPR applies to all statistical tests conducted in an annual or calendar year period.

¢+ The total number of annual statistical tests used in SWFPR calculations depends on the number
of valid monitoring constituents, compliance wells and evaluation periods per year. The number
of tests may or may not coincide with the number of annual sampling events, for example, if data
for a future mean test are collected quarterly and tested semi-annually.
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% The Unified Guidance recommends a uniform approach for dealing with monitoring constituents
not historically detected in background (e.g., trace organic compounds routinely analyzed in large
analytical suites). It is recommended that such constituents not be included in SWFPR
computations, and an alternate evaluation protocol be used (referred to as the Double
Quantification rule) discussed in Section 6.2.2.

Statistical power refers to the ability of a test to identify real increases in concentration levels
above background (true SSIs). The power of a test is evaluated on population characteristics and
represents average behavior defined by repeated or an infinitely large number of samples. Power is
reported as a fraction between 0 and 1, representing the probability that the test will identify a specific
level or degree of increase above background. Statistical power varies with the size of the average
population concentration above background-- generally fairly low power to detect small incremental
concentrations and substantially increasing power at higher concentrations.

The ERPC describe the cumulative, annual statistical power to detect increasing levels of
contamination above a true background mean. These curves are based on specific normal detection
monitoring prediction limit tests of single future samples against background conducted once, twice, or
four times in a year. Reference curve power is linked to relative, not absolute, concentration levels.
Actual statistical test power is closely tied to the underlying variability of the concentration
measurements. Since individual data set variability will differ by site, constituent, and often by well, the
EPA reference power curves provide a generalized ability to estimate power by standardizing variability.
By convention, all background concentration data are assumed to follow a standard normal distribution
(occasionally referred to in this document as a Z-normal distribution) with a true mean p = 0 and
standard deviation ¢ = 1.0. Then, increases above background are measured in increasing the k standard
deviation units corresponding to ko mean units above baseline. When the background population can be
normalized via a transformation, the same normal-based ERPC can be used without loss of generality.

Ideally, actual test power should be assessed using the original concentration data and associated
variability, referred to as effect size power analysis. The power of any statistical test can be readily
computed and compared to the appropriate reference curve, if not analytically, then by Monte Carlo
simulation. But the reference power curves laid out in the Unified Guidance offer an important standard
by which to judge the adequacy of groundwater statistical programs and tests. They can be universally
applied to all RCRA sites and offer a uniform way to assess the environmental and health protection
afforded by a particular statistical detection monitoring program.*

Consequently, it is recommended that design of any detection monitoring statistical program
include an assessment of its ability to meet the power standards set out in the Unified Guidance. The
reference power curve approach does not place an undue statistical burden on facility owners or
operators, and is believed to be generally protective of human health and the environment.

* The ERPCs are specifically intended for comparing background to compliance data in detection monitoring. Power issues
in compliance/assessment monitoring and corrective action are considered in Chapters7 and 22.
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X/
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Principal features of the ERPC approach include the following:

Reference curves are based on upper 99% prediction limit tests of single future samples against
background. The background sample consists of n = 10 measurements, a minimally adequate
background sample size typical of RCRA applications. It is assumed that the background sample
and compliance well data are normally distributed and from the same population.

The three reference curves described below are matched to the annual frequency of statistical
evaluations: one each for quarterly, semi-annual, and annual evaluations. The annual cumulative
false positive testing error is maintained at 1%, testing 1, 2, or 4 single future samples annually
against the same background. This represents the ability to identify a release to groundwater in at
least one of the 1, 2 or 4 tests over the course of a year. Reporting power on an annual basis was
chosen to correspond with the application of a cumulative annual SWFPR.

In the absence of an acceptable effect size increase (Section 6.2.4), the Unified Guidance
recommends that any statistical test provide at least 55-60% annual power to detecting a 3o (i.e.,
3 standard deviation) increase above the true background mean and at least 80-85% annual
power for detecting increases of 4o. The percent power criteria change slightly for the respective
reference power curves, depending on the annual frequency of statistical evaluations. For normal
populations, a 3¢ increase above the background average approximately corresponds to the upper
99th percentile of the background distribution, implying better than a 50% chance of detecting
such an increase. Likewise, a 4c increase corresponds to a true mean greater than the upper
99.99th percentile of the background distribution, with better than a 4-in-5 chance of detecting it.

A single statistical test is not adequately powerful unless its power matches or betters the
appropriate reference curve, at least for mean-level increases of 3 to 4 standard deviation units.
The same concept can be applied to the overall detection monitoring test design. It is assumed
for statistical design purposes that each individual monitoring well and constituent is of equal
importance, and assigned a common test false positive error. Effective power then measures the
overall ability of the statistical program to identify any single constituent release in any well,
assuming all remaining constituents and wells are at background levels. If a number of different
statistical methods are employed in a single design, effective power can be defined with respect
to the least powerful of the methods being employed. Applying effective power in this manner
would ensure that every well and constituent is evaluated with adequate statistical power to
identify potential contamination, not just those where more powerful tests are applied.

While the Unified Guidance recommends effective power as a general approach, other
considerations may outweigh statistical thoroughness. Not all wells and constituents are
necessarily of equal practical importance. Specific site circumstances may also result in some
anomalous weak test power (e.g., a number of missing samples in a background data set for one
or more constituents), which might be remedied by eventually increasing background size. The
user needs to consider all factors including effective statistical power criteria in assessing the
overall strength of a detection monitoring program.
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6.2.2 SITE-WIDE FALSE POSITIVE RATES [SWFPR]

In this section, a number of considerations in developing and applying the SWFPR are provided.
Following a brief discussion of SWFPR computations, the next section explains the rationale for the
10% design target SWFPR. Additional detail regarding the selection of monitoring constituents follows,
and a final discussion of the Double Quantification rule for never-detected constituents is included in the
last section.

For cumulative false positive error and SWFPR computations, the following approach is used. A
cumulative false positive error rate oqm IS calculated as the probability of at least one statistically
significant outcome for a total number of tests ny in a calendar year at a single false positive error rate
aest USINg the properties of the Binomial distribution:

Aoy =1- (1_ Aot )nT

By rearranging to solve for ot , the 10% design SWFPR (.1) can be substituted for aqum and the
needed per-test false positive error rate calculated as:
Aot =1- ('g)l/nT
Although these calculations are relatively straightforward and were used to develop certain -
factor tables in the Unified Guidance (discussed in Section 6.5 and in later chapters), a further
simplification is possible using the Bonferroni approximation. This assumes that cumulative, annual
SWEFPR is roughly the additive sum of all the individual test errors. For low false positive rates typical

of guidance application, the Bonferroni results are satisfactorily close to the Binomial formula for most
design considerations.

Using this principle, the design 10% SWFPR can be partitioned among the potential annual
statistical tests at a facility in a number of ways. For facilities with different annual monitoring
frequencies, the SWFPR can be divided among quarterly or semi-annual period tests. Given oswrpr = .1
and ng evaluation periods, the quarterly cumulative false positive target rate ag at a facility conducting
quarterly testing would be o = aswrpr/Ne = .1/4 = .025 or 2.5% (and similarly for semi-annual testing).
The total or sub-divided SWFPR can likewise be partitioned among dedicated monitoring well
groupings at a multi-unit facility or among individual monitoring constituents as needed.

DEVELOPMENT AND RATIONALE FOR THE SWFPR

The existing RCRA Part 264 regulations for parametric or non-parametric analysis of variance
[ANOVA] procedures mandate a Type | error of at least 1% for any individual test, and at least 5%
overall. Similarly, the RCRA Part 265 regulations require a minimum 1% error for indicator parameter
tests. The rationale for minimum false positive requirements is motivated by statistical power. If the
Type | error is set too low, the power of the test will be unacceptably low for any given test. EPA was
historically not able to specify a minimum level of acceptable power within the RCRA regulations. To
do so would require specification of a minimum difference of environmental concern between the null
and alternative test hypotheses. Limits on current knowledge about the health and/or environmental
effects associated with incremental changes in concentration levels of Part 264 Appendix IX or Part 258
Appendix Il constituents greatly complicate this task. Tests of non-hazardous or low-hazard indicators
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might have different power requirements than for hazardous constituents. Therefore, minimum false
positive rates were adopted for ANOVA-type procedures until more specific guidance could be
recommended. EPA’s main concern was adequate statistical power to detect real contamination of
groundwater, and not enforcing commonly-used false positive test rates.

This emphasis is evident in 8264.98(g)(6) and 8258.54(c)(3) for detection monitoring and
8264.99(i) and §258.55(g)(2) for compliance monitoring. Both pairs of provisions allow the owner or
operator to demonstrate that any statistically significant difference between background and compliance
point wells or between compliance point wells and the GWPS is an artifact caused by an error in
sampling, analysis, statistical evaluation, or natural variation in groundwater chemistry. The rules
clearly expect that there will be occasional false positive errors, but existing rules are silent regarding the
cumulative frequency of false positives at regulated facilities.

As previously noted, it is essentially impossible to maintain a low cumulative SWFPR for
moderate to large monitoring networks if the Type I errors for individual tests must be kept at or above
1%. However, the RCRA regulations do not impose similar false positive error requirements on the
remaining control chart, prediction limit and tolerance interval tests. Strategies that incorporate
prediction limit or control chart retesting can achieve very low individual test false positive rates while
maintaining adequate power to detect contamination. Based on prediction limit research in the 19908
and after, it became clear that these alternative methods with suitable retesting could also control the
overall cumulative false positive error rate to manageable levels.

This guidance suggests the use of an annual SWFPR of .1 or 10% as a fundamental element of
overall detection monitoring design. The choice of a 10% annual SWFPR was made in light of the
tradeoffs between false positive control and testing power. An annual period was chosen to put different
sized facilities on a common footing regardless of variations in scheduled testing. It is recognized that
even with such a limited error rate, the probability of false positive outcomes over a number of years
(such as in the lifetime of a 5-10 year permit) will be higher. However, such relatively limited
eventualities can be identified and adjusted for, since the RCRA regulations do allow for demonstration
of a false positive error. State programs may choose to use a different annual rate such as 5% depending
on the circumstances. But some predefined SWFPR in a given evaluation period is essential for
designing a detection monitoring program, which can then be translated into target individual test rates
for any alternative statistical testing strategy.

To implement this recommendation, a given facility should identify its yearly evaluation schedule
as quarterly, semi-annual, or annual. This designation is used both to select an appropriate EPA
reference power curve by which to gauge acceptable power, and to select prediction limit and control
chart multipliers useful in constructing detection monitoring tests. Some of the strategies described in
the Unified Guidance in later chapters require that more than one observation per compliance well be
collected prior to statistical testing. The cumulative, annual false positive rate is linked not to the
frequency of sampling but rather to the frequency of statistical evaluation. When resamples (or
verification resamples) are incorporated into a statistical procedure (Chapter 19), the individual
resample comparisons comprise part of a single test. When a single future mean of m individual
observations is evaluated against a prediction limit, this constitutes a test based on one mean
comparison.
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NUMBER OF TESTS AND CONSTITUENTS

In designing a detection monitoring program to achieve the target SWFPR, the number of annual
statistical tests to be conducted needs to be identified. This number is calculated as the number of
distinct monitoring constituents x the number of compliance wells in the network x the number of
annual evaluations. Five constituents and 10 well locations statistically evaluated semi-annually
constitute 100 annual tests (5 x 10 x 2), since each distinct well-constituent pair represents a different
statistical test that must be evaluated against their respective backgrounds. Even smaller facilities are
likely to have a substantial number of such tests, each incrementally adding to the SWFPR.

While the retesting strategies outlined in Chapters 19 and 20 can aid tremendously in limiting the
SWFPR and ensure adequate statistical power, there are practical limits to meeting these goals due to the
limited number of groundwater observations that can be collected and/or the number of retests which can
feasibly be run. To help balance the risks of false positive and false negative errors, the number of
statistically-tested monitoring parameters should be limited to constituents thought to be reliable
indicators of a contaminant release.

The guidance assumes that data from large suites of trace elements and organics along with a set of
inorganic water quality indicators (pH, TDS, common ions, etc.) are routinely collected as part of
historical site groundwater monitoring. The number of constituents potentially available for testing can
be quite large, perhaps as many as 100 different analytes. At some sites, the full monitoring lists are too
large to feasibly limit the SWFPR while maintaining sufficiently high power.

Non-naturally occurring chemicals such as volatile organic compounds [VOC] and semi-volatile
organic compounds [SVOC] are often viewed as excellent indicators of groundwater contamination, and
are thereby included in the monitoring programs of many facilities. There is a common misperception
that the greater the number of VOCs and SVOCs on the monitoring list, the greater the statistical power
of the monitoring program. The reasoning is that if none of these chemicals should normally be detected
in groundwater — barring a release — testing for more of them ought to improve the chances of
identifying contamination.

But including a large suite of VOCs and/or SVOCs among the mix of monitoring parameters can
be counterproductive to the goal of maintaining adequate effective power for the site as a whole.
Because of the trade-off between statistical power and false positive rates (Chapter 3), the power to
detect groundwater contamination in one of these wells even with a retesting strategy in place may be
fairly low unless background sample sizes are quite large. This is especially true if the regulatory
authority only allows for a single retest.

Suppose 40 VOCs and certain inorganic parameters are to be tested semi-annually at 20
compliance wells totaling 1600 annual statistical tests. To maintain a 10% cumulative annual SWFPR,
the per-test false positive rate would then need to be set at approximately ouest = .0000625. If only 10
constituents were selected for formal testing, the per-test rate would be increased to ouest = .00025. For
prediction limits and other detection tests, higher false positive test rates translate to lower k-factors and
improved power.

Some means of reducing the number of tested constituents is generally necessary to design an
effective detection monitoring system. Earlier discussions have already suggested one obvious first step,
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by eliminating historically non-detected constituents in background from the formal list of detction
monitoring constituents (discussed further in the following section). These constituents are still
analyzed and informally tested, but do not count against the SWFPR.

Results of waste and leachate testing and possibly soil gas analysis should serve as the initial basis
for designating constituents that are reliable leak detection indicators. Such specific constituents actually
present in, or derivable from, waste or soil gas samples, should be further evaluated to determine which
can be analytically detected a reasonable proportion of the time. This evaluation should include
considerations of how soluble and mobile a constituent may be in the underlying aquifer. Additionally,
waste or leachate concentrations should be high enough relative to the groundwater levels to allow for
adequate detection. By limiting monitoring and statistical tests to fewer parameters with reasonable
detection frequencies and that are significant components of the facility’s waste, unnecessary statistical
tests can be avoided while focusing on the reliable identification of truly contaminated groundwater.

Initial leachate testing should not serve as the sole basis for designating monitoring parameters.
At many active hazardous waste facilities and solid waste landfills, the composition of the waste may
change over time. Contaminants that initially were all non-detect may not remain so. Because of this
possibility, the Unified Guidance recommends that the list of monitoring parameters subject to formal
statistical evaluation be periodically reviewed, for example, every three to five years. Additional leachate
compositional analysis and testing may be necessary, along with the measurement of constituents not on
the monitoring list but of potential health or environmental concern. If previously undetected parameters
are discovered in this evaluation, the permit authority should consider revising the monitoring list to
reflect those analytes that will best identify potentially contaminated groundwater in the future.

Further reductions are possible in the number of constituents used for formal detection monitoring
tests, even among constituents periodically or always detected. EPA’s experience at hazardous waste
sites and landfills across the country has shown that VOCs and SVOCs detected in a release generally
occur in clusters; it is less common to detect only a single constituent at a given location. Statistically,
this implies that groups of detected VOCs or SVOCs are likely to be correlated. In effect, the correlated
constituents are measuring a release in similar fashion and not providing fully independent measures.
At petroleum refinery sites, benzene, toluene, ethylbenzene and xylenes measured in a VOC scan are
likely to be detected together Similarly at sites having releases of 1,1,1-trichloroethane, perhaps 10-12
intermediate chlorinated hydrocarbon degradation compounds can form in the aquifer over time.
Finally, among water quality indicators like common ions and TDS, there is a great deal of geochemical
inter-relatedness. Again, two or three indicators from each of these analyte groups may suffice as
detection monitoring constituents.

The overall goal should be to select only the most reliable monitoring constituents for detection
monitoring test purposes. Perhaps 10-15 constituents may be a reasonable target, depending on site-
specific needs. Those analytes not selected should still continue to be collected and evaluated. In
addition to using the informal test to identify previously undetected constituents described in the next
section, information on the remaining constituents (e.g., VOCs, SVOCs and trace elements) can still be
important in assessing groundwater conditions, including additional confirmation of a detected release.
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DOUBLE QUANTIFICATION RULE

From the previous discussion, a full set of site historical monitoring parameters can be split into
three distinct groups: a) those reliable indicators and hazardous constituents selected for formal detection
monitoring testing and contributing to the SWFPR; b) other analytes which may be occasionally or even
frequently detected and will be monitored for general groundwater quality information but not tested;
and c) those meeting the "never-detected"” criteria. The last group may still be of considerable interest
for eventual formal testing, should site or waste management conditions change and new compounds be
detected. All background measurements in the "never-detected” group should be non-detects, whether
the full historical set or a subgroup considered most representative (e.g., recently collected background
measurements using an improved analytical method.?). The following rule is suggested to provide a
means of evaluating "never-detected" constituents.

The Double Quantification rule implies that statistical tests should be designed for each of the
constituents in the first group. Calculations involving the SWFPR should cover these constituents, but
not include constituents in second and the third ‘100% non-detect’ categories. Any constituent in this
third group should be evaluated by the following simple, quasi-statistical rule®:

A confirmed exceedance is registered if any well-constituent pair in the *100%
non-detect’ group exhibits quantified measurements (i.e., at or above the
reporting limit [RL]) in two consecutive sample and resample events.

It is assumed when estimating an SWFPR using the Bonferroni-type adjustment, that each well-
constituent test is at equal risk for a specific, definable false positive error. As a justification for this
Double Quantification rule, analytical procedures involved in identifying a reported non-detect value
suggest that the error risk is probably much lower for most chemicals analyzed as "never-detected.”
Reporting limits are set high enough so that if a chemical is not present at all in the sample, a detected
amount will rarely be recorded on the lab sheet. This is particularly the case since method detection
limits [MDLs] are often intended as 99% upper prediction limits on the measured signal of an
uncontaminated laboratory sample. These limits are then commonly multiplied by a factor of 3 to 10 to
determine the RL.

Consequently, a series of measurements for VOCs or SVOCs on samples of uncontaminated
groundwater will tend to be listed as a string of non-detects with possibly a very occasional low-level
detection. Because the observed measurement levels (i.e., instrument signal levels) are usually known
only to the chemist, an approximate prediction limit for the chemical basically has to be set at the RL.
However, the true measurement distribution is likely to be clustered much more closely around zero than
the RL (Figure 6-1), meaning that the false positive rate associated with setting the RL as the prediction

®> Note: Early historical data for some constituents (e.g., certain filtered trace elements) may have indicated occasional and
perhaps unusual detected values using older analytical techniques or elevated reporting limits. If more recent sampling
exhibits no detections at lower reporting limits for a number of events, the background review discussed in Chapter 5 may
have determined that the newer, more reliable recent data should be used as background. These analytes could also be
included in the *100% non-detect’ group.

® The term “quasi-statistical” indicates that although the form is a statistical prediction limit test, only an approximate false
positive error rate is implied for the reporting limit critical value. The test form follows 1-of-2 or 1-of-3 non-parametric
prediction limit tests using the maximum value from a background data set (Chapter 19).
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limit is likely already much lower than the Bonferroni-adjusted error rate calculated above. A similar
chain of reasoning would apply to site-specific chemicals that may be on the monitoring list but have
never been detected at the facility. Such constituents would also need a prediction limit set at the RL.

Figure 6-1. Hypothetical Distribution of Instrument Signals in Uncontaminated
Groundwater

Measured Concentration

In general, there should be some minimally sufficient sample numbers to justify placing
constituents in the "never-detected"” category. Even such a recommendation needs to consider individual
background well versus pooled well data. Depending on the number of background wells (including
historical compliance well data used as background which reflect the same non-detect patterns), certain
risks may have to be taken to implement this strategy. With the same total number of non-detects (e.qg.,
4 each in 5 wells versus 20 from a single well), the relative risk can change. Certain non-statistical
judgements may be needed, such as the likelihood of particular constituents arising from the waste or
waste management unit. At a minimum, we recommend that at least 6 consecutive non-detect values
initially be present in each well of a pooled group, and additional background well sampling should
occur to raise this number to 10-15.

Having 10-15 non-detects as a basis, a maximum worst-case probability of a future false positive
exceedance under Double Quantification rule testing could be estimated. But it should be kept in mind
that the true individual comparison false positive rates based on analytical considerations are likely to be
considerably lower. The number of non-detect constituents evaluated under the rule will also play a role.
There will be some cumulative false positive error based on the number of comparisons at some true
false positive single test error or errors. Since the true false positive test rates cannot be known (and may
vary considerably among analytes), it is somewhat problematic to make this cumulative false positive
error estimate. Yet there is some likelihood that occasional false positive exceedances will occur under
this rule.
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Some flexibility will be required in evaluating such outcomes, particularly if there is doubt that a
confirmed exceedance is actually due to a release from the regulated unit. In this circumstance, it might
be appropriate to allow for a second resample as more definitive confirmation.

In implementing the Double Quantification rule, consideration should be given to how soon a
repeat sample should be taken. Unlike detectable parameters, the question of autocorrelation is
immaterial since the compound should not be present in the background aquifer. A sufficiently long
interval should occur between the initial and repeat samples to minimize the possibility of a systematic
analytical error. But the time interval should be short enough to avoid missing a subsequent real
detection due to seasonal changes in the aquifer depth or flow direction. It is suggested that 1-2 months
could be appropriate, but will depend on site-specific hydrological conditions.

Using this rule, it should be possible to construct adequately powerful prediction and control limits
for naturally-occurring and detectable inorganic and organic chemicals in almost every setting. This is
especially helpful at larger sites, since the total number of tests on which the per-test false positive rates
(oest) are based will be significantly reduced. Requiring a verified quantification for previously non-
detected constituents should ensure that spurious lab results do not falsely trigger a facility into
compliance/assessment monitoring, and will more reliably indicate the presence of chemicals that have
heretofore not been found in background.

6.2.3 RECOMMENDATIONS FOR STATISTICAL POWER

The second but more important regulatory goal of a testing strategy is to ensure sufficient
statistical power for detecting contaminated groundwater. Technically, in the context of groundwater
monitoring, power refers to the probability that a statistical test will correctly identify a significant
increase in concentration above background. Note that power is typically defined with respect to a single
test, not a network of tests. In this guidance, cumulative power is assessed for a single test over an
annual period, depending on the frequency of the evaluation. Since some testing procedures may
identify contamination more readily when several wells in the network are contaminated as opposed to
just one or two, the Unified Guidance recommends that all testing strategies be compared on the
following more stringent common basis.

The effective power of a testing protocol across a network of well-constituent pairs is defined as
the probability of detecting contamination in the monitoring network when one and only one well-
constituent pair is contaminated. Effective power is a conservative measure of how a testing regimen
will perform across the network, because the set of statistical tests must uncover one contaminated well
among many clean ones (i.e., like “finding a needle in a haystack’). As mentioned above, this initial
judgment may need to be qualified with effect size and other site-specific considerations.

INTRODUCTION TO POWER CURVES

Perhaps the best way to describe the power function associated with a particular testing procedure
is via a graph, such as the example below of the power of a standard normal-based upper prediction limit
with 99% confidence (Figure 6-2). The power in percent is plotted along the y-axis against the
standardized mean level of contamination along the x-axis. The standardized contamination levels are
presented in units of standard deviations above the baseline (defined as the true background mean). This
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allows different power curves to be compared across constituents, wells, or well-constituent pairs. These
standardized units A in the case of normally-distributed data may be computed as:

_ (Mean Contamination Level) — (Mean Background Level)
(SD of Background Population)

A

[6.1]

In some situations, the probability that contamination will be detected by a particular testing
procedure may be difficult if not impossible to derive analytically and will have to be simulated using
Monte Carlo analysis on a computer. In these cases, power is typically estimated by generating normally-
distributed random values at different mean contamination levels and repeatedly simulating the test
procedure. With enough repetitions a reliable power curve can be plotted.

In the case of the normal power curve in Figure 6-2, the power values were computed analytically,
using properties of the non-central t-distribution. In particular, the statistical power of a normal 99%
prediction limit for the next single future value can be calculated as

1- = Pr{Tﬂ{&— A/ N ﬂ > tn“a} [6.2]

where A is the number of standardized (i.e., standard deviation) units above the background population
mean, (1-f) is the fractional power, & is a non-centrality parameter, and:

o o

represents a non-central t-variate with (n-1) degrees of freedom and non-centrality parameter &.
Equation [6.2] was used with n = 10 to generate Figure 6-2.”

On a general power curve, the power at A= 0 represents the false positive rate or size of the
statistical test, because at that point no contamination is actually present (i.e., the background condition),
even though the curve indicates how often a significant concentration increase will be detected. One
should be careful to distinguish between the SWFPR across many statistical tests and the false positive
rate represented on a curve measuring effective power. Since the effective power is defined as the testing
procedure’s ability to identify a single contaminated well-constituent pair, the effective power curve
represents an individual test, not a network of tests. Therefore, the value of the curve at A = 0 will only
indicate the false positive rate associated with an individual test (ost), not across the network as a
whole. For many of the retesting strategies discussed in Chapters 19 and 20, the individual per-test
false positive rate will be quite small and may appear to be nearly zero on the effective power curve.

" For users with access to statistical software containing the non-central T-distribution, this power curve can be duplicated.
For example, the A = 3o fractional power can be obtained using the following inputs: a central t-value of tgg o = 2.821, 9 df,

and & = 3/1/1+ il/lO ) = 2.8604 . The fractional power is .5414. It should be noted that the software may report the
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Figure 6-2. Normal Power Curve (n = 10) for 99% Prediction Limit Test
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To properly interpret a power curve, note that not only is the probability greater of identifying a
concentration increase above background (shown as a decimal value between 0 and 1 along the vertical
axis) as the magnitude of the increase gets bigger (as measured along the horizontal axis), but one can
determine the probability of identifying certain kinds of increases. For instance, with effective power
equivalent to that in Figure 6-2, any mean concentration increase of at least 2 background standard
deviations will be detected about 25% percent of the time, while an increase of 3 standard deviations
will be detected with approximately 55% probability or better than 50-50 odds. A mean increase of at
least 4 standard deviations will be detected with about 80% probability.

An increase of 3 or 4 standard deviations above the baseline may or may not have practical
implications for human health or the environment. That will ultimately depend on site-specific factors
such as the constituents being monitored, the local hydrogeologic environment, proximity to
environmentally sensitive populations, and the observed variability in background concentrations. In
some circumstances, more sensitive testing procedures might be warranted. As a general guide especially
in the absence of direct site-specific information, the Unified Guidance recommends that when
background is approximately normal in distribution,® any statistical test should be able to detect a 3

probability as (B) rather than (1-B). For more complex power curves involving multiple repeat samples or multiple tests,
integration is necessary to generate the power estimates.

® If a non-parametric test is performed, power (or more technically, efficiency) is often measured by Monte Carlo simulation
using normally distributed data. So these recommendations also apply to that case.
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standard deviation increase at least 55-60% of the time and a 4 standard deviation increase with at least
80-85% probability.

EPA REFERENCE POWER CURVES

Since effect sizes discussed in the next section often cannot or have not been quantified, the
Unified Guidance recommends using the ERPC as a suitable basis of comparison for proposed testing
procedures. Each reference power curve corresponds to one of three typical yearly statistical evaluation
schedules — quarterly, semi-annual, or annual — and represents the cumulative power achievable
during a single year at one well-constituent pair by a 99% upper (normal) prediction limit based on n =
10 background measurements and one new measurement from the compliance well (see Chapter 18 for
discussion of normal prediction limits). The ERPC are pictured in Figure 6-3 below.

Any proposed statistical test procedure with effective power at least as high as the appropriate
ERPC, especially in the range of three or more standard deviations above the background mean, should
be considered to have reasonable power.? In particular, if the effective power first exceeds the ERPC at a
mean concentration increase no greater than 3 background standard deviations (i.e., A < 3), the power is
labeled ‘good;’ if the effective power first exceeds the ERPC at a mean increase between 3 and 4
standard deviations (i.e., 3 < A < 4), the power is considered ‘acceptable;” and if the first exceedance of
the ERPC does not occur until an increase greater than 4 standard deviations (i.e., A > 4), the power is
considered ‘low.’

With respect to the ERPCs, one should keep the following considerations in mind:

1.  The effective power of any testing method applied to a groundwater monitoring network can be
increased merely by relaxing the SWFPR guideline, letting the SWFPR become larger than 10%.
This is why a maximum annual SWFPR of 10% is suggested as standard guidance, to ensure fair
power comparisons among competing tests and to limit the overall network-wide false positive
rate.

2. The ERPCs are based on cumulative power over a one-year period. That is, if a single well-
constituent pair is contaminated at standardized level A during each of the yearly evaluations, the
ERPC indicates the probability that a 99% upper prediction limit test will identify the
groundwater as impacted during at least one of those evaluations. Because the number of
evaluations not only varies by facility, but also impacts the cumulative one-year power, different
reference power curves should be employed depending on a facility’s evaluation schedule.
Quarterly evaluators should utilize the quarterly reference power curve (Q); semi-annual
evaluators the semi-annual curve (S); and annual evaluators the annual curve (A).

3. If Monte Carlo simulations are used to evaluate the power of a proposed testing method, it
should incorporate every aspect of the procedure, from initial screens of the data to final

® When using a retesting strategy in a larger network, the false positive rate associated with a single contaminated well (used
to determine the effective power) will tend to be much smaller than the targeted SWFPR. Since the point at which the
effective power curve intersects A = 0 on the standardized horizontal axis represents the false positive rate for that
individual test, the effective power curve by construction will almost always be less than the EPA reference power curve for
small concentration increases above background. Of more concern is the relative behavior of the effective power curve at
larger concentration increases, say two or more standard deviations above background.
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decisions concerning the presence of contamination. This is especially applicable to strategies
that involve some form of retesting at potentially contaminated wells.

4.  Although monitoring networks incorporate multiple well-constituent pairs, effective power can
be gauged by simulating contamination in one and only one constituent at a single well.

5. The ERPCs should be considered a minimal power standard. The prediction limit test used to
construct these reference curves does not incorporate retesting of any sort, and is based on
evaluating a single new measurement from the contaminated well-constituent pair. In general,
both retesting and/or the evaluation of multiple compliance point measurements tend to improve
statistical power, so proposed tests that include such elements should be able to match the ERPC.

6. At sites employing multiple types of test procedures (e.g., non-parametric prediction limits for
some constituents, control charts for other constituents), effective power should be computed for
each type of procedure to determine which type exhibits the least statistical power. Ensuring
adequate power across the site implies that the least powerful procedure should match or exceed
the appropriate ERPC, not just the most powerful procedure.

Figure 6-3. EPA Reference Power Curves
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6.2.4 EFFECT SIZES AND DATA-BASED POWER CURVES
EFFECT SIZES

If site-specific or chemical-specific risk/health information is available particularly for naturally-
occurring constituents, it can be used in some circumstances to develop an effect size of importance. An
effect size (@) is simply the smallest concentration increase above the mean background level that is
presumed or known to have a measurable, deleterious impact on human health and/or the environment,
or that would clearly signal the presence of contamination.

When an effect size can be quantified for a given constituent and is approved by the regulating
authority, the acceptable power of the statistical test can be tailored to that amount. For instance, if an
effect size for lead in groundwater at a particular site is ¢ = 10 ppb, one might require that the statistical
procedure have an 80% or 95% chance of detecting such an increase. This would be true regardless of
whether the power curve for lead at that site matches the ERPC. In some cases, an agreed-upon effect
size will result in a more stringent power requirement compared to the ERPCs. In other cases, the power
standard might be less stringent.

Effect sizes are not known or have not been determined for many groundwater constituents,
including many inorganic parameters that have detection frequencies high enough to be amenable to
effect size calculations. Because of this, many users will routinely utilize the relative power guidelines
embodied in the ERPC. Even if a specific effect size cannot be determined, it is helpful to consider the
site-specific and test-specific implications of a three or four standard deviation concentration increase
above background. Taking the background sample mean (X ) as the estimated baseline, and estimating
the underlying population variability by using the sample background standard deviation (s), one can
compute the approximate actual concentrations associated with a three, four, five, etc. standard deviation
increase above the baseline (as would be done in computing a data-based power curve; Section 6.2.4).
These concentration values will only be approximate, since the true background mean (u) and standard
deviation (o) are unknown. However, conducting this analysis can be useful in at least two ways. Each
is illustrated by a simple example.

By associating the standardized units on a reference power curve with specific but approximate
concentration levels, it is possible to evaluate whether the anticipated power characteristics of the chosen
statistical method are adequate for the site in question. If not, another method with better power might
be needed. Generally, it is useful to discuss and report statistical power in terms of concentration
levels rather than theoretical units.

» EXAMPLE 6-1

A potential permit GWPS for lead is 15 ppb, while natural background lead levels are normally
distributed with an average of 6 ppb and a standard deviation of 2 ppb. The regulatory agency
determines that a statistical test should be able to identify an exceedance of this GWPS with high power.
Further assume that the power curve for a particular statistical test indicated 40% power at 3 standard
deviations and 78% power at 4c above background (a low power rating).

By comparing the actual standard deviation estimate to the required target increase ¢ = (15-6)/2 =
4.5 standard units, the power at the critical effect size would be 80% or higher using Figure 6-2 as a
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rough guide. This might be sufficient for monitoring needs even though the test did not meet the EPA
reference criteria. Of course, the results apply only to this specific well-constituent test. <«

For a given background sample, one can consider the regulatory and environmental impact of
using that particular background as the basis of comparison in detection monitoring. Especially when
deciding between interwell and intrawell tests at the same site, it is not unusual for the intrawell
background from an individual well to exhibit much less variability than a larger set of observations
pooled from multiple upgradient wells. This difference can be important since an intrawell test and an
interwell test applied to the same site — using identical relative power criteria — might be associated
with different risks to human health and the environment. A similar type of comparison might also aid in
deciding whether the degrees of freedom of an intrawell test ought to be enlarged via a pooled estimate
of the intrawell standard deviation (Chapter 13), whether a non-adjusted intrawell test is adequate, or
whether more background sampling ought to be conducted prior to running intrawell tests.

» EXAMPLE 6-2

The standard deviation of an intrawell background population is oina = 5 ppb, but that of
upgradient, interwell background is oiner = 10 ppb. With the increased precision of an intrawell method,
it may be possible to detect a 20 ppb increase with high probability (representing a A = 4Ginra iNncrease),
while the corresponding probability for an interwell test is much lower (i.e., 20 ppb = 26iner = A). Of
course, even if the intrawell test meets the ERPC target at four standardized units above background,
consideration should be given as to whether or not 20 ppb is a meaningful increase. <

One caveat is that calculation of either effect sizes or data-based power curves (see below) requires
a reasonable estimate of the background standard deviation (o). Such calculations may often be possible
only for naturally-occurring inorganics or other constituents with fairly high detection frequencies in
groundwater. Otherwise, power computations based on an effect size or the estimated standard deviation
(s) are likely to be unreliable due to the presence of left-censored measurements (i.e., non-detects).

A type of effect size calculation is presented in Chapter 22 regarding methods for
compliance/assessment and corrective action monitoring. A comparable effect size is computed by
considering changes in mean concentration levels equal to a multiple of a fixed GWPS or clean-
up/action level. While the mean level changes are multiples of the concentration limit and in that sense
still relative, because they are tied to a fixed concentration standard, the power of the test can be linked
to specific concentration levels.

DATA-BASED POWER CURVES

Even if basing power on a specific effect size is impractical for a given facility or constituent, it is
still possible to relate power to absolute concentration levels rather than to the standardized units of the
ERPC. While exact statistical power depends on the unknown population standard deviation (G), an
approximate power curve can be constructed based on the estimated background standard deviation (s).
Instead of an estimate of power at a single effect size (depicted in Example 6-1), the actual power over a
range of effect sizes can be evaluated. Such a graph is denoted in the Unified Guidance as a data-based
power curve, a term first coined by Davis (1998).
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Since the sample standard deviation (s) is calculated from actual groundwater measurements, this
in turn changes an abstract power curve based on relative concentrations (i.e., ko units above the
baseline mean) into one displaying approximate, but absolute, concentrations (i.e., ks units above
baseline). The advantages of this approach include the following:

% Approximate data-based power curves allow the user to determine statistical power at any
desired effect size (¢).

% Even if the effect size (¢) is unspecified, data-based power curves tie the performance of the
statistical test back to actual concentration levels of the population being tested.

% Once the theoretical power curve of a particular statistical test is known, a data-based power
curve is extremely easy to construct. One merely substitutes the observed background standard
deviation (s) for ¢ and multiply by k to determine concentration values along the horizontal axis
of the power curve. Even if the theoretical power curve is unknown, the same calculations can be
made on the reference curve to derive an approximate site-specific, data-based power curve for
tests roughly matching the performance of the ERPCs.

s If the choice between an interwell test and an intrawell approach is a difficult one (Section
6.3.2), helpful power comparisons can be made between intrawell and interwell tests at the same
site using data-based power curves. Even if both tests meet the ERPC criteria, they may be based
on different sets of background measurements, implying that the interwell standard deviation
(Sinter) Might differ from the intrawell standard deviation (Sinra). By plotting both data-based
power curves on the same set of axes, the comparative performance of the tests can be gauged.

» EXAMPLE 6-3

The following background sample is used to construct a test with theoretical statistical power
similar to the ERPC for annual evaluations (see Figure 6-2). What will an approximate data-based
power curve look like, and what is the approximate power for detecting a concentration increase of 75

ppm?

Sulfate Concentrations (ppm)

Quarter BW-1 BW-2

1/95 560 550

4/95 530 570

7/95 568 540

10/95 490 542

1/96 510 590
Mean 545.0 ppm
SD 29.7 ppm
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SOLUTION

The sample standard deviation of the pooled background sulfate concentrations is 29.7 ppm.
Multiplying this amount by the number of standard deviations above background along the x-axis in
Figure 6-2 and re-plotting, the approximate data-based power curve of Figure 6-3 can be generated.
Then the statistical power for detecting an increase of 75 ppm is almost 40%.

Figure 6-3. Approximate s-Based Power Curve for Sulfate
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Had the pooled sample size been n = 16 using the same test and sample statistics, a different and
somewhat more powerful theoretical power curve would result. This theoretical curve can be generated
(for a 1-of-1 prediction limit test) using the non-central T-distribution described earlier, if a user has the
appropriate statistical software package. The power for a 75 ppm increase can be calculated using

5:75/,/1+(]/16) =245 and tge 15 = 2.602, as closer to 46%. The larger background sample size
makes for a more powerful test. <

6.2.5 SITES USING MORE THAN ONE STATISTICAL METHOD

There is no requirement that a facility apply one and only one statistical method to its groundwater
monitoring program. The RCRA regulations explicitly allow for the use of multiple techniques,
depending on the distributional properties of the constituents being monitored and the characteristics of
the site. If some constituent data contain a high percentage of non-detect values, but others can be
normalized, the statistical approach should vary by constituent.

With interwell testing, parametric prediction limits might be used with certain constituents and
non-parametric prediction limits for other highly non-detect parameters. If intrawell testing is used, the
most appropriate statistical technique for one constituent might differ at certain groups of wells than for
others. Depending on the monitoring constituent, available individual well background, and other site-
specific factors, some combination of intrawell prediction limits, control charts, and Wilcoxon rank-sum
tests might come into play. At other sites, a mixture of intrawell and interwell tests might be conducted.

The Unified Guidance offers a range of possible methods which can be matched to the statistical
characteristics of the observed data. The primary goal is that the statistical program should maximize the
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odds of making correct judgments about groundwater quality. The guidance SWFPR and ERPC
minimum power criteria serve as comprehensive guides for assessing any of the statistical methods.

One major concern is how statistical power should be compared when multiple methods are
involved. Even if each method is so designed as not to exceed the recommended SWFPR, the effective
power for identifying contaminated groundwater may vary considerably by technique and specific type
of test. Depending on the well network and statistical characteristics of available data, a certain control
chart test may or may not be as powerful as normal prediction limits. In turn, a specific non-parametric
prediction limit test may be more powerful than some parametric versions. It is important that effective
power be defined consistently, even at sites where more than one statistical method is employed.

The guidance encourages employing the effective power concept in assessing the ability of the
statistical program to correctly identify and flag real concentration increases above background. As
already defined, effective power is the probability that such an increase will be identified even if only
one well-constituent pair is contaminated. Each well-constituent pair being tested should be considered
equally at risk of containing a true increase above background. This also implies that the effective power
of each statistical test in use should meet the criteria of the EPA reference curves. That is, the test with
the least power should still have adequate power for identifying mean concentration increases.

The Unified Guidance does not recommend that a single composite measure of effective power be
used to gauge a program’s ability to identify potential contamination. To understand this last
recommendation, consider the following hypothetical example. Two constituents exhibiting different
subsurface travel times and diffusive potentials in the underlying aquifer are monitored with different
statistical techniques. The constituent with the faster travel time might be measured using a test with
very low effective power (compared to the ERPC), while the slower moving parameter is measured with
a test having very high effective power. Averaging the separate power results into a single composite
measure might result in an effective power roughly equivalent to the ERPC. Then the chances of
identifying a release in a timely manner would be diminished unless rather large concentrations of the
faster constituent began appearing in compliance wells. Smaller mean increases — even if 3 or 4
standard deviation units above background levels — would have little chance of being detected, while
the time it took for more readily-identified levels of the slower constituent to arrive at compliance wells
might be too long to be environmentally protective. Statistical power results should be reported
separately, so that the effectiveness of each distinct test can be adequately judged. Further data-specific
power evaluations could still be necessary to identify the appropriate test(s).

The following basic steps are recommended for assessing effective power at sites using multiple
statistical methods:

1.  Determine the number and assortment of distinct statistical tests. Different power characteristics
may be exhibited by different statistical techniques. Specific control charts, t-tests, non-
parametric prediction limits, etc. all tend to vary in their performance. The performance of a
given technique is also strongly affected by the data characteristics. Background sample sizes,
interwell versus intrawell choices, the number of retests and type of retesting plan, etc., all affect
statistical power. Each distinct data configuration and retesting plan will delineate a slightly
different statistical test method.
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2. Once the various methods have been identified, gauge the effective power of each.® Often the
easiest way to measure power is via Monte Carlo simulation. Effective power involves a single
well-constituent pair, so the simulation needs to incorporate only one population of background
measurements representing the baseline condition and one population of compliance point
measurements.

3. Torun a Monte Carlo simulation, repeat the following algorithm a large number of times (e.g., N
= 10,000). Randomly generate a set of measurements from the background population in order to
compute either a comparison limit for a control chart or some type of prediction limit test, or the
background portion for a t-test or Wilcoxon rank-sum calculation, etc. Then generate compliance
point samples at successively higher mean concentration levels, representing increases in
standard deviation units above the baseline average. Perform each distinct test on the simulated
data, recording the result of each iteration. By determining how frequently the concentration
increase is identified at each successive mean level (including retests if necessary), the effective
power for each distinct method can be estimated and compared.

» EXAMPLE 6-4

As a simple example of measuring effective power, consider a site using two different statistical
methods. Assume that most of the constituents will be tested interwell with a 1-of-3 parametric normal
prediction limit retesting plan for individual observations (Chapter 19). The remaining constituents
having low detection rates and small well sample sizes will be tested intrawell with a Wilcoxon rank-
sum test.

To measure the effective power of the normal prediction limits, note that the same number of
background measurements (n = 30) is likely to be available for each of the relevant constituents. Since
the per-constituent false positive rate (a,;) and the number of monitored wells (w) will also be identical
for these chemicals, the same k multiplier can be used for each prediction limit, despite the fact that the
background mean and standard deviation will almost certainly vary by constituent.

Because of these identical data and well configurations, the effective power of each normal
prediction limit will also be the same,™ so that only one prediction limit test need be simulated. It is
sufficient to assume the background population has a standard normal distribution. The compliance
point population at the single contaminated well also has a normal distribution with the same standard
deviation but a mean (u) shifted upward to reflect successive relative concentration increases of 1
standard deviation, 2 standard deviations, 3 standard deviations, etc.

Simulate the power by conducting a large number of iterations (e.g., N = 10,000-20,000) of the
following algorithm: Generate 30 random observations from background and compute the sample mean

19 Since power is a property of the statistical method and not linked to a specific data set, power curves are not needed for all
well-constituent pairs, but only for each distinct statistical method. For instance, if intrawell prediction limits are employed
to monitor barium at 10 compliance wells and the intrawell background sample size is the same for each well, only one
power curve needs to be created for this group of tests.

11 Statistical power measures the likely performance of the technique used to analyze the data, and is not a statement about the
data themselves.
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and standard deviation. Calculate the prediction limit by adding the background mean to k times the
background standard deviation. For a 1-of-3 retesting plan, generate 3 values from the compliance point
distribution (i.e., a normal distribution with unit standard deviation but mean equal to w). If the first of
these measurements does not exceed the prediction limit, record a score of zero and move on to the next
iteration. If, however, the first value is an exceedance, test the second value and possibly the third. If
either resample does not exceed the prediction limit, record a score of zero and move to the next
iteration. But if both resamples are also exceedances, record a score of one. The fraction of iterations (N)
with scores equal to one is an estimate of the effective power at a concentration level of p standard
deviations above the baseline.

In the case of the intrawell Wilcoxon rank-sum test, the power will depend on the number of
intrawell background samples available at each well and for each constituent.** Assume for purposes of
the example that all the intrawell background sizes are the same with n = 6 and that two new
measurements will be collected at each well during the evaluation period. The power will also depend on
the frequency of non-detects in the underlying groundwater population. To simulate this aspect of the
distribution for each separate constituent, estimate the proportion (p) of observed non-detects across a
series of wells. Then set a RL for purposes of the simulation equal to zg, the pth quantile of the standard
normal distribution.

Finally, simulate the effective power by repeating a large number of iterations of the following
algorithm: Generate n = 6 samples from a standard normal distribution to represent intrawell
background. Also generate two samples from a normal distribution with unit standard deviation and
mean equal to p to represent new compliance point measurements from a distribution with mean level
equal to p standard deviations above background. Classify any values as non-detects that fall below zg.
Then jointly rank the background and compliance values and compute the Wilcoxon rank-sum test
statistic, making any necessary adjustments for ties (e.g., the non-detects). If this test statistic exceeds its
critical value, record a score of one for the iteration. If not, record a score of zero. Again estimate the
effective power at mean concentration level u as the proportion of iterations (N) with scores of one.

As a last step, examine the effective power for each of the two techniques. As long as the power
curves of the normal prediction limit and the Wilcoxon rank-sum test both meet the criteria of the
ERPCs, the statistical program taken as a whole should provide acceptable power. <

12 Technically, since the Wilcoxon rank-sum test will often be applied to non-normal data, power will also depend
fundamentally on the true underlying distribution at the compliance well. Since there may be no way to determine this
distribution, approximate power is measured by assuming the underlying distribution is instead normal.
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6.3 HOW KEY ASSUMPTIONS IMPACT STATISTICAL DESIGN
6.3.1 STATISTICAL INDEPENDENCE
IMPORTANCE OF INDEPENDENT, RANDOM MEASUREMENTS

Whether a facility is in detection monitoring, compliance/assessment, or corrective action, having
an appropriate and valid sampling program is critical. All statistical procedures infer information about
the underlying population from the observed sample measurements. Since these populations are only
sampled a few times a year, observations should be carefully chosen to provide accurate information
about the underlying population.

As discussed in Chapter 3, the mathematical theory behind standard statistical tests assumes that
samples were randomly obtained from the underlying population. This is necessary to insure that the
measurements are independent and identically distributed [i.i.d.]). Random sampling means that each
possible concentration value in the population has an equal or known chance of being selected any time
a measurement is taken. Only random sampling guarantees with sufficiently high probability that a set of
measurements is adequately representative of the underlying population. It also ensures that human
judgment will not bias the sample results, whether by intention or accident.

A number of factors make classical random sampling of groundwater virtually impossible. A
typical small number of wells represent only a very small portion of an entire well-field. Wells are
screened at specific depths and combine potentially different horizontal and vertical flow regimes. Only
a minute portion of flow that passes a well is actually sampled. Sampling normally occurs at fixed
schedules, not randomly.

Since a typical aquifer cannot be sampled at random, certain assumptions are made concerning the
data from the available wells. It is first assumed that the selected well locations will generate
concentration data similar to a randomly distributed set of wells. Secondly, it is assumed that
groundwater flowing through the well screen(s) has a concentration distribution identical to the aquifer
as a whole. This second assumption is unlikely to be valid unless groundwater is flowing through the
aquifer at a pace fast enough and in such a way as to allow adequate mixing of the distinct water
volumes over a relatively short (e.g., every few months or so) period of time, so that groundwater
concentrations seen at an existing well could also have been observed at other possible well locations.

Adequate sampling of aquifer concentration distributions cannot be accomplished unless enough
time elapses between sampling events to allow different portions of the aquifer to pass through the well
screen.  Most closely-spaced sampling events will tend to exhibit a statistical dependence
(autocorrelation). This means that pairs of consecutive measurements taken in a series will be positively
correlated, exhibiting a stronger similarity in concentration levels than expected from pairs collected at
random times. This would be particularly true for overall water quality indicators which are continuous
throughout an aquifer and only vary slowly with time.

Another form of statistical dependence is spatial correlation. Groundwater concentrations of
certain constituents exhibit natural spatial variability, i.e., a distribution that varies depending on the
location of the sampling coordinates. Spatially variable constituents exhibit mean and occasionally
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variance differences from one well to another. Pairs of spatially variable measurements collected from
the same or nearby locations exhibit greater similarity than those collected from distinct, widely-spaced,
or distant wells.

Natural spatial variability can result from a number of geologic and hydrological processes,
including varying soil composition across an aquifer. Various geochemical, diffusion, and adsorption
processes may dominate depending on the specific locations being measured. Differential flow paths
can also impact the spatial distribution of contaminants in groundwater, especially if there is limited
mixing of distinct groundwater volumes over the period of sampling.

An adequate groundwater monitoring sampling program needs to account for not only site-specific
factors such as hydrologic characteristics, projected flow rates, and directional patterns, but also meeting
data assumptions such as independence. Statistical adjustments are necessary, such as selecting
intrawell comparisons for spatially distinct wells or removing autocorrelation effects in the case of time
dependence.

DARCY’S EQUATION AND AUTOCORRELATION

Past EPA guidance recommended the use of Darcy’s equation as a means of establishing a
minimum time interval between samples. When validly applied as a basic estimate of groundwater
travel time in a given aquifer, the Darcy equation ensures that separate volumes of groundwater are
being sampled (i.e., physical independence). This increases the probability that the samples will also be
statistically independent.

The Unified Guidance in Chapter 14 also includes a discussion on applying Darcy’s equation.
Caution is advised in its use, however, since Darcy’s equation cannot guarantee temporal independence.
Groundwater travel time is only one factor that can influence the temporal pattern of aquifer
constituents. The measurement process itself can affect time related dependency. An imprecise
analytical method might impart enough additional variability to make the measurements essentially
uncorrelated even in a short sampling interval. Changes in analytical methods or laboratories and even
periodic re-calibration of analytical instrumentation can impart time-related dependencies in a data set
regardless of the time intervals between samples.

The overriding interest is in the behavior of chemical contaminants in groundwater, not the
groundwater itself. Many chemical compounds do not travel at the same velocity as groundwater.
Chemical characteristics such as adsorptive potential, specific gravity, and molecular size can influence
the way chemicals move in the subsurface. Large molecules, for example, will tend to travel slower than
the average linear velocity of groundwater because of matrix interactions. Compounds that exhibit a
strong adsorptive potential will undergo a similar fate, dramatically changing time of travel predictions
using the Darcy equation. In some cases, chemical interaction with the matrix material will alter the
matrix structure and its associated hydraulic conductivity and may result in an increase in contaminant
mobility. This last effect has been observed, for instance, with certain organic solvents in clay units (see
Brown and Andersen, 1981).

The Darcy equation is also not valid in turbulent and non-linear laminar flow regimes. Examples of
these particular hydrological environments include karst and ‘pseudo-karst’ (e.g., cavernous basalt and
extensively fractured rock) formations. Specialized methods have been investigated by Quinlan (1989)
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for developing alternative monitoring procedures. Dye tracing as described by Quinlan (1989) and Mull,
et al. (1988) can be useful for identifying flow paths and travel times in these two particular
environments; conventional groundwater monitoring wells are often of little value in designing an
effective monitoring system in these type of environments.

Thus, we suggest that Darcy’s equation not be exclusively relied upon to gauge statistical sampling
frequency. At many sites, quarterly or semi-annual sampling often provides a reasonable balance
between maintaining statistical independence among observations yet enabling early detection of
groundwater problems. The Unified Guidance recommends three tools to explore or test for time-related
dependence among groundwater measurements. Time series plots (Chapter 9) can be constructed on
multiple wells to examine whether there is a time-related dependence in the pattern of concentrations.
Parallel traces on such a plot may indicate correlation across wells as part of a natural temporal, seasonal
or induced laboratory effect. For longer data series, direct estimates of the autocorrelation in a series of
measurements from a single well can be made using either the sample autocorrelation function or the
rank von Neumann ratio (Section 14.2).

DATA MIXTURES INCLUDING ALIQUOT REPLICATE SAMPLES

Some facility data sets may contain both single and aliquot replicate groundwater measurements
such as duplicate splits. An entire data set may also consist of aliquot replicates from a number of
independent water quality samples. The guidance recommends against using aliquot data directly in
detection monitoring tests, since they are almost never statistically independent. Significant positive
correlation almost always exists between such duplicate samples or among aliquot sets. However, it is
still possible to utilize some of the aliquot information within a larger water quality data set.

Lab duplicates and field splits can provide valuable information about the level of measurement
variability attributable to sampling and/or analytical techniques. However, to use them as separate
observations in a prediction limit, control chart, analysis of variance [ANOVA] or other procedure, the
test must be specially structured to account for multiple data values per sampling event.

Barring the use of these more complicated methods, one suggested strategy has been to simply
average each set of field splits and lab duplicates and treat the resulting mean as a single observation in
the overall data set. Despite eliminating the dependence between field splits and/or lab duplicates, such
averaging is not an ideal solution. The variability in means of two correlated measurements is
approximately 30% less than the variability associated with two single independent measurements. If a
data set consists of a mixture of single measurements and lab duplicates and/or field splits, the
variability of the averaged values will be less than the variability of the single measurements. This
would imply that the final data set is not identically distributed.

When data are not identically distributed, the actual false positive and false negative rates of
statistical tests may be higher or lower than expected. The effect of mixing single measurements and
averaged aliquot replicates might be balanced out in a two-sample t-test if sample sizes are roughly
equal. However, the impact of non-identically distributed data can be substantial for an upper prediction
limit test of a future single sample where the background sample includes a mixture of aliquot replicates
and single measurements. Background variability will be underestimated, resulting in a lowered
prediction limit and a higher false positive rate.
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One statistically defensible but expensive approach is to perform the same number of aliquot
replicate measurements on all physical samples collected from background and compliance wells.
Aliquot replicates can be averaged, and the same variance reduction will occur in all the final
observations. The statistical test degrees of freedom, however, are based on the number of independent,
averaged samples.

Mixing single and averaged aliquot data is a serious problem if the component of variability due to
field sampling methods and laboratory measurement error is a substantial fraction of the overall sample
variance. When natural variability in groundwater concentrations is the largest component, averaging
aliquot replicate measurements will do little to weaken the assumption of identically-distributed data.
Even when variability due to sampling and analytical methods is a large component of the total variance,
if the percentage of samples with aliquot replicate measurements is fairly small (say, 10% or less), the
impact of aliquot replicate averaging should usually be negligible. However, consultation with a
professional statistician is recommended.

The simplest alternative is to randomly select one value from each aliquot replicate set along with
all non-replicate individual measurements, for use in statistical testing. Either this approach or the
averaged replicate method described above will result in smaller degrees of freedom than the strategy of
using all the aliquots, and will more accurately reflect the statistical properties of the data.

CORRECTING FOR TEMPORAL CORRELATION

The Unified Guidance recommends two general methods to correct for observable temporal
correlation. Darcy’s equation is mentioned above as a rough guide to physical independence of
consecutive groundwater observations. A more generally applicable strategy for yet-to-be-collected
measurements involves adjusting the sampling frequency to avoid autocorrelation in consecutive
sampling events. Where autocorrelation is a serious concern, the Unified Guidance recommends
running a pilot study at two or three wells and analyzing the study data by using the sample
autocorrelation function (Section 14.3.1). The autocorrelation function plots the strength of correlation
between consecutive measurements against the time lag between sampling events. When the
autocorrelation becomes insignificantly different from zero at a particular sampling interval, the
corresponding sampling frequency is the maximum that will ensure uncorrelated sampling events.

Two other strategies are recommended for adjusting already collected data. First, a longer data
series at a single well can be corrected for seasonality by estimating and removing the seasonal trend
(Section 14.3.3). If both a linear trend and seasonal fluctuations are evident, the seasonal Mann-Kendall
trend test can be run to identify the trend despite the seasonal effects (Section 14.3.4). A second strategy
is for sites where a temporal effect (e.g., temporal dependence, seasonality) is apparent across multiple
wells. This involves estimating a temporal effect via a one-way ANOVA and then creating adjusted
measurements using the ANOVA residuals (Section 14.3.3). The adjusted data can then be utilized in
subsequent statistical procedures.
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6.3.2 SPATIAL VARIATION: INTERWELL VS. INTRAWELL TESTING
ASSUMPTIONS IN BACKGROUND-TO-DOWNGRADIENT COMPARISONS

The RCRA groundwater monitoring regulations initially presume that detection monitoring
background can be defined on the basis of a definable groundwater gradient. In a considerable number of
situations, this approach is problematic. No groundwater gradient may be measurable for identifying
upgradient and downgradient well locations around a regulated unit. The hydraulic gradient may change
in direction, depth or magnitude due to seasonal fluctuations. Groundwater mounding or other flow
anomalies can occur. At most locations, significant spatial variability among wells exists for certain
constituents. Where spatial variation is a natural artifact of the site-specific geochemistry, differences
between upgradient and downgradient wells are unrelated to on-site waste management practices.

Both the Subtitle C and Subtitle D RCRA regulations allow for a determination that background
quality may include sampling of wells not hydraulically upgradient of the waste management area. The
rules recognize that this can occur either when hydrological information is unable to indicate which
wells are hydraulically upgradient or when sampling other wells will be “representative or more
representative than that provided by the upgradient wells.”

For upgradient-to-downgradient well comparisons, a crucial detection monitoring assumption is
that downgradient well changes in groundwater quality are only caused by on-site waste management
activity. Up- and down-gradient well measurements are also assumed to be comparable and equal on
average unless some waste-related change occurs. If other factors trigger significant increases in
downgradient well locations, it may be very difficult to pinpoint the monitored unit as the source or
cause of the contaminated groundwater.

Several other critical assumptions apply to the interwell approach. It is assumed that the
upgradient and downgradient well samples are drawn from the same aquifer and that wells are screened
at essentially the same hydrostratigraphic position. At some sites, more than one aquifer underlies the
waste site or landfill, separated by confining layers of clay or other less permeable material. The fate
and transport characteristics of groundwater contaminants likely will differ in each aquifer, resulting in
unique concentration patterns. Consequently, upgradient and downgradient observations may not be
comparable (i.e., drawn from the same statistical population).

Another assumption is that groundwater flows in a definable pathway from upgradient to
downgradient wells beneath the regulated unit. If flow paths are incorrectly determined or this does not
occur, statistical comparisons can be invalidated. For example, a real release may be occurring at a site
known to have groundwater mounding beneath the monitored unit. Since the groundwater may move
towards both the downgradient and upgradient wells, it may not be possible to detect the release if both
sets of wells become equally or similarly contaminated. One exception to this might occur if certain
analytes are shown to exhibit uniform behavior in both historical upgradient and downgradient wells
(e.g., certain infrequently detected trace elements). As long as the flow pathway from the unit to the
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downgradient wells is assured, then an interwell test based on this combined background could still
reflect a real exceedance in the downgradient wells.™

Groundwater flow should also move at a sufficient velocity beneath the site, so that the same
groundwater observed at upgradient well locations is subsequently monitored at downgradient wells in
the course of an evaluation period (e.g., six months or a year). If groundwater flow is much slower,
measurements from upgradient and downgradient wells may be more akin to samples from two separate
aquifers. Extraneous factors may separately influence the downgradient and background populations,
confusing the determination of whether or not a release has occurred.

While statistical testing can determine whether there are significant differences between upgradient
and downgradient well measurements, it cannot determine why such differences exist. That is primarily
the concern of a hydrologist who has carefully reviewed site-specific factors. Downgradient
concentrations may be greater than background because contamination of the underlying aquifer has
occurred. The increase may be due to other factors, including spatially variable concentration levels
attributable to changing soil composition and geochemistry from one well location to another. It could
also be due to the migration of contaminants from off-site sources reaching downgradient wells. These
and other factors (including those summarized in Chapter 4 on SSI Increases) should be considered
before deciding that statistically significant background-to-downgradient differences represent site-
related contamination.

An example of how background-to-downgradient well differences can be misleading is illustrated
in Figure 6-4 below. At this Eastern coastal site, a Subtitle D landfill was located just off a coastal river
emptying into the Atlantic Ocean a short distance downstream. Tests of specific conductance
measurements comparing the single upgradient well to downgradient well data indicated significant
increases at all downgradient wells, with one well indicating levels more than an order of magnitude
higher than background concentrations.

Based on this analysis, it was initially concluded that waste management activities at the landfill
had impacted groundwater. However, further hydrologic investigation showed that nearby river water
also exhibited elevated levels of specific conductance, even higher than measurements at the
downgradient wells. Tidal fluctuations and changes in river discharge caused sea water to periodically
mix with the coastal river water at a location near the downgradient wells. Mixed river and sea water
apparently seeped into the aquifer, impacting downgradient wells but not at the upgradient location. An
off-site source as opposed to the landfill itself was likely responsible for the observed elevations in
specific conductance. Without this additional hydrological information, the naive statistical comparison
between upgradient and downgradient wells would have reached an incorrect conclusion.

3 The same would be true of the "never-detected" constituent comparison, which does not depend on the overall flow
pathway from upgradient to downgradient wells.
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Figure 6-4. Landfill Site Configuration
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TRADEOFFS IN INTERWELL AND INTRAWELL APPROACHES

The choice between interwell and intrawell testing primarily depends on the statistical
characteristics of individual constituent data behavior in background wells. It is presumed that a
thorough background study described in Chapter 5 has been completed. This involves selecting the
constituents deemed appropriate for detection monitoring, identifying distributional characteristics, and
evaluating the constituent data for trends, stationarity, and mean spatial variability among wells.
ANOVA tests can be used to assess both well mean spatial variability and the potential for pooled-
variance estimates if an intrawell approach is needed.

As discussed in Chapter 5, certain classes of potential monitoring constituents are more likely to
exhibit spatial variation. Water quality indicator parameters are quite frequently spatially variable.
Some authors, notably Davis and McNichols (1994) and Gibbons (1994a), have suggested that
significant spatial variation is a nearly ubiquitous feature at RCRA-regulated landfills and hazardous
waste sites, thus invalidating the use of interwell test methods. The Unified Guidance accepts that
interwell tests still have an important role in groundwater monitoring, particularly for certain classes of
constituents like non-naturally occurring VOCs and some trace elements. Many sites may best be served
by a statistical program which combines interwell and intrawell procedures.

Intrawell testing is an appropriate and recommended alternative strategy for many constituents.
Well-specific backgrounds afford intrawell tests certain advantages over the interwell approach. One
key advantage is confounding results due to spatial variability are eliminated, since all data used in an
intrawell test are obtained from a single location. If natural background levels change substantially from
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one well to the next, intrawell background provides the most accurate baseline for use in statistical
comparisons.

At times, the variability in a set of upgradient background measurements pooled from multiple
wells can be larger than the variation in individual intrawell background wells. Particularly if not
checked with ANOVA well mean testing, interwell variability could substantially increase if changes in
mean levels from one location to the next are also incorporated. While pooling should not occur among
well means determined to be significantly different using ANOVA, a more likely situation is that pooled
well true means and variance may be slightly different at each well. The ANOVA test might still
conclude that the mean differences were insignificant and satisfy the equal variance assumption. The net
result (as explained below) is that intrawell tests can be more statistically powerful than comparable
interwell tests using upgradient background, despite employing a smaller background sample size.

Another advantage using intrawell background is that a reasonable baseline for tests of future
observations can be established at historically contaminated wells. In this case, the intrawell background
can be used to track the onset of even more extensive contamination in the future. Some compliance
monitoring wells exhibit chronic elevated contaminant levels (e.g., arsenic) considerably above other site
wells which may not be clearly attributed to a regulated unit release. The regulatory agency has the
option of continuing detection monitoring or changing to compliance/corrective action monitoring.
Unless the agency has already determined that the pre-existing contamination is subject to compliance
monitoring or remedial action under RCRA, the detection monitoring option would be to test for recent
or future concentration increases above the historical contamination levels by using intrawell
background as a well-specific baseline.

Intrawell tests are not preferable for all groundwater monitoring scenarios. It may be unclear
whether a given compliance well was historically contaminated prior to being regulated or more recently
contaminated. Using intrawell background to set a baseline of comparison may ignore recent
contamination subject to compliance testing and/or remedial action. Even more contamination in the
future would then be required to trigger a statistically significant increase [SSI] using the intrawell test.
The Unified Guidance recommends the use of intrawell testing only when it is clear that spatial
variability is not the result of recent contamination attributable to the regulated unit.

A second concern is that intrawell tests typically utilize a smaller set of background data than
interwell methods. Since statistical power depends significantly on background sample size, it may be
more difficult to achieve comparable statistical power with intrawell tests than with interwell methods.
For the latter, background data can be collected from multiple wells when appropriate, forming a larger
pool of measurements than would be available at a single well. However, it may also be possible to
enhance intrawell sample sizes for parametric tests using the pooled- variance approach.

Traditional interwell tests can be appropriate for certain constituents if the hydraulic assumptions
discussed earlier are verified and there is no evidence of significant spatial variability. Background data
from other historical compliance wells not significantly different from upgradient wells using ANOVA
may also be used in some cases. When these conditions are met, interwell tests can be preferable as
generally more powerful tests. Upgradient groundwater quality can then be more easily monitored in
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parallel to downgradient locations. Such upgradient monitoring can signal changes in natural in-situ
concentrations or possible migration from off-site sources. *

For most situations, the background constituent data patterns will determine which option is most
feasible. Clear indications of spatially distinct well means through ANOVA testing will necessitate
some form of intrawell methods. Further choices are then which type of statistical testing will provide
the best power.

It may be possible to increase the effective sample size associated with a series of intrawell tests.
As explained in Chapters 13 & 19, the x-multipliers for intrawell prediction limits primarily depend on
the number of background measurements used to estimate the standard deviation. It is first necessary to
determine that the intrawell background in a series of compliance wells is both uncontaminated and
exhibits similar levels of variability from well to well. Background data from these wells can then be
combined to form a pooled intrawell standard deviation estimate with larger degrees of freedom, even
though individual well means vary. A transformation may be needed to stabilize the well-to-well
variances. If one or more of the compliance wells is already contaminated, these should not be mixed
with uncontaminated well data in obtaining the pooled standard deviation estimate.

A site-wide constituent pattern of no significant spatial variation will generally favor the
interwell testing approach. But given the potential for hydrological and other issues discussed above,
further evaluation of intrawell methods may be appropriate. Example 6-2 provided an illustration of a
specific intrawell constituent having a lower absolute standard deviation than an interwell pooled data
set, and hence greater relative and absolute power. In making such an interwell-intrawell comparison,
the specific test and all necessary design inputs must be considered. Even if a given intrawell data set
has a low background standard deviation compared to an interwell counterpart, the advantage in absolute
terms over the relative power approach will change with differing design inputs. The simplest way to
determine if the intrawell approach might be advantageous is to calculate the actual background limits of
a potential test using existing intra- and inter-well data sets. In a given prediction limit test, for example,
the actual lower limit will determine the more powerful test.

If desired, approximate data-based power curves (Section 6.2.4) can be constructed to evaluate
absolute power over a range of concentration level increases. In practice, the method for comparing
interwell versus intrawell testing strategies with the same well-constituent pair involves the following
basic steps:

1. Given the interwell background sample size (niner), the statistical test method (including any
retesting), and the individual per-test o for that well-constituent pair, compute or simulate the
relative power of the test at multiples of ksjnr above the baseline mean level. Let k range from 0
to 5 in increments of 0.5, where the interwell population standard deviation (Giner) has been
replaced by the sample background standard deviation (Sinter)-

Y The same can be accomplished via intrawell methods if upgradient wells continue to be sampled along with required
compliance well locations. Continued tracking of upgradient background groundwater quality is recommended regardless
of the testing strategy.
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2. Repeat Step 1 for the intrawell test. Use the intrawell background sample size (ninya), Statistical
test method, background sample standard deviation (Sintra), and the same individual per-test o to
generate a relative power curve.

3. On the same graph, plot overlays of the estimated data-based interwell and intrawell power
curves (as discussed in Section 6.2.4). Use the same range of (absolute, not relative)
concentration increases over baseline along the horizontal axis.

4. Visually inspect the data-based power curves to determine which method offers better power
over a wider range of possible concentration increases.

The Unified Guidance recommends that users apply the most powerful statistical methods
available in detecting and identifying contaminant releases for each well-constituent pair. The ERPC
identifies a minimum acceptable standard for judging the relative power of particular tests. However,
more powerful methods based on absolute power may be considered preferable in certain circumstances.

As a final concern, very small individual well samples in the early stages of a monitoring program
may make it difficult to utilize an intrawell method having both sufficient statistical power and meeting
false positive design criteria. One option would be to temporarily defer tests on those well-constituent
pairs until additional background observations can be collected. A second option is to use the intrawell
approach despite its inadequate power, until the intrawell background is sufficiently large via periodic
updates (Chapter 5). A third option might be to use a more powerful intrawell test (e.g., a higher order
1-of-m parametric or non-parametric prediction limit test). Once background is increased, a lower order
test might suffice. Depending on the type of tests, some control of power may be lost (parametric) or the
false positive (non-parametric tests). These tradeoffs are considered more fully in Chapter 19. For the
first two options and the parametric test under the third option, there is some added risk that a release
occurring during the period of additional data collection might be missed. For the non-parametric test
under the third option, there is an increased risk of a true false positive error. Any of these options might
be included as special permit conditions.

6.3.3 OUTLIERS

Evaluation of outliers should begin with historical upgradient and possibly compliance well data
considered for defining initial background, as described in Chapter 5, Section 5.2.3. The key goal is to
select the data most representative of near-term and likely future background. Potentially discrepant or
unusual values can occur for many reasons including 1) a contaminant release that significantly impacts
measurements at compliance wells; 2) true but extreme background groundwater measurements, 3)
inconsistent sampling or analytical chemistry methodology resulting in laboratory contamination or other
anomalies; and 4) errors in the transcription of data values or decimal points. While the first two
conditions may appear to be discrepant values, they would not be considered outliers.

When appraising extensive background data sets with long periods of acquisition and somewhat
uncertain quality, it is recommended that a formal statistical evaluation of outliers not be conducted until
a thorough review of data quality (errors, etc.) has been performed. Changes in analytical
methodologies, the presence of sample interferences or dilutions can affect the historical data record.
Past and current treatment of non-detects should also be investigated, including whether there are
multiple reporting limits in the data base. Left-censored values can impact whether or not the sample
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appears normal (Chapter 15), especially if the data need to be normalized via a transformation.
Techniques for evaluating censored data should be considered, especially those which can properly
account for multiple RLs. Censored probability plots (Chapter 15) or quasi-nonparametric box plots
(Chapter 12) adapted by John Tukey (1977) can be used as methods to screen for outliers.

The guidance also recommends that statistical testing of potential outliers also be performed on
initial background data, including historical compliance well data potentially considered as additional
background data. Recognizing the potential risks as discussed in Chapter 5, removal of significant
outliers may be appropriate even if no probable error or discrepancy can be firmly identified. The risk is
that high values registering as statistical outliers may reflect an extreme, but real value from the
background population rather than a true outlier, thereby increasing the likelihood of a false positive
error. But the effect of removing outliers from the background data will usually be to improve the odds
of detecting upward changes in concentration levels at compliance wells, and thus providing further
protection of human health and the environment. Automated screening and removal of background data
for statistical outliers is not recommended without some consideration of the likelihood of an outlier
error.

A statistical outlier is defined as a value originating from a different statistical population than the
rest of the sample. OQutliers or observations not derived from the same population as the rest of the
sample violate the basic statistical assumption of identically-distributed measurements. If an outlier is
suspected, an initial helpful step is to construct a probability plot of the ordered sample data versus the
standardized normal distribution (Chapter 12). A probability plot is designed to judge whether the
sample data are consistent with a normal population model. If the data can be normalized, a probability
plot of the transformed observations should also be constructed. Neither is a formal test, but can still
provide important visual evidence as to whether the suspected outlier(s) should be further evaluated.

Formal testing for outliers should be done only if an observation seems particularly high compared
to the rest of the sample. The data can be evaluated with either Dixon’s or Rosner’s tests (Chapter 12).
These outlier tests assume that the rest of the data except for the suspect observation(s), are normally-
distributed (Barnett and Lewis, 1994). It is recommended that tests also be conducted on transformed
data, if the original data indicates one or more potential outliers. Lognormal and other skewed
distributions can exhibit apparently elevated values in the original concentration domain, but still be
statistically indistinguishable when normalized via a transformation. If the latter is the case, the outlier
should be retained and the data set treated as fitting the transformed distribution.

Future background and compliance well data may also be periodically tested for outliers.
However, removal of outliers should only take place under certain conditions, since a true elevated value
may fit the pattern of a release or a change in historical background conditions. If either Dixon’s or
Rosner’s test identifies an observation as a statistical outlier, the measurement should not be treated as
such until a specific physical reason for the abnormal value can be determined. Valid reasons might
include contaminated sampling equipment, laboratory contamination of the sample, errors in
transcription of the data values, etc. Records documenting the sampling and analysis of the measurement
(i.e., the “chain of custody”) should be thoroughly investigated. Based on this review, one of several
actions might be taken as a general rule:
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% If an error in transcription, dilution, analytical procedure, etc. can be identified and the correct
value recovered, the observation should be replaced by its corrected value and further statistical
analysis done with the corrected value.

¢ If it can shown that the observation is in error but the correct value cannot be determined, the
observation should be removed from the data set and further statistical analysis performed on the
reduced data set. The fact that the observation was removed and the reason for its removal should
be documented when reporting results of the analysis.

% If no error in the value can be documented, it should be assumed that the observation is a true but
extreme value. In this case, it should not be altered or removed. However, it may helpful to
obtain another observation in order to verify or confirm the initial measurement.

6.3.4 NON-DETECTS

Statistically, non-detects are considered ‘left-censored’ measurements because the concentration of
any non-detect is known or assumed only to fall within a certain range of concentration values (e.g.,
between 0 and the RL). The direct estimate has been censored by limitations of the measurement process
or analytical technique.

As noted, non-detect values can affect evaluations of potential outliers. Non-detects and detection
frequency also impact what detection monitoring tests are appropriate for a given constituent. A low
detection frequency makes it difficult to implement parametric statistical tests, since it may not be
possible to determine if the underlying population is normal or can be normalized. Higher detection
frequencies offer more options, including simple substitution or estimating the mean and standard
deviation of samples containing non-detects by means of a censored estimation technique (Chapter 15).

Estimates of the background mean and standard deviation are needed to construct parametric
prediction and control chart limits, as well as confidence intervals. If simple substitution is appropriate,
imputed values for individual non-detects can be used as an alternate way to construct mean and
standard deviation estimates. These estimates are also needed to update the cumulative sum [CUSUM]
portion of control charts or to compute means of order p compared against prediction limits.

Simple substitution is not recommended in the Unified Guidance unless no more than 10-15% of
the sample observations are non-detect. In those circumstances, substituting half the RL for each non-
detect is not likely to substantially impact the results of statistical testing. Censored estimation
techniques like Kaplan-Meier or robust regression on order statistics [ROS] are recommended any time
the detection frequency is no less than 50% (see Chapter 15).

For lower detection frequencies, non-parametric tests are recommended. Non-parametric
prediction limits (Chapter 18) can be constructed as an alternative to parametric prediction limits or
control charts. The Tarone-Ware two-sample test (Chapter 16) is specifically designed to accommodate
non-detects and serves as an alternative to the t-test. By the same token, the Kruskal-Wallis test
(Chapter 17) is a non-parametric, rank-based alternative to the parametric ANOVA. These latter tests
can be used when the non-detects and detects can be jointly sorted and partially ordered (except for tied
values).
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When all data are non-detect, the Double Quantification rule (Section 6.2.2) can be used to define
an approximate non-parametric prediction limit, with the RL as an upper bound. Before doing this, it
should be determined whether chemicals never or not recently detected in groundwater should even be
formally tested. This will depend on whether the monitored constituent from a large analytical suite is
likely to originate in the waste or leachate.

Even if a data set contains only a small proportion of non-detects, care should be taken when
choosing between the method detection limit [MDL], the quantification limit [QL], and the RL in
characterizing ‘non-detect’ concentrations. Many non-detects are reported with one of three data
qualifier flags: “U,” “J,” or “E.” Samples with a U data qualifier represent ‘undetected’ measurements,
meaning that the signal characteristic of that analyte could not be observed or distinguished from
‘background noise’ during lab analysis. Inorganic samples with an E flag and organic samples with a J
flag may or may not be reported with an estimated concentration. If no concentration estimate is
reported, these samples represent ‘detected, but not quantified” measurements. In this case, the actual
concentration is assumed to be positive, falling somewhere between zero and the QL or possibly the RL.

Since the actual concentration is unknown, the suggested imputation when using simple
substitution is to replace each non-detect having a qualifier of E or J by one-half the RL. Note, however,
that E and J samples reported with estimated concentrations should be treated as valid measurements for
statistical purposes. Substitution of one-half the RL is not recommended for these measurements, even
though the degree of uncertainty associated with the estimated concentration is probably greater than that
associated with measurements above the RL.

As a general rule, non-detect concentrations should not be assumed to be bounded above by the
MDL. The MDL is usually estimated on the basis of ideal laboratory conditions with physical analyte
samples that may or may not account for matrix or other interferences encountered when analyzing
specific field samples. For certain trace element analytical methods, individual laboratories may report
detectable limits closer to an MDL than a nominal QL. So long as the laboratory has confidence in the
ability to quantify at its lab- or occasionally event-specific detection level, this RL may also be
satisfactory. The RL should typically be taken as a more reasonable upper bound for non-detects when
imputing estimated concentration values to these measurements.

RLs are sometimes but not always equivalent to a particular laboratory¥ QLs. While analytical
techniques may change and improve over time leading to a lowering of the achievable QL, a
contractually negotiated RL might be much higher. Often a multiplicative factor is built into the RL to
protect a contract lab against particular liabilities. A good practice is to periodically review a given
laboratory’s capabilities and to encourage reporting non-detects with actual QLs whenever possible, and
providing standard qualifiers with all data measurements as well as estimated concentrations for E- and
J-flagged samples.

Even when no estimate of concentration can be made, a lab should regularly report the distinction
between ‘undetected’ and ‘detected, but not quantified’ non-detect measurements. Data sets with such
delineations can be used to advantage in rank-based non-parametric procedures. Rather than assigning
the same tied rank to all non-detects (Chapter 16), ‘detected but not quantified” measurements should
be given larger ranks than those assigned to ‘undetected’” samples. These two types of non-detects should
be treated as two distinct groups of tied observations for use in the non-parametric Wilcoxon rank-sum
procedure.
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6.4 DESIGNING DETECTION MONITORING TESTS

In the following sections, the main formal detection monitoring tests covered in this guidance are
described in the context of site design choices. Advantages as well as limitations are presented,
including the use of certain methods as diagnostic tools in determining the appropriate formal test(s).

6.4.1 T-TESTS

A statistical comparison between two sets of data is known as a two-sample test. When normality
of the sample data can be presumed, the parametric Student t-test is commonly used (Section 16.1). This
test compares two distinct populations, represented by two samples. These samples can either be
individual well data sets, or a common pooled background versus individual compliance well data. The
basic goal of the t-test is to determine whether there is any statistically significant difference between the
two population means. Regulatory requirements for formal use of two-sample t-tests are limited to the
Part 265 indicator parameters, and have generally been superseded in the Parts 264 and 258 rules by tests
which can account for multiple comparisons.

When the sample data are non-normal and may contain non-detects, the Unified Guidance provides
alternative two-sample tests to the parametric t-test. The Wilcoxon rank-sum test (Section 16.2) requires
that the combined samples be sorted and ranked. This test evaluates potential differences in population
medians rather than the means. The Tarone-Ware test (Section 16.3) is specially adapted to handle left-
censored measurements, and also tests for differences in population medians.

The t-test or a non-parametric variant is recommended as a validation tool when updating intrawell
or other background data sets (Chapter 5). More recently collected data considered for background
addition are compared to the historical data set. A non-significant test result implies no mean
differences, and the newer data may be added to the original set. These tests are generally useful for any
two-sample diagnostic comparisons.

6.4.2 ANALYSIS OF VARIANCE [ANOVA]

The parametric one-way ANOVA is an extension of the t-test to multiple sample groups. Like its
two-sample counterpart, ANOVA tests for significant differences in one or more group (e.g., well)
means. If an overall significant difference is found as measured by the F-statistic, post-hoc statistical
contrasts may be used to determine where the differences lie among individual group means. In the
groundwater detection monitoring context, only differences of mean well increases relative to
background are considered of importance. The ANOVA test also has wide applicability as a diagnostic
tool.

USE OF ANOVA IN FORMAL DETECTION MONITORING TESTS

RCRA regulations under Parts 264 and 258 identify parametric and non-parametric ANOVA as
potential detection monitoring tests. Because of its flexibility and power, ANOVA can sometimes be an
appropriate method of statistical analysis when groundwater monitoring is based on an interwell
comparison of background and compliance well data. Two types of ANOVA are presented in the
Unified Guidance: parametric and non-parametric one-way ANOVA (Section 17.1). Both methods
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attempt to assess whether distinct monitoring wells differ in average concentration during a given
evaluation period.™

Despite the potential attractiveness of ANOVA tests, use in formal detection monitoring is limited
by these important factors:

% Many monitoring constituents exhibit significant spatial variability and cannot make use of
interwell comparisons;

% The test can be confounded by a large number of well network comparisons;
% A minimum well sample size must be available for testing; and

% Regulatory false positive error rate restrictions limit the ability to effectively control the
overall false positive rate.

As discussed in Section 6.2.3, many if not most inorganic monitoring constituents exhibit spatial
variability, precluding an interwell form of testing. Since ANOVA is inherently an interwell procedure,
the guidance recommends against its use for these constituents and conditions. Spatial variability
implies that the average groundwater concentration levels vary from well to well because of existing on-
site conditions. Mean differences of this sort can be identified by ANOVA, but the cause of the
differences cannot. Therefore, results of a statistically significant ANOVA might be falsely attributed as
a regulated unit release to groundwater.

ANOVA testing might be applied to synthetic organic and trace element constituent data.
However, spatial variation across a site is also likely to occur from offsite or prior site-related organic
releases.  An existing contamination plume generally exhibits varying average concentrations
longitudinally, as well as in cross-section and depth. For other organic constituents never detected at a
site, ANOVA testing would be unnecessary. Certain trace elements like barium, arsenic and selenium
do often exhibit some spatial variability. Other trace element data generally have low overall detection
rates, which may also preclude ANOVA applications. Overall, very few routine monitoring constituents
are measurable (i.e., mostly detectable) yet not spatially distinct to warrant using ANOVA as a formal
detection monitoring test. Other guidance tests better serve this purpose.

ANOVA has good power for detecting real contamination provided the network is small to
moderate in size. But for large monitoring networks, it may be difficult to identify single well
contamination. One explanation is that the ANOVA F-statistic simultaneously combines all compliance
well effects into a single number, so that many other uncontaminated wells with their own variability can
mask the test effectiveness to detect the contaminated well. This might occur at larger sites with
multiple waste units, or if only the edge of a plume happens to intersect one or two boundary wells.

The statistical power of ANOVA depends significantly on having at least 4 observations per well
available for testing. Since the measurements must be statistically independent, collection of four well
observations may necessitate a wait of several months to a few years if the natural groundwater velocity

1> parametric ANOVA assesses differences in means; the non-parametric ANOVA compares median concentration levels.
Both statistical measures are a kind of average.
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is low. In this case, other strategies (e.g., prediction limits) might be considered that allow each new
groundwater measurement to be tested as it is collected and analyzed.

The one-way ANOVA test in the RCRA regulations is not designed to control the false positive
error rate for multiple constituents. The rules mandate a minimum false positive error rate (o) of 5% per
test application. With an overall false positive rate of approximately 5% per constituent, a potentially
very high SWFPR can result as the number of constituents tested by ANOVA increases and if tests are
conducted more than once per year.

For these reasons, the Unified Guidance does not generally recommend ANOVA for formal
detection monitoring. ANOVA might be applicable to a small number of constituents, depending on the
site. Prediction limit and control chart strategies using retesting are usually more flexible and offer the
ability to accommodate even very large monitoring networks, while meeting the false positive and
statistical power targets recommended by the guidance.

USE OF ANOVA IN DIAGNOSTIC TESTING

In contrast, ANOVA is a versatile tool for diagnostic testing, and is frequently used in the guidance
for that purpose. Parametric or non-parametric one-way versions are the principal means of identifying
prior spatial variability among background monitoring wells (Chapter 13). Improving sample sizes
using intrawell pooled variances also makes use of ANOVA (Chapter 13). Equality of variances among
wells is evaluated with ANOVA (Chapter 11). ANOVA is also applied when determining certain
temporal trends in parallel well sample constituent data (Chapter 14).

Tests of natural spatial variability can be made by running ANOVA prior to any waste disposal at a
new facility located above an undisturbed aquifer (Gibbons, 1994a). If ANOVA identifies significant
upgradient and downgradient well differences when wastes have not yet been managed on-site, natural
spatial variability is the likely cause. Prior on-site contamination might also be revealed in the form of
significant ANOVA differences.

Sites with multiple upgradient background wells can initially conduct an ANOVA on historical
data from just these locations. Where upgradient wells are not significantly different for a given
constituent, ANOVA testing can be extended to existing historical compliance well data for evaluating
potential additions to the upgradient background data base.

If intrawell tests are chosen because of natural spatial variation, the results of a one-way ANOVA
on background data from multiple wells can sometimes be used to improve intrawell background limits
(Section 13.3). Though the amount of intrawell background at any given well may be small, the
ANOVA provides an estimate of the root mean squared error [RMSE], which is very close to an
estimate of the average per-well standard deviation. By substituting the RMSE for the usual well-
specific standard deviation (s), a more powerful and accurate intrawell limit can be constructed, at least
at those sites where intrawell background across the group of wells can be normalized and the variances
approximately equalized using a common transformation.

Although the Unified Guidance primarily makes use of one-way ANOVA, many kinds of ANOVA
exist. The one-way ANOVA applications so far discussed— in formal detection monitoring or to assess
well mean differences— utilize data from spatial locations as the factor of interest. In some situations,
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correlated behavior may exist for a constituent among well samples evaluated in different temporal
events. A constituent measured in a group of wells may simultaneously rise or fall in different time
periods. Under these conditions, the data are no longer random and independent. ANOVA can be used
to assess the significance of such systematic changes, making time the factor of interest. Time can also
play a role if the sample data exhibit cyclical seasonal patterns or if parallel upward or downward trends
are observed both in background and compliance point wells.

If time is an important second factor, a two-way ANOVA is probably appropriate. This procedure
is discussed in Davis (1994). Such a method can be used to test for and adjust data either for seasonality,
parallel trends, or changes in lab performance that cause temporal (i.e., time-related) effects. It is
somewhat more complicated to apply than a one-way test. The main advantage of a two-way ANOVA is
to separate components of overall data variation into three sources: well-to-well mean-level differences,
temporal effects, and random variation or statistical error. Distinguishing the sources of variation
provides a more powerful test of whether significant well-to-well differences actually exist compared to
using only a one-way procedure.

A significant temporal factor does not necessarily mean that the one-way ANOVA will not identify
actual well-to-well spatial differences. It merely does not have as strong a chance of doing so. Rarely
will the one-way ANOVA identify non-existent well-to-well differences. One situation where this can
occur is when there is a strong statistical interaction between the well-to-well factor and the time factor
in the two-way ANOVA. This would imply that changes in lab performance or seasonal cycles affect
certain wells (e.g., compliance point) to a different degree or in a different manner than other wells (e.g.,
background). If this is the case, professional consultation is recommended before conducting more
definitive statistical analyses.

6.4.3 TREND TESTS

Most formal detection monitoring tests in the guidance compare background and compliance point
populations under the key assumption that the populations are stationary over time. The distributions in
each group or well are assumed to be stable during the period of monitoring, with only random
fluctuations around a constant mean level. If a significant trend occurs in the background data, these
tests cannot be directly used. Trends can occur for several reasons including natural cycles, gradual
changes in aquifer parameters or the effects of contaminant migration from off-site sources.

Although not specifically provided for in the RCRA regulations, the guidance necessarily includes
a number of tests for evaluating potential trends. Chapter 17, Section 17.3 covers three basic trend
tests. (1) Linear regression is a parametric method requiring normal and independent trend residuals,
and can be used both to identify a linear trend and estimate its magnitude; (2) For non-normal data
(including sample data with left-censored measurements), the Mann-Kendall test offers a non-parametric
method for identifying trends; and (3) To gauge trend magnitude with non-normal data, the Theil-Sen
trend line can be used.

Trend analyses are primarily diagnostic tests, which should be applied to background data prior to
implementing formal detection monitoring tests. If a significant trend is uncovered, two options may
apply. The particular monitoring constituent may be dropped in favor of alternate constituents not
exhibiting non-stationary behavior. Alternatively, prediction limit or control chart testing can make use
of stationary trend residuals for testing purposes. One limitation of the latter approach requires making
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an assumption that the historical trend will continue into future monitoring periods. In addition, future
data needs to be de-trended prior to testing. If a trend happened to be of limited duration, this
assumption may not be reasonable and could result in identifying a background exceedance when it does
not exist. If a trend occurs in future data at a compliance well and prior background data was stationary,
other detection monitoring tests are likely to eventually identify it. Trend testing may also be applied to
once-future data considered for a periodic background update, although the guidance primarily relies on
t-testing of historical and future groups to assess data suitability.

At historically contaminated compliance wells, establishing a proper baseline for a prediction
limit or control chart is problematic, since uncontaminated concentration data cannot be collected.
Depending on the pattern of contamination, an intrawell background may either have a stable mean
concentration level or exhibit an increasing or decreasing trend. Particularly when intrawell background
concentrations are rising, the assumption of a static baseline population required by prediction limits and
control charts will be violated.

As an alternative, the Unified Guidance recommends a test for trend to measure the extent and
nature of the apparent increase. Trend testing can determine if there is a statistically significant positive
trend over the period of monitoring and can also determine the magnitude (i.e., slope) of the trend. In
identifying a positive trend, it might be possible to demonstrate that the level of contamination has
increased relative to historical behavior and indicate how rapidly levels are increasing.

Trend analyses can be used directly as an alternative test against a GWPS in compliance and
corrective action monitoring. For typical compliance monitoring, data collected at each compliance well
are used to generate a lower confidence limit compared to the fixed standard (Chapters 7, 21 and 22).
A similar situation occurs when corrective action is triggered, but making use of an upper confidence
interval for comparison. For compliance well data containing a trend, the appropriate confidence
interval is constructed around a linear regression trend line (or its non-parametric alternative) in order to
better estimate the most current concentration levels. Instead of a single confidence limit for stationary
tests, the confidence limit (or band) estimate changes with time.

6.4.4 STATISTICAL INTERVALS

Prediction limits, tolerance limits, control chart limits and confidence limits belong to the class of
methods known as statistical intervals. The first three are used to define their respective detection
monitoring test limits, while the last is used in fixed standard compliance and corrective action tests.
When using a background GWPS, either approach is possible (see Section 7.5). Intervals are generated
as a statistic from reference sample data, and represent a probable range of occurrence either for a future
sample statistic or some parameter of the population (in the case of confidence intervals) from which the
sample was drawn. A future sample statistic might be one or more single values, as well as a future
mean or median of specific size, drawn from one or more sample sets to be compared with the interval
(generally an upper limit). Both the reference and comparison sample populations are themselves
unknown, with the latter initially presumed to be identical to the reference set population. In the
groundwater monitoring context, the initial reference sample is the background data set.
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The key difference in confidence limits® is that a statistical interval based on a single sample is
used to estimate the probable range of a population parameter like the true mean, median or variance.
The three detection monitoring tests use intervals to identify ranges of future sample statistics likely to
arise from the background population based on the initial sample, and are hence two- or multiple-sample
tests.

Statistical intervals are inherently two-sided, since they represent a finite range in which the
desired statistic or population parameter is expected to occur. Formally, an interval is associated with a
level of confidence (1-a); by construction, the error rate o represents the remaining likelihood that the
interval does not contain the appropriate statistic or parameter. In a two-sided interval, the a-probability
is associated with ranges both above and below the statistical interval. A one-sided upper interval is
designed to contain the desired statistic or parameter at the same (1-a) level of confidence, but the
remaining error represents only the range above the limit. As a general rule, detection monitoring
options discussed below use one-sided upper limits because of the nature of the test hypotheses.

PREDICTION LIMITS

Upper prediction limits (or intervals) are constructed to contain with (1-a) probability, the next few
sample value(s) or sample statistic(s) such as a mean from a background population. Prediction limits
are exceptionally versatile, since they can be designed to accommodate a wide variety of potential site
monitoring conditions. They have been extensively researched, and provide a straightforward
interpretation of the test results. Since this guidance strongly encourages use of a comprehensive design
strategy to account for both the cumulative SWFPR and effective power to identify real exceedances,
prediction limit options offer a most effective means of accounting for both criteria. The guidance
provides test options in the form of parametric normal and non-parametric prediction limit methods.
Since a retesting strategy of some form is usually necessary to meet both criteria, prediction limit options
are constructed to formally include resampling as part of the overall tests.

Chapters 18 and 19 provide nine parametric normal prediction limit test options: four tests of
future values (1-of-2, 1-o0f-3, 1-of-4 or a modified California plan) and five future mean options (1-of-1,
1-of-2, or 1-of-3 tests of mean size 2, and 1-of-1 or 1-of-2 tests of mean size 3). Non-parametric
prediction limit options cover the same future value test options as the parametric versions, as well as
two median tests of size 3 (1-of-1 or 1-of-2 tests). Appendix D tables provide the relevant k-factors for
each parametric normal test option, the achievable false positive rates for non-parametric tests, and a
categorical rating of relative test power for each set of input conditions. Prediction limits can be used
both for interwell and intrawell testing. Selecting from among these options should allow the two site
design criteria to be addressed for most groundwater site conditions.

The options provided in the guidance are based on a wider class known in the statistical literature
as p-of-m prediction limit tests. Except for the two modified California plan options, those selected are
1-of-m test varieties. The number of future measurements to be predicted (i.e., contained) by the interval
is also denoted in the Unified Guidance by m and can be as small as m = 1. To test for a release to
groundwater, compliance well measurements are designated as future observations. Then a limit is
constructed on the background sample, with the prediction limit formula based on the number of m

16 Confidence limits are further discussed in Chapters 7, 21 and 22 for use in compliance and corrective action testing.
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future values or statistics to be tested against the limit. As long as the compliance point measurements
are similar to background, the prediction limit should contain all m of the future values or statistics with
high probability (the level of confidence). For a 1-of-m test, all m values must be larger than the
prediction limit to be declared an exceedance, as initial evidence that compliance point concentrations
are higher than background.

Prediction limits with retesting are presented in Chapter 19. When retesting is part of the
procedure, there are significant and instructive differences in statistical performance between parametric
and non-parametric prediction limits.

Parametric prediction limits are constructed using the general formula: PL =X+ x-S, where X

and s are the background sample mean and standard deviation, and « is the specific multiplicative factor
for the type of test, background sample size, and the number of annual tests. The number of tests made
against a common background is also an input factor for interwell comparison. The Appendix D «-
factors are specifically designed to meet the SWFPR objective, but power will vary. Larger background
sample sizes and higher order (m) tests afford greater power.

When background data cannot be normalized, a non-parametric prediction limit can be used
instead. A non-parametric prediction limit test makes use of one or another of the largest sample values
from the background data set as the limit. For a given background sample size and test type, the level of
confidence of that maximal value is fixed.

Using the absolute maximum of a background data set affords the highest confidence and lowest
single-test false positive error. However, even this confidence level may not be adequate to meet the
SWFPR objective, especially for lower order 1-of-m tests. A higher order future values test using the
same maximum and background sample size will provide greater false positive confidence and hence a
lower false positive error rate. For a fixed background sample size, a 1-of-4 retesting scheme will have a
lower achievable significance level (o) than a 1-of-3 or 1-of-2 plan for any specific maximal value. A
larger background sample size using a fixed maximal value for any test also has a higher confidence
level (lower o) than a smaller sample.

But for a fixed non-parametric limit of a given background sample size, the power decreases as the
test order increases. If the non-parametric prediction limit is set at the maximum, a 1-of-2 plan will be
more powerful than a 1-of-4 plan. It is relatively easy to understand why this is the case. A verified
exceedance in a 1-of-2 test occurs only if two values exceed the limit, but would require four to exceed
for the 1-of-4 plan. As a rule, even the highest order non-parametric test using some maximal
background value will be powerful enough to meet the ERPC power criteria, but achieving a sufficiently
low single-test error rate to meet the SWFPR is more problematic.

If the SWFPR objective can be attained at a maximum value for higher order 1-of-m tests, it may
be possible to utilize lower maxima from a large background data base. Lower maxima will have greater
power and a somewhat higher false positive rate. Limited comparisons of this type can be made when
choosing between the largest or second-largest order statistics in the Unified Guidance Appendix D
Tables 19-19 to 19-24. A more useful and flexible comparison for 1-of-m future value plans can be
obtained using the EPA Region 8 Optimal Rank Values Calculator discussed in Chapter 19. The
calculator identifies the lowest ranked maximal value of a background data set for 1-of-1 to 1-of-4 future

6-44 March 2009



Chapter 6. Detection Monitoring Design Unified Guidance

value non-parametric tests which can meet the SWFPR objective, while providing ERPC ratings and
fractional power estimates at 2, 3, and 4 standard deviations above background.

TOLERANCE INTERVALS

Tolerance intervals are presented in Section 17.2. A tolerance interval is generated from
background sample data to contain a pre-specified proportion of the underlying population (e.g., 99% of
all possible population measurements) at a certain level of confidence. Measurements falling outside the
tolerance interval can be judged to be statistically different from background.

While tolerance intervals are an acceptable statistical technique under RCRA as discussed in
Section 2.3, the Unified Guidance generally recommends prediction limits instead. Both methods can
be used to compare compliance point measurements to background in detection monitoring. The same
general formula is used in both tests for constructing a parametric upper limit of comparison: X + «s.
For non-parametric upper limit tests, both prediction limits and tolerance intervals use an observed order
statistic in background (often the background maximum). But prediction limits are ultimately more
flexible and easier to interpret than tolerance intervals.

Consider a parametric upper prediction limit test for the next two compliance point measurements
with 95% confidence. If either measurement exceeds the limit, one of two conditions is true: either the
compliance point distribution is significantly different and higher than background, or a false positive
has been observed and the two distributions are similar. False positives in this case are expected to occur
5% of the time. Using an upper tolerance interval is not so straightforward. The tolerance interval has an
extra statistical parameter that must be specified — the coverage (y) — representing the fraction of
background to be contained beneath the upper limit. Since the confidence level (1-a) governs how often
a statistical interval contains its target population parameter (Section 7.4), the complement a does not
necessarily represent the false positive rate in this case.

In fact, a tolerance interval constructed with 95% confidence to cover 80% of background is
designed so that as many as 20% of all background measurements will exceed the limit with 95%
probability. Here, o = 5% represents the probability that the true coverage will be less than 80%. But less
clear is the false positive rate of a tolerance interval test in which as many as 1 in 5 background
measurements are expected to exceed the upper background limit. Are compliance point values above
the tolerance interval indicative of contaminated groundwater or merely representative of the upper
ranges of background?

Besides a more confusing interpretation, there is an added concern. Mathematically valid retesting
strategies can be computed for prediction limits, but not yet for tolerance intervals, further limiting their
usefulness in groundwater testing. It is also difficult to construct powerful intrawell tolerance intervals,
especially when the intrawell background sample size is small. Overall, there is little practical need for
two similar (but not identical) methods in the Unified Guidance, at least in detection monitoring.

If tolerance intervals are employed as an alternative to t-tests or ANOVA when performing
interwell tests, the RCRA regulations allow substantial flexibility in the choice of a. This means that a
somewhat arbitrarily high confidence level (1-a) can be specified when constructing a tolerance interval.
However, unless the coverage coefficient (y) is also set to a high value (e.g., > 95%), the test is likely to
incur a large risk of false positives despite a small a.
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One setting in which an upper tolerance interval is very appropriate is discussed in Section 7.5.
Some constituents that must be evaluated under compliance/assessment or corrective action may not
have a fixed GWPS. Existing background levels may also exceed a fixed GWPS. In these cases, a
background standard can be constructed using an upper tolerance interval on background with 95%
confidence and 95% coverage. The standard will then represent a reasonable upper bound on background
and an achievable target for compliance and remediation testing.

6.4.5 CONTROL CHARTS

Control charts (Chapter 20) are a viable alternative to prediction limits in detection monitoring.
One advantage of a control chart over a prediction limit is that control charts allow compliance point
data to be viewed and assessed graphically over time. Trends and changes in concentration levels can be
easily seen, because the compliance measurements are consecutively plotted on the chart as they are
collected, giving the data analyst an historical overview of the concentration pattern. Standard prediction
limits allow only point-in-time comparisons between the most recent data and background, making long-
term trends more difficult to identify.

The guidance recommends use of the combined Shewhart-CUSUM control chart. The advantage
is that two statistical quantities are assessed at every sampling event, both the new individual
measurement and the cumulative sum [CUSUM] of past and current measurements. Prediction limits do
not incorporate a CUSUM, and this can give control charts comparatively greater sensitivity to gradual
(upward) trends and shifts in concentration levels. To enhance false positive error rate control and
power, retesting can also be incorporated into the Shewhart-CUSUM control chart. Following the same
restrictions as for prediction limits, they may be applied either to interwell or intrawell testing.

A disadvantage in applying control charts to groundwater monitoring data is that less is understood
about their statistical performance, i.e., false positive rates and power. The control limit used to identify
potential releases to groundwater is not based on a formula incorporating a desired false positive rate (o).
Unlike prediction limits, the control limit cannot be precisely set to meet a pre-specified SWFPR, unless
the behavior of the control chart is modeled via Monte Carlo simulation. The same is true for assessing
statistical power. Control charts usually provide less flexibility than prediction limits in designing a
statistical monitoring program for a network.

In addition, Shewhart-CUSUM control charts are a parametric procedure with no existing non-
parametric counterpart. Non-parametric prediction limit tests are still generally needed when the
background data on which the control chart is constructed cannot be normalized. Control charts are
mostly appropriate for analytes with a reasonably high detection frequency in monitoring wells. These
include inorganic constituents (e.g., detectable trace elements and geochemical monitoring parameters)
occurring naturally in groundwater, and other persistently-found, site-specific chemicals.

6.5 SITE DESIGN EXAMPLES

Three hypothetical design examples consider a small, medium and large facility, illustrating the
principles discussed in this chapter. In each example, the goal is to determine what statistical method or
methods should be chosen and how those methods can be implemented in light of the two fundamental
design criteria. Further design details are covered in respective Part |11 detection monitoring test
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chapters, although very detailed site design is beyond the scope of the guidance. More detailed
evaluations and examples of diagnostic tests are found in Part |1 of the guidance.

» EXAMPLE 6-5 SMALL FACILITY

A municipal landfill has 3 upgradient wells and 8 downgradient wells. Semi-annual statistical
evaluations are required for five inorganic constituents. So far, six observations have been collected at
each well. Exploratory analysis has shown that the concentration measurements appear to be
approximately normal in distribution. However, each of the five monitored parameters exhibits
significant levels of natural spatial variation from well to well. What statistical approach should be
recommended at this landfill?

SOLUTION

Since the inorganic monitoring parameters are measurable and have significant spatial variability,
it is recommended that parametric intrawell rather than interwell tests should be considered. Assuming
that none of the downgradient wells is recently contaminated, each well has n = 6 observations available
for its respective intrawell background. Six background measurements may or may not be enough for a
sufficiently powerful test.

To address the potential problem of inadequate power, a one-way ANOVA should be run on the
combined set of wells (including background locations). If the well-to-well variances are significantly
different, individual standard deviation estimates should be made from the six observations at the eight
downgradient wells. If the variances are approximately equal, a pooled standard deviation estimate can
instead be computed from the ANOVA table. With 11 total wells and 6 measurements per well, the
pooled standard deviation has df =11x5=55 degrees of freedom, instead of df = 5 for each individual

well.

Regardless of ANOVA results, the per-test false positive rate is approximately the design SWFPR
divided by the annual number of tests. For w = 8 compliance wells, ¢ = 5 parameters monitored, and ng
= 2 statistical evaluations per year, the per-test false positive rate is approximately Ouest =
SWFPR/(wxcxng) = 0.00125. Given normal distribution data, several different parametric prediction
limit retesting plans can be examined,'” using either the combined sample size of df + 1= 56 or the per-
well sample size of n = 6.

Explained in greater detail in Chapter 19, k-multiples and power ratings for each test type (using
the inputs w = 8 and n = 6 or 56 are obtained from the nine parametric Appendix D Intrawell tables
labeled '5 COC, Semi-Annual’. The following k-factors were obtained for tests of future values at n = 6:
k = 3.46 (1-of-2 test); x = 2.41 (1-0f-3); x = 1.81 (1-0f-4); and x = 2.97 (modified California) plans. For
future means, the corresponding k-factors were: x = 4.46 (1-of-1 mean size 2); k = 2.78 (1-of-2 mean
size 2); x = 2.06 (1-of-3 mean size 2); x = 3.85 (1-of-1 mean size 3); and « = 2.51 (1-0f-2 mean size 3).
In these tables, x-factors reported in Bold have good power, those Italicized have acceptable power and
Plain Text indicates low power. For single well intrawell tests, only 1-of-3 or 1-of-4 plans for future
values, 1-o0f-2 or 1-0f-3 mean size 2 or 1-of-2 mean size 3 plans meet the ERPC criteria.

7 Intrawell control charts with retesting are also an option, though the control limits associated with each retesting scheme
need to be simulated.
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Although each of these retesting plans is adequately powerful, a final choice would be made by
balancing 1) the cost of sampling and chemical analysis at the site; 2) the ability to collect statistically
independent samples should the sampling frequency be increased; and 3) a comparison of the actual
power curves of the three plans. The last can be used to assess how differences in power might impact
the rapid identification of a groundwater release. Since a 1-of-3 test for future observations has good
power, it is unnecessary to make use of a 1-of-4 test. Similarly, the 1-of-3 test for mean size 2 and a 1-
of-2 test for mean size 3 might also be eliminated, since a 1-of-2 test of a mean size 2 is more than
adequate. This leaves the 1-of-3 future values and 1-of-2 mean 2 tests as the final prediction limit
options to consider.

Though prediction limits around future means are more powerful than plans for observations, only
3 independent measurements might be required for a 1-of-3 test, while 4 might be necessary for the 1-of-
2 test for mean size 2. For most tests at background, a single sample might suffice for the 1-of-3 test and
2 independent samples for the test using a 1-of-2 mean size 2.

Much greater flexibility is afforded if the pooled intrawell standard deviation estimate can be used.
For this example, any of the nine parametric intrawell retesting plans is sufficiently powerful, including a
1-of-2 prediction limit test on observations and a 1-of-1 test of mean size 2. In order to make this
assessment using the pooled-variance approach, a careful reading of Chapter 13, Section 13.3. is
necessary to generate comparative k-factors.

Less overall sampling is needed with the 1-of-2 plan on observations, since only a single sample
may be needed for most background conditions. Two observations are always required for the 1-of-1
mean size 2 test. More prediction limit testing options are generally available for a small facility. <«

» EXAMPLE 6-6 MEDIUM FACILITY

A medium-sized hazardous waste facility has 4 upgradient background wells and 20 downgradient
compliance wells. Ten initial measurements have been collected at each upgradient well and 8 at
downgradient wells. The permitted monitoring list includes 10 inorganic parameters and 30 VOCs. No
VOCs have yet been detected in groundwater. The remaining 10 inorganic constituents are normal or can
be normalized, and five show evidence of significant spatial variation across the site. Assume that
pooled-variances cannot be obtained from the historical upgradient or downgradient well data. If one
statistical evaluation must be conducted each year, what statistical method and approach are
recommended?

SOLUTION

At this site, there are potentially 800 distinct well-constituent pairs that might be tested. But since
none of the VOCs has been detected in groundwater in background wells, all 30 of the VOCs should be
handled using the double quantification rule (Section 6.2.2). A second confirmatory resample should be
analyzed at those compliance wells for any of the 30 VOC constituents initially detected. Two
successive quantified detections above the RL are considered significant evidence of groundwater
contamination at that well and VOC constituent. To properly limit the SWFPR, the 30 VOC constituents
are excluded from further SWFPR calculations, which is now based on w x ¢ x ng =20 x 10 x 1 = 200
annual tests.
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The five inorganic constituent background data sets indicate insignificant spatial variation and can
be normalized. The observations from the four upgradient wells can be pooled to form background data
sets with an n = 40 for each of these five constituents. Future samples from the 20 compliance wells are
then compared against the respective interwell background data. With one annual evaluation, ¢ = 10
constituents, w = 20 wells and n = 40 background samples, the Interwell '10 COC, Annual’ tables for
parametric prediction limits with retesting can be searched in Appendix D. Alternatively, control chart
limits can be fit to this configuration via Monte Carlo simulations. Even though only five constituents
will be tested this way, all of the legitimate constituents (c) affecting the SWFPR calculation, are used in
applying the tables.

Most of the interwell prediction limit retesting plans, whether for observations or means, offer
good power relative to the annual evaluation ERPC. The final choice of a plan may be resolved by a
consideration of sampling effort and cost, as well as perhaps a more detailed power comparison using
simulated curves. For prediction limits, a 1-of-2 test for observations (x = 2.18) and the 1-of-1
prediction limit for a mean of order 2 (x = 2.56) both offer good power. These two plans also require the
least amount of sampling to identify a potential release (as discussed in Example 6-6). Beyond this
rationale, the more powerful 1-of-1 test of a future mean size 2 might be selected. Full power curves
could be constructed and overlaid for several competing plans.

The remaining 5 inorganic constituents must be managed using intrawell methods based on
individual compliance well sizes of n = 8. For the same ¢, w, and ng inputs as above, the Appendix D
Intrawell 10 COC, Annual “tables should be used. Only four of the higher order prediction limit tests
have acceptable or good power: 1-of-4 future values (x = 1.84); 1-of-2 mean size 2 (x = 2.68); 1-o0f-3
mean size 2 (x = 2.00); and 1-of-2 mean size 3 (x = 2.39) tests. The 1-of-2 mean size 2 has only
acceptable power. The first two tests require the fewest samples under most background conditions and
in total, with the 1-of-4 test having superior power. <«

» EXAMPLE 6-7 LARGE FACILITY

A larger solid waste facility must conduct two statistical evaluations per year at two background
wells and 30 compliance wells. Parameters on the monitoring list include five trace metals with a high
percentage of non-detect measurements, and five other inorganic constituents. While the inorganic
parameters are either normal or can be normalized, a significant degree of spatial variation is present
from one well to the next. If 12 observations were collected from each background well, but only 4
quarterly measurements from each compliance well, what statistical approach is recommended?

SOLUTION

Because the two groups of constituents evidence distinctly different statistical characteristics, each
needs to be separately considered. Since the trace metals have occasional detections or ‘hits,” they
cannot be excluded from the SWFPR computation. Because of their high non-detect rates, parametric
prediction limits or control charts may not be appropriate or valid unless a non-detect adjustment such as
Kaplan-Meier or robust regression on order statistics is used (Chapter 15). Assuming for this example
that parametric tests cannot be applied, the trace metals should be analyzed using non-parametric
prediction limits. The presence of frequent non-detects may substantially limit the potential degree of
spatial variation, making an interwell non-parametric test potentially feasible. The Kruskal-Wallis non-
parametric ANOVA (Chapter 17) could be used to test this assumption.
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In this case, the number of background measurements is n = 24, and this value along with w = 30
compliance wells would be used to examine possible non-parametric retesting plans in the Appendix D
tables for non-parametric prediction limits. As these tables offer achievable per-evaluation, per-
constituent false positive rates for each configuration of compliance wells and background levels, the
target o level must be determined. Given semi-annual evaluations, the per-evaluation false positive rate
is approximately og = 0.10/ng = 0.05. Then, with 10 constituents altogether, the approximate per-
constituent false positive rate for each trace metal becomes oionst = 0.05/10 = 0.005.

Only one retesting plan meets the target false positive rate, a 1-of-4 non-parametric prediction limit
using the maximum value in background as the comparison limit. This plan has ‘acceptable’ power
relative to the ERPC. Other more powerful plans all have higher-than-targeted false positive rates.

For the remaining 5 inorganic constituents, the presence of significant spatial variation and the fact
that the observations can be normalized, suggests the use of parametric intrawell prediction or control
limits. As in the previous Example 6-6, interwell prediction limit tables in Appendix D are used by
identifying « multipliers and power ratings based on all 10 constituents subject to the SWFPR
calculations. This is true even though these parametric options only pertain to 5 constituents. The total
number of well-constituent pair tests per year is equal to w x ¢ x ng = 30 x 10 x 2 = 600 annual tests.

Assuming none of the observed spatial variation is due to already contaminated compliance wells,
the number of measurements that can be used as intrawell background per well is small (n = 4). A quick
scan of the intrawell prediction limit retesting plans in Appendix D '10COC, Semi-Annual’ tables
indicates that none of the plans offer even acceptable power for identifying a potential release. A one-
way ANOVA should be run on the combined set of w = 30 compliance wells to determine if a pooled
intrawell standard deviation estimate can be used.

If levels of variance across these wells are roughly the same, the pooled standard deviation will
have df = w(n—l): 30x3=90 degrees of freedom, making each intrawell prediction or control limit

much more powerful. Using the R script provided in Appendix C for intrawell prediction limits with a
pooled standard deviation estimate (see Section 13.3), based on n = 4 and df = 90, all of the relevant
intrawell prediction limits are sufficiently powerful compared to the semi-annual ERPC. With the
exception of the 1-of-2 future values test at acceptable power, the other tests have good power. The final
choice of retesting plan can be made by weighing the costs of required sampling versus perhaps a more
detailed comparison of the full power curves. Plans with lower sampling requirements may be the most
attractive. <
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This chapter covers the fundamental design principles for compliance/assessment and corrective
action statistical monitoring programs. One important difference between these programs and detection
monitoring is that a fixed external GWPS is often used in evaluating compliance. These GWPS can be
an MCL, risk-based or background limit as well as a remedial action goal. Comparisons to a GWPS in
compliance/assessment and corrective action are generally one-sample tests as opposed to the two- or
multi-sample tests in detection monitoring. Depending on the program design, two- or multiple-sample
detection monitoring strategies can be used with well constituents subject to background
compliance/corrective action testing. While a general framework is presented in this chapter, specific
test applications and strategies are presented in Chapters 21 and 22 for fixed GWPS comparisons.
Sections 7.1 through 7.4 discuss comparisons to fixed GWPSs, while Section 7.5 covers background
GWPS testing (either as a fixed limit or based on a background statistic). Discussions of regulatory
issues are generally limited to 40 CFR Part 264, although they also apply to corresponding sections of
the 40 CFR Part 258 solid waste rules.

7.1 INTRODUCTION

The RCRA regulatory structure for compliance/assessment and corrective action monitoring is
outlined in Chapter 2. In detection and compliance/assessment monitoring phases, a facility is presumed
not to be ‘out of compliance’ until significant evidence of an impact or groundwater release can be
identified. In corrective action monitoring, the presumption is reversed since contamination of the
groundwater has already been identified and confirmed. The null hypothesis of onsite contamination is
rejected only when there is significant evidence that the clean-up or remediation strategy has been
successful.

Compliance/assessment monitoring is generally begun when statistically significant concentration
exceedances above background have been confirmed for one or more detection monitoring constituents.
Corrective action is undertaken when at least one exceedance of a hazardous constituent GWPS has
been identified in compliance/assessment monitoring.  The suite of constituents subject to
compliance/assessment monitoring is determined from Part 264 Appendix IX or Part 258 Appendix Il
testing, along with prior hazardous constituent data evaluated under the detection monitoring program.
Following a compliance monitoring statistical exceedance, only a few of these constituents may require
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the change in hypothesis structure to corrective action monitoring. This formal corrective action testing
will need to await completion of remedial activities, while continued monitoring can track progress in
meeting standards.

The same general statistical method of confidence interval testing against a fixed GWPS is
recommended in both compliance/assessment and corrective action programs. As discussed more fully
below and in Chapter 21, confidence intervals provide a flexible and statistically accurate method to
test how a parameter estimated from a single sample compares to a fixed numerical limit. Confidence
intervals explicitly account for variation and uncertainty in the sample data used to construct them.

Most decisions about a statistical program under 8264.98 detection monitoring are tailored to
facility conditions, other than selecting a target site-wide cumulative false positive rate and a scheme for
evaluating power. Statistical design details are likely to be site-specific, depending on the available data,
observed distributions and the scope of the monitoring network. For compliance/assessment and
corrective action testing under §264.99 and §264.100 or similar tests against fixed health-based or risk-
based standards, the testing regimen is instead likely to be determined in advance by the regulatory
agency. The Regional Administrator or State Director is charged with defining the nature of the tests,
constituents to be tested, and the wells or compliance points to be evaluated. Specific decisions
concerning false positive rates and power may also need to be defined at a regulatory program level.

The advantage of a consistent approach for compliance/assessment and corrective action
monitoring tests is that it can be applied across all Regional or State facilities. Facility-specific input is
still needed, including the observed distributions of key constituents and the selection of statistical
power and false positive criteria for permits. Because of the asymmetric nature of the risks involved,
regulatory agency and facility perspectives may differ on which statistical risks are most critical.
Therefore, we recommend that the following issues be addressed for compliance/assessment and
corrective action monitoring (both §264.99 and §264.100), as well as for other programs involving
comparisons to fixed standards:

% What are the appropriate hypothesis testing structures for making comparisons to a fixed
standard?

s What do fixed GWPS represent in statistical terms and which population parameter(s) should be
tested against them?

% What is a desirable frequency of sampling and testing, which test(s), and for what constituents?

% What statistical power requirements should be included to ensure protection of health and the
environment?

s What confidence level(s) should be selected to control false positive error rates, especially
considering sites with multiple wells and/or constituents?

Decisions regarding these five questions are complex and interrelated, and have not been fully
addressed by previous RCRA guidance or existing regulations. This chapter addresses each of these
points for both 8264.99 and §264.100 testing. By developing answers at a regulatory program level, the
necessity of re-evaluating the same questions at each specific site may be avoided.
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7.2 HYPOTHESIS TESTING STRUCTURES

Compliance testing under 8264.99 specifically requires a determination that one or more well
constituents exceeds a permit-specific GWPS. The correct statistical hypothesis during
compliance/assessment monitoring is that groundwater concentrations are presumed not to exceed the
fixed standard unless sampling data from one or more well constituents indicates otherwise. The null
hypothesis, Ho, assumes that downgradient well concentration levels are less than or equal to a standard,
while the alternative hypothesis, Ha, is accepted only if the standard is significantly exceeded. Formally,
for some parameter (®) estimated from sample data and representing a standard G, the relevant
hypotheses under §264.99 compliance monitoring are stated as:

H,:®<GvsH,:0>G [7.1]

Once a positive determination has been made that at least one compliance well constituent
exceeds the fixed standard (i.e., GWPS), the facility is subject to corrective action requirements under
8264.100. At this point, the regulations imply and statistical principles dictate that the hypothesis
structure should be reversed (for those compliance wells and constituents indicating exceedances).
Other compliance constituents (i.e., those not exceeding their respective GWPSs) may continue to be
tested using equation 7.1 hypotheses. It is then assumed that contamination equal to or in excess of the
GWPS exists and is presumed to be the case unless demonstrated otherwise. A positive determination
that groundwater concentrations are below the standard is necessary to demonstrate regulatory
compliance for any wells and constituents under remediation. In statistical terms, the relevant hypotheses
for 8264.100 are:

H,;0>2GvsH,:0<G [7.2]

The reasoning behind this approach is as follows. Background exceedances by one or more well
constituents under 8264.98 detection monitoring do not predetermine any particular relationship of these
increased concentration levels to fixed limits used as GWPS. Standards for different constituents vary
over orders of magnitude. The actual concentration level triggering a statistically significant increase
above background can vary considerably and bear little or no relationship to risk-based standards. Use
of the initial compliance monitoring hypothesis framework in [7.1] ensures positive evidence that at
least one hazardous constituent is truly above a GWPS. Since corrective action can be expensive and
difficult, this provides important assurance that site program monitoring decisions are made correctly.

This guidance recognizes that not all regulatory programs are constructed alike. Objectives and
regulatory interpretations may differ as to the basic goals of compliance/assessment or corrective action
monitoring. When large numbers of sites with available hazardous constituent data are being screened to
determine their need for remediation (perhaps outside the formal RCRA regulatory framework), the
assessment may be conducted with the explicit presumption that contamination exists onsite.
Presumably, elevated hazardous constituent concentrations have already been detected at these facilities.
For these assessments, the compliance/assessment statistical hypothesis framework follows that
presented in Equation 7.2. Instead of a lower confidence limit as recommended below, the appropriate
statistical approach involves an upper confidence limit, as is appropriate for corrective action.
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Non-RCRA programs seeking to use methods presented in the Unified Guidance may also presume
a different statistical hypothesis structure from that presented here. The primary goal is to ensure that the
statistical approach matches the appropriate hypothesis framework. It is also allowable under RCRA
regulations to define GWPS based on background data, discussed further in Section 7.5.

Whatever the population parameter (®) selected as representative of the GWPS, testing consists of
a confidence interval derived from the compliance point data at some choice of significance level (c),
and then compared to the standard G. The confidence intervals describe the probable distribution of the
sample statistic, 6, employed to estimate the true parameter ®. For testing under compliance/assessment
monitoring, a lower confidence limit around the true parameter — LCL(®) — is utilized. If LCL(®)
exceeds the standard, there is statistically significant evidence in favor of the alternative hypothesis, Ha:
® > G, that the compliance standard has been violated. If not, the confidence limit test is inconclusive
and the null hypothesis accepted.

When the corrective action hypothesis of [7.2] is employed, an upper confidence limit UCL(®) is
generated from the compliance point data and compared to the standard G. In this case, the UCL(®)
should lie below the standard to accept the alternative hypothesis that concentration levels are in
compliance, Ha: ® <G. If the UCL(®) is larger than the standard, the test is inconclusive. It should be
recognized that once corrective action or remediation activities are initiated, there will be a considerable
time during which the GWPS may still be exceeded. As provided in the RCRA regulations, it is at the
conclusion of remediation activities that formal corrective action monitoring evaluation is appropriate.
However, in the intervening period of remedial activity, well constituents can still be monitored and the
relative efficacy of remediation measures tracked. The same corrective action statistical hypotheses can
be assumed for the targeted constituents; techniques such as trend testing may be appropriate interim
applications.

If the entire confidence interval (considering both the lower and upper confidence limits) lies
below the fixed standard G in either a compliance/assessment or corrective action setting, there is
statistically significant evidence that the true parameter or characteristic (e.g., the mean) is less than the
standard. The constituent concentrations at the well are considered to be in compliance. Conversely, if
the confidence interval lies entirely above G, the evidence suggests that the true parameter or
characteristic exceeds the standard, and that concentrations at the well are out of compliance.

When the confidence interval straddles the standard G (as with the example confidence interval
around the upper 95th percentile in Figure 7-1 below), the correct decision is uncertain. When the
population mean is being tested, and a confidence interval around the mean has accurately estimated its
location, the true mean lies somewhere between the lower and upper confidence limits. But the precise
value of the population mean within that range is unknown. The mean might be less than G or it might
be greater than G. No clear decision with high statistical confidence is possible. When testing the
compliance/assessment monitoring hypothesis of [7.1], we recommend that the null hypothesis should
not be rejected unless the entire confidence interval defined by and including the lower confidence
limit exceeds the GWPS. By the same token, when testing the corrective action hypothesis of equation
[7.2], we recommend that the null hypothesis not be rejected unless the entire upper confidence
interval and limit lies below the GWPS.

These ideas can be illustrated with a normal confidence interval around the arithmetic mean. In this
case, the population parameter ® equals p, the true population mean of a given compliance well
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constituent. The statistic used to estimate p is the sample mean (X ). With this statistic and normally-
distributed data, the lower and upper confidence limits are symmetric:

LCL (1)=% - tl_m_lf [7.3]
n

UCL (i)=X + tl_m_lf [7.4]
n

for a selected significance level (o) and sample size n. Note in these formulas that s is the sample
standard deviation, and t_, , is a central Student’s t-value with n-1 degrees of freedom.
The two hypothesis structures and tests are defined as follows:
Case A. Test of non-compliance (§264.99) vs. a fixed standard (compliance/assessment monitoring):

Test Hypothesis: H :u<GvsH,:u>G

Test Statistic: LCL, =X

.S
1-a,n-1 \/E
Rejection Region: Reject null hypothesis (Ho) if LCL,__ > G ; otherwise, accept null hypothesis

Case B. Test of compliance (8264.100) vs. a fixed standard (corrective action):

Test Hypothesis: H :#>Gvs H,:u<G

Test Statistic: UCL,_, =X+t

s
1—a,n—lﬁ
Rejection Region: Reject null hypothesis (Ho) if UCL,_ <G ; otherwise, accept null hypothesis

For all confidence intervals and tests presented in Chapters 21 and 22, the test structures are
similar to those above. But not every pair of lower and upper confidence limits (i.e., LCL and UCL) will
be symmetric, particularly for skewed distributions and in non-parametric tests on upper percentiles. For
a non-parametric technique such as a confidence interval around the median, exact confidence levels will
depend on the available sample size and which order statistics are used to estimate the desired
population parameter. In these cases, an exact target confidence level may or may not be attainable.

When calculating confidence intervals, assignment of the false positive error () differs between a
one-sided and two-sided confidence interval test. The symmetric upper and lower confidence intervals
are shown in Figure 7-1 largely for illustration purposes. If the lower confidence interval for some
tested parameter © is the critical limit, all of the o error is assigned to the region below the LCL(®).
Hence, a 1-a confidence level covers the range from the lower limit to positive infinity. Similarly, all of
the o error for an upper confidence limit UCL(®) is assigned to the region above this value. For a two-
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sided interval, the error rate is equally partitioned on both sides of the respective confidence interval
limits. A 95% lower confidence limit implies that a 5% chance of an error exists for values lying below
the limit. In contrast, a two-sided 95% confidence interval implies a 2.5% chance above and a 2.5%
chance of an error below the confidence level. Depending on how confidence intervals are defined, the
appropriate statistical adjustment (e.g., the t-value in Equations 7-3 and 7-4) needs to take this into
account.

Figure 7-1. Confidence Interval on Mean vs. Fixed Upper Percentile Limit
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7.3 GROUNDWATER PROTECTION STANDARDS

A second essential design step is to identify the appropriate population parameter and its associated
statistical estimate. This is primarily a determination of what a given fixed GWPS represents in
statistical terms. Not all fixed concentration standards are meant to represent the same statistical
quantities. A distinction is drawn between 1) those central tendency standards designed to represent a
mean or average concentration level and 2) those which represent either an upper percentile or the
maximum of the concentration distribution. If the fixed standard represents an average concentration, it
is assumed in the Unified Guidance that the mean concentration (or possibly the median concentration)
in groundwater should not exceed the limit. When a fixed standard represents an upper percentile or
maximum, no more than a small, specified fraction of the individual concentration measurements should
exceed the limit.

The choice of confidence interval should be based on the type of fixed standard to which the
groundwater data will be compared. A fixed limit best representing an upper percentile concentration
(e.g., the upper 95th percentile) should not be compared to a confidence interval constructed around the
arithmetic mean. Such an interval only estimates the location of the population mean, but says nothing
about the specific upper percentile of the concentration distribution. The average concentration level

7-6 March 2009




Chapter 7. Compliance Monitoring Strategies Unified Guidance

could be substantially less than the standard even though a significant fraction of the individual
measurements exceeds the standard (see Figure 7-1).

There are a variety of fixed standards to which different statistical measures apply. Alternative
GWPSs based on Agency risk-assessment protocols are cited as an option in the solid waste regulations
at 8258.55(i)(1). Many of the risk-assessment procedures identified in the CERCLA program make use
of chronic, long-term exposure models for ingestion or inhalation. These procedures are identified in the
(EPA, 1989b) Risk Assessment Guidance for Superfund (RAGS) and the Supplemental Guidance for
Calculating the Concentration Term (EPA, 1992c), and serve as guidance for other EPA programs. In
the latter document, the arithmetic mean is identified as the appropriate parameter for identifying
environmental exposure levels. The levels are intended to identify chronic, time-weighted concentration
averages based on lifetime exposure scenarios.

The primary maximum contaminant levels [MCL] promulgated under the Safe Drinking Water Act
(SDWA) follow the same exposure evaluation principles. An MCL is typically based on 70-year risk-
exposure scenarios (for carcinogenic compounds), assuming an ingestion rate of 2 liters of water per day
at the average concentration over time. Similarly, long-term risk periods (e.g., 6-years) are used for non-
carcinogenic constituents, assuming average exposure concentrations. The promulgated levels also
contain a safety multiplicative factor and are applied at the end-user tap. Calculations for ingestion
exposure risk to soil contaminants by an individual randomly traversing a contaminated site are based on
the average estimated soil concentration. It is expected that an exposed individual drinking the water or
ingesting the soil is not afforded any protection in the form of prior treatment.

Other standards which may represent a population mean include some RCRA site permits that
include comparisons against an alternate concentration limit [ACL] based on the average value of
background data. In addition, some standards represent time-weighted averages used for carcinogenic
risk assessments such as the lifetime average daily dose [LADD].

Fixed limits based explicitly on the median concentration include fish ingestion exposure factors,
used in testing fish tissue for certain contaminants. The exposure factors represent the allowable
concentration level below which at least half of the fish sample concentrations should lie, the 50th
percentile of the observed concentration distribution. If this distribution is symmetric, the mean and
median will be identical. For positively skewed populations, the mean concentration could exceed the
exposure factor even though the median (and hence, a majority of the individual concentrations) is below
the limit. It would therefore not be appropriate to compare such exposure factors against a confidence
interval around the mean contaminant level, unless one could be certain the distribution was symmetric.

Fixed standards are sometimes based on upper percentiles. Scenarios of this type include risk-
based standards designed to limit acute effects that result from short-term exposures to certain chemicals
(e.g., chlorine gas leaking from a rail car or tanker). There is greater interest in possible acute effects or
transient exposures having a significant short-term risk. Such exposure events may not happen often, but
can be important to track for monitoring and/or compliance purposes.

When even short exposures can result in deleterious health or environmental effects, the fixed limit
can be specified as a maximum allowable concentration. From a statistical standpoint, the standard
identifies a level which can only be exceeded a small fraction of the time (e.g., the upper 90th
percentile). If a larger than allowable fraction of the individual exposures exceeds the standard, action is
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likely warranted, even if the average concentration level is below the standard. Certain MCLs are
interpreted in this same manner; the term *‘maximum’ in maximum contaminant level would be treated
statistically as an upper percentile limit. Examples include criteria for bacterial counts and nitrate/nitrite
concentrations, best regarded as upper percentile limits.

As an example, exposure of infants to nitrate concentrations in excess of 10 mg/L (NO3~ as N) in
drinking water is a case where greater concern surrounds acute effects resulting from short-term
exposure. The flora in the intestinal tract of infant humans and animals does not fully develop until the
age of about six months. This results in a lower acidity in the intestinal tract, which permits the growth
of nitrate reducing bacteria. These bacteria convert nitrate to nitrite. When absorbed into the
bloodstream, nitrite interferes with the absorption of oxygen. Suffocation by oxygen starvation in this
manner produces a bluish skin discoloration — a condition known as “blue baby” syndrome (or
methemoglobinemia) — which can result in serious health problems, even death. In such a scenario,
suppose that acute effects resulting from short-term exposure above some critical level should normally
occur in no more than 10 percent of all exposure events. Then the critical level so identified would be
equivalent to the upper 90th percentile of all exposure events.

Another example is the so-called 20-year flood recurrence interval for structural design. Flood
walls and drainage culverts are designed to handle not just the average flood level, but also flood levels
that have a 1 in 20 chance of being equaled or exceeded in any single year. A 20-year flood recurrence
level is essentially equivalent to estimating the upper 95th percentile of the distribution of flood levels
(e.g., a flood of this magnitude is expected to occur only 5 times every 100 years).

The various limits identified as potential GWPS in Chapter 2 pose some interpretation problems.
8264.94 Table 1 values are identified as "Maximum Concentration[s] of Constituents for Groundwater
Protection” for 14 hazardous constituents, originating from earlier Federal Water Pollution Control
Administration efforts. While not a definitive protocol for comparison, it was indicated that the limits
were intended to represent a concentration level that should not be exceeded most of the time. In an
early Water Quality Criteria report (USDI, 1968), the language is as follows:

"It is clearly not possible to apply these (drinking water) criteria solely as maximum single
sample values. The criteria should not be exceeded over substantial portions of time."

Similarly, the more current MCLs promulgated under the SDWA are identified as "maximum
contaminant limits". Even if the limits were derived from chronic, risk-based assessments, the same
implication is that these limits should not be exceeded.

Individual EPA programs make sample data comparisons to MCLs using different approaches.
For small-facility systems monitored under the SDWA, only one or two samples a year might be
collected for comparison. Anything other than direct comparisons isn T possible. Some Clean Water Act
programs use arithmetic comparisons (means or medians) rather than a fully statistical approach.
CERCLA typically utilizes these standards in mean statistical comparisons, consistent with other chronic
health-based levels derived from their program risk assessment equations. In short, EPA nationwide
does not have a single operational definition or measure for assessing MCLs with sample data.

The Unified Guidance cannot directly resolve these issues. Since the regulations promulgated
under RCRA presume the use of fully statistical measures for groundwater monitoring program
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evaluations, the guidance provides a number of options for both centrality-based and upper limit tests.
It falls upon State or Regional programs to determine which is the most appropriate parameter for
comparison to a GWPS. As indicated above, the guidance does recommend that any operational
definition of the appropriate parameter of comparison to GWPS 5 be applied uniformly across a program.

If a mean- or median-based centrality parameter is chosen, the guidance offers fairly
straightforward confidence interval testing options. For a parameter representing some infrequent level
of exceedance to address the "maximum™ or "most" criteria, the program would need to identify a
specific upper proportion and confidence level that the GWPS represents. Perhaps a proportion of 80 to
95% would be appropriate, at 90-95% confidence. It is presumed that the same standard would apply to
both compliance and corrective action testing under §264.99 and §264.100. If non-parametric upper
proportion tests must be used for certain data, very high proportions make for especially difficult tests to
determine a return to compliance (Chapter 22) because of the number of samples required.

7.4 DESIGNING A STATISTICAL PROGRAM
7.4.1 FALSE POSITIVES AND STATISTICAL POWER IN COMPLIANCE/ASSESSMENT

As discussed in Chapters 3 and 6, the twin criteria in designing an acceptable detection
monitoring statistical program are the site-wide false positive rate [SWFPR] and the effective power of
the testing regimen. Both statistical measures are crucial to good statistical design, although from a
regulatory perspective, ensuring adequate power to detect contaminated groundwater is of primary
importance.

In compliance/assessment monitoring, statistical power is also of prime concern to EPA. There
should be a high probability that the statistical test will positively identify concentrations that have
exceeded a fixed, regulatory standard. In typical applications where a confidence interval is compared
against a fixed standard, a low false positive error rate (o) is chosen without respect to the power of the
test. Partly this is due to a natural desire to have high statistical confidence in the test, where (1-c)
designates the confidence level of the interval. But statistical confidence is not the same as power. The
confidence level merely indicates how often — in repeated applications — the interval will contain the
true population parameter (®); not how often the test will indicate an exceedance of a fixed standard. It
has historically been much easier to select a single value for the false positive rate (o) than to measure
power, especially since power is not a single number but a function of the level of contamination (as
discussed in Section 3.5).

The power to detect increases above a fixed standard using a lower confidence limit can be
negligible when contaminant variability is high, the sample size is small and especially when a high
degree of confidence has been selected. To remedy this problem, the Unified Guidance recommends
reversing the usual sequence: first select a desired level of power for the test (1-f), and then compute the
associated (maximum) false positive rate (a). In this way, a pre-specified power can be maintained even
if the sample size is too low to simultaneously minimize the risks of both Type I and Type Il errors (i.e.,
false positives and false negatives).

Specific methods for choosing power and computing false positive rates with confidence interval
tests are presented in Chapter 22. Detailed applications of confidence interval tests are provided in
Chapter 21. The focus here is on setting a basic framework and consistent strategies.
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As noted above, selecting false positive error rates in compliance or assessment testing (8264.99)
has traditionally been accomplished under RCRA by choosing a fixed, individual test o.. This strategy is
attractive if only for the sake of simplicity. Individual test-wise false positive rates in the range of o =
.01 to o = .10 are traditional and easily understood. In addition, the Part 264 regulations in §264.97(i)(2)
require a minimum individual false positive rate of a = .01 in both compliance and corrective action
testing agailnst a fixed standard, as well as in those tests not specifically exempted under detection
monitoring.

Given a fixed sample size and constant level of variation, the statistical power of a test method
drops as the false positive rate decreases. A low false positive rate is often associated with low power.
Since statistical power is of particular concern to EPA in compliance/assessment monitoring, somewhat
higher false positive rates than the minimum o = .01 RCRA requirement may be necessary to maintain a
pre-specified power over the range of sample sizes and variability likely to be encountered in RCRA
testing situations. The key is sample variability. When the true population coefficient of variation [CV]
is no greater than 0.5 (whether the underlying distribution is normal or lognormal), almost all lower
confidence limit tests exhibit adequate power. When the variation is higher, the risk of false negative
error is typically much greater (and thus the power is lower), which may necessitate setting a larger than
usual individual o.

Based on the discussion regarding false positives in detection monitoring in Chapter 6, some
might be concerned about the use of relatively high individual test-wise false positive rates (o) in order
to meet a pre-specified power, especially when considering the cumulative false positive error rate across
multiple wells and/or constituents (i.e, SWFPR). Given that a number of compliance wells and
constituents might need to be tested, the likelihood of occurrence of at least one false positive error
increases dramatically. However, several factors specific to compliance/assessment monitoring need to
be considered. Unlike detection monitoring where the number of tests is easily identified, the issue is
less obvious for compliance/assessment or corrective action testing. The RCRA regulations do not
clearly specify which wells and constituents must be compared to the GWPS in compliance/assessment
monitoring other than wells at the ‘compliance point.” In some situations, this has been interpreted to
mean all compliance wells; in other instances, only at those wells with a documented exceedance.

While all hazardous constituents including additional ones detected in Part 264 Appendix 1X
monitoring are potentially subject to testing, many may still be at concentration levels insignificantly
different from onsite background. Constituents without health-based limits may or may not be included
in compliance testing. The latter would be tested against background levels, using perhaps an ACL
computed as a tolerance limit on background (see Section 7.5). This also tends to complicate derivation
of SWFPRs in compliance testing. It was also noted in Section 7.2 that the levels at which contaminants
are released bear no necessary relationship to fixed, health-based standards. In a typical release, some
constituent levels from a suite of analytical parameters may lie orders of magnitude below their GWPS,
while certain carcinogenic compounds may easily exceed their standards.

! In some instances, a test with “reasonable confidence” (that is, having adequate statistical power) for identifying
compliance violations can be designed even if oo < 0.01. This is particularly the case when the sample coefficient of
variation is quite low, indicating small degrees of sample variability.
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The simple example below illustrates typical low-level aquifer concentrations following a release
of four common petrochemical facility hazardous organic constituents often detected together:

Analyte Aquifer Concentration (ug/l) MCL (ug/Il)
Mean SD
Benzene 20 10 5
Toluene 35 15 1,000
Ethylbenzene 40 20 700
Xylene 100 35 10,000

While benzene as a carcinogen has a very low health standard, the remaining three constituents
have aquifer concentrations orders of magnitude lower than their respective MCLs. Realistically, only
benzene is likely to impact the cumulative false positive rate in LCL testing. Similar relationships occur
in releases measured by trace element and semi-volatile organic suites.

Even though the null hypotheses in detection and compliance/assessment monitoring are similar
(and compound) in nature (see [7.1]), it is reasonable to presume in detection monitoring that the
compliance wells have average concentrations no less than mean background levels.? Since it is these
background levels to which the compliance point data are compared in the absence of a release, the
compound null hypothesis in detection monitoring (Ho: pc < usg) can be reformulated practically as (Ho:
Uc = Ugg). In this framework, individual concentration measurements are likely to occasionally exceed
the background average and at times cause false positives to be identified even when there has been no
change in average groundwater quality.

In compliance/assessment monitoring, the situation is generally different. The compound null
hypothesis (Ho: pc < GWPS) will include some wells and constituents where the sample mean equals or
nearly equals the GWPS when testing begins. But many well-constituent pairs may have true means
considerably less than the standard, making false positives much less likely for those comparisons and
lowering the overall SWFPR. How much so will depend on both the variability of each individual
constituent and the degree to which the true mean (or relevant statistical parameter ®) is lower than the
GWPS for that analyte.

Because of this, determining the relevant number of comparisons with non-negligible false positive
error rates may be quite difficult. The SWFPR in this situation would be defined as the probability that at
least one or more lower confidence limits exceeded the fixed standard G, when the true parameter ®
(usually the mean) was actually below the standard. However, the relevant number of comparisons will
depend on the nature and extent of the release. For a more extensive release, there is greater likelihood
that the null hypothesis is no longer true at one or more wells. Instead of computing false positive rates,
the focus should shift to minimizing false negative errors (i.e., the risk of missing contamination above
the GWPS).

2 Note that background might consist of early intrawell measurements from compliance wells when substantial spatial
variability exists.
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On balance, the Unified Guidance considers computation of cumulative SWFPRs in
compliance/assessment testing to be problematic, and reliance on individual test false positive rates
preferable. The above arguments also suggest that flexibility in setting individual test-wise o levels may
be appropriate.

7.4.2 FALSE POSITIVES AND STATISTICAL POWER IN CORRECTIVE ACTION

When contamination above a GWPS is confirmed, corrective action is triggered. Following a
period of remediation activity, formal statistical testing will usually involve an upper confidence limit
around the mean or an upper percentile compared against a GWPS. EPA’s overriding concern in
corrective action is that remediation efforts not be declared successful without sufficient statistical proof.
Since groundwater is now presumed to be impacted at unacceptable levels, a facility should not exit
corrective action until there is sufficient evidence that contamination has been abated.

Given the reversal of test hypotheses from compliance/assessment monitoring to corrective action
(i.e., comparing equation [7.1] with [7.2]), there is an asymmetry in regulatory considerations of false
positive and false negative rates depending on the stage of monitoring. In compliance/assessment
monitoring using tests of the lower confidence limit, the principal regulatory concern is that a given test
has adequate statistical power to detect exceedances above the GWPS.

Permitted RCRA monitoring is likely to involve small annual well sample sizes based on quarterly
or semi-annual sampling. To meet a pre-specified level of power by controlling the false negative rate
(B) necessitates varying the false positive rate (o) for individual tests. Controlling an SWFPR for these
tests (using a criterion like the SWFPR) is usually not practical because of the ambiguity in identifying
the relevant number of potential tests and the difficulty of properly assigning via the subdivision
principle (Chapter 19) individual fractions of a targeted SWFPR.

By contrast under corrective action using an upper confidence limit for testing, the principal
regulatory and environmental concern is that one or more constituents might falsely be declared below a
GWPS in concentration. Under the corrective action null hypothesis [7.2] this would be a false positive
error, implying that o should be minimized during this sort of testing, instead of B. Specific methods for
accomplishing this goal are presented in Chapter 22.

A remaining question is whether SWFPRs should be controlled during corrective action. While
potentially desirable, the number of well-constituent pairs exceeding their respective GWPS and subject
to corrective action testing is likely to be small relative to compliance testing. Not all compliance wells
or constituents may have been impacted, and some may not be contaminated to levels exceeding the
GWPS, depending on the nature, extent, and intensity of the plume. Remediation efforts would focus on
those constituents exceeding their GWPS.

As noted in Section 7.4.1, the tenuous relationship between ambient background levels,
contaminant magnitudes, and risk-based health standards implies that most GWPS exceedances are
likely to be carcinogens, usually representing a small portion of all monitored constituents. Some
exceedances may also be related compounds, for instance, chlorinated hydrocarbon daughter degradation
products.
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Statistically, the fact that some wells are contaminated while others may not be makes it difficult
to define SWFPRs in corrective action. Instead, the Unified Guidance attempts to limit the individual
test-wise o at those wells where exceedances have been confirmed and that are undergoing remediation.
Since the most important consideration is to ensure that the true population parameter (®) is actually
below the clean-up standard before declaring remediation a success, this guidance recommends the use
of a reasonably low, fixed test-wise false positive rate (e.g., o = .05 or .10). Under this framework, there
will be a 5% to 10% chance of incorrectly declaring any single well-constituent pair of being in
compliance when its concentrations are truly above the remedial standard.

The regulatory position in corrective action concerning statistical power is one of relative
indifference. Although power under [7.2] represents the probability that the confidence interval test will
correctly identify concentrations to be below the regulatory standard when in fact they are, the onus of
proof for demonstrating that remediation has succeeded (e.g., uc < GWPS) falls on the regulated facility.
As it is the facility’s interest to demonstrate compliance, it may wish to develop statistical power criteria
which would enhance this possibility (including increasing test sample sizes).

7.4.3 RECOMMENDED STRATEGIES

As noted in Section 7.1, the Unified Guidance recommends the use of confidence intervals in both
compliance/assessment and corrective action testing. In compliance/assessment, the lower confidence
limit is the appropriate statistic of interest, while in corrective action it is the upper confidence limit. In
either case, the confidence limit is compared against a fixed, regulatory standard as a one-sample test.
These recommendations are consistent with good statistical practice, as well as literature in the field,
such as Gibbons and Coleman (2001).

The type of confidence interval test will initially be determined by the choice of parameter(s) to
represent the GWPS (Section 7.2). While this discussion has suggested that the mean may be the most
appropriate parameter for chronic, health-based limits, other choices are possible. Chapter 21 identifies
potential test statistical tests of a mean, median or upper percentile as the most appropriate parameters
for comparison to a GWPS. In turn, data characteristics will determine whether parametric or non-
parametric test versions can be used. Depending on whether normality can be assumed for the original
data or following transformation, somewhat different approaches may be needed. Finally, the presence
of data trends affects how confidence interval testing can be applied.

Some regulatory programs prefer to compare each individual measurement against G, identifying a
well as out-of-compliance if any of the individual concentrations exceeds the standard. However, the
false positive rate associated with such strategies tends to be quite high if the parameter choice has not
been clearly specified. Using this individual comparison approach and assuming a mean as the
parameter of choice, is of particular concern. If the true mean is less than but close to the standard,
chances are very high that one or more individual measurements will be greater than the limit even
though the hypothesis in [7.1] has not been violated. Corrective action could then be initiated on a false
premise. To evaluate whether a limited number of sample data exceed a standard, a lower confidence
interval test would need to be based on a pre-specified upper percentile assumed to be the appropriate
parameter for comparison to the GWPS.

Small individual well sample sizes and data uncertainty can rarely be avoided in
compliance/assessment and corrective action. Given the nature of RCRA permits, sampling frequencies
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in compliance/assessment or corrective action monitoring are likely to be established in advance.
Relatively small sample sizes per well-constituent pair each year are likely to be the rule; the Unified
Guidance assumes that quarterly and semi-annual sampling will be very typical.

For small and highly variable sample data sets, compliance/assessment monitoring and corrective
action tests will have low statistical power either to detect exceedances above fixed standards or to
demonstrate compliance in corrective action. One way to both enhance statistical power and control false
positive error rates is through incremental or sequential pooling of compliance point data over time.
Adding more data into a test of non-compliance or compliance will generally result in narrower
confidence intervals and a clearer decision with respect to a compliance standard.

The Unified Guidance recommends accumulating compliance data over time at each well, by
allowing construction of confidence limits on overlapping as opposed to distinct or mutually exclusive
data sets. If the lower confidence limit [LCL] exceeds the GWPS in compliance/assessment, a clear
exceedance can be identified. If the upper confidence limit [UCL] is below the GWPS in corrective
action, remediation at that well can be declared a success. If neither of these respective events occurs,
further sampling should continue. A confidence interval can be recomputed after each additional 1 or 2
measurements and a determination made whether the position of the confidence limit has changed
relative to the compliance standard.

Tests constructed in this way at each successive evaluation period will not be statistically
independent; instead, the proposed testing strategy falls into the realm of sequential analysis. But it
should help to minimize the possibility that a small group of spurious values will either push a facility
into needless corrective action or prevent a successful remedial effort from being identified.

One caveat with this approach is that it must be reasonable to assume that the population parameter
O is stable over time. If a release has occurred and a contaminant plume is spreading through the aquifer,
concentration shifts in the form of increasing trends over time may be more likely at contaminated wells.
Likewise under active remediation, decreasing trends for a period of time may be more likely. Therefore,
it is recommended that the sequential testing approach be used after aquifer conditions have stabilized to
some degree. While concentration levels are actively changing with time, use of confidence intervals
around a trend line should be pursued (see Section 7.4.4 and Chapter 21).

7.4.4 ACCOUNTING FOR SHIFTS AND TRENDS

While accumulating compliance point data over time and successively re-computing confidence
limits is appropriate for stable (i.e., stationary) populations, it can give misleading or false results when
the underlying population is changing. Should a release create an expanding contaminant plume within
the aquifer, concentration levels at some or all of the compliance wells will tend to shift upward, either
in discrete jumps (as illustrated in Figure 7-2) or an increasing trend over time. In these cases, a lower
confidence limit constructed on accumulated data will be overly wide (due to high sample variability
caused by combining pre- and post-shift data) and not be reflective of the more recent upward shift in the
contaminant distribution.
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Figure 7-2. Effect on Confidence Intervals of Stable Contamination Level
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A similar problem can arise with corrective action data. Aquifer modifications as part of
contaminant removals are likely to result in observable declines in constituent concentrations during the
active treatment phase. At some point following cessation of remedial action, a new steady-state
equilibrium may be established (Figure 7-3).

Figure 7-3. Decreasing Trend During Corrective Action
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Until then, it is inappropriate to use a confidence interval test around the mean or an upper
percentile to evaluate remedial success with respect to a clean-up standard. During active treatment
phases and under non-steady state conditions, other forms of analysis such as confidence bands around a
trend (see below), are recommended and should be pursued.
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The Unified Guidance considers two basic types of non-stationary behavior: shifts and (linear)
trends. A shift refers to a significant mean concentration increase or decrease departing from a roughly
stable mean level. A trend refers to a series of consecutive measurements that evidence successively
increasing or decreasing concentration levels. More complicated non-random data patterns are also
possible, but beyond the scope of this guidance. With these two basic scenarios, the strategy for
constructing an appropriate confidence interval differs.

An important preliminary step is to track the individual compliance point measurements on a time
series plot (Chapter 9). If a discrete shift in concentration level is evident, a confidence limit should be
computed on the most recent stable measurements. Limiting the observations in this fashion to a
specific time period is often termed a ‘moving window.’ The reduction in sample size will often be more
than offset by the gain in statistical power. More recent measurements may exhibit less variation around
the shifted mean value, resulting in a shorter confidence interval (Figure 7-4). The sample size included
in the moving window should be sufficient to achieve the desired statistical power
(compliance/assessment) or false positive rate (corrective action). However, measurements that are
clearly unrepresentative of the newly shifted distribution should not be included, even if the sample size
suffers. Once a stable mean can be assumed, the strategy of sequential pooling can be used.

Figure 7-4. Effect on Confidence Intervals of Concentration Shift
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If well concentration levels exhibit an increasing or decreasing trend over time (such as the
example in Figure 7-5) and the pattern is reasonably linear or monotone, the trend can be identified
using the methods detailed in Chapter 17. To measure compliance or non-compliance, a confidence
band can be constructed around the estimated trend line, as described in Chapter 21. A confidence band
is essentially a continuous series of confidence intervals estimated along every point of the trend. Using
this technique, the appropriate upper or lower confidence limits at one or more points in the most recent
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portion of the end of the sampling record can be compared against the fixed standard. The lower band is
used to determine whether or not an exceedance has occurred in compliance/assessment, and an upper
confidence band to determine if remedial success has been achieved in corrective action.

Figure 7-5. Rising Trend During Compliance Monitoring
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By explicitly accounting for the trend, the confidence interval in Chapter 21 will adjust upward or
downward with the trend and thus more accurately estimate the current true concentration levels. Trend
techniques are not just used to track progress towards exceeding or meeting a fixed standard. Confidence
bands around the trend line can also provide an estimate of confidence in the average concentration as it
changes over time. This subject is further covered in the Comprehensive Environmental Response,
Compensation, and Liability Act [CERCLA] guidance Methods for Evaluating the Attainment of
Cleanup Standards — Volume 2: Groundwater (EPA, 1992a).

A final determination of remedial success should not solely be a statistical decision. In many
hydrologic settings, contaminant concentrations tend to rise after groundwater pumping wells are turned
off due to changes in well drawdown patterns. Concentration levels may exhibit more complicated
behavior than the two situations considered above. Thus, on balance, it is recommended that determining
achievement of corrective action goals be done in consultation with the site manager, geologist, and/or
remedial engineer.

7.4.5 IMPACT OF SAMPLE VARIABILITY, NON-DETECTS, AND NON-NORMAL DATA

Selection of hazardous constituents to be monitored in compliance/assessment or corrective action
is largely determined by permit decisions. Regulatory requirements (e.g., Part 264, Appendix 1X) may
also dictate the number of constituents. As a practical matter, the most reliable indicators of
contamination should be favored. Occasionally, constituents subject to degradation and transformation in
the aquifer (e.g., chlorinated hydrocarbon suites) may result in additional, related constituents of
concern.
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Since health-based considerations are paramount in this type of monitoring, the most sensitive
constituents from a health risk standpoint could be selected. But even with population parameters (®),
sample sizes, and constituents determined, selecting an appropriate confidence interval test from
Chapter 21 can be problematic. For mildly variable sample data, measured at relatively stable levels,
tests based on the normal distribution should be favored, whether constructed around a mean or an upper
percentile. With highly variable sample data, selection of a test is less straightforward. If the observed
data happen to be lognormal, Land’s confidence interval around the arithmetic mean is a valid option;
however, it has low power to measure compliance as the observations become more variable, and
upward adjustment of the false positive rate (o) may be necessary to maintain sufficient power.

In addition, the extreme variability of an upper confidence limit using Land’s technique can
severely restrict its usage in tests of compliance during corrective action. Depending on the data pattern
observed, degree of variability, and how closely the sample mimics the lognormal model, consultation
with a professional statistician should be considered to resolve unusual cases. When the lognormal
coefficient of variation is quite high, one alternative is to construct an upper confidence limit around the
lognormal geometric mean (Chapter 21). Although such a confidence limit does not fully account for
extreme concentration values in the right-hand tail of the lognormal distribution, a bound on the
geometric mean will account for the bulk of possible measurements. Nonetheless, use of a geometric
mean as a surrogate for the population arithmetic mean leads to distinctly different statistical test
characteristics in terms of power and false positive rates.

In sum, excessive sample variability can severely limit the effectiveness of traditional
compliance/assessment and corrective action testing. On the other hand, if excessive variability is
primarily due to trends observable in the data, confidence bands around a linear trend can be constructed
(Section 7.4.4).

LEFT-CENSORED SAMPLES

For compliance point data sets containing left-censored measurements (i.e.,, non-detects),
parametric confidence intervals cannot be computed directly without some adjustment. All of the
parametric confidence intervals described in Chapter 21 require estimates of the population mean p and
standard deviation . A number of adjustment strategies are presented in Chapter 15. If the percentage
of non-detects is small — no more than 10-15% — simple substitution of half the reporting limit [RL]
for each non-detect will generally work to give an approximately correct confidence interval.

For samples of at least 8-10 measurements and up to 50% non-detects, the Kaplan-Meier or robust
regression on order statistics [ROS] methods can be used. Data should first be assessed via a censored
probability plot whether the sample can be normalized. If so, these techniques can be used to compute
estimates of the mean p and standard deviation ¢ adjusted for the presence of left-censored values. These
adjusted estimates can be used in place of the sample mean (X ) and standard deviation () listed in the
confidence interval formulas of Chapter 21 around either a mean or upper percentile.

If none of these adjustments is appropriate, non-parametric confidence intervals on either the
median or an upper percentile (Section 21.2) can be calculated. Larger sample sizes are needed than with
parametric confidence interval counterparts, especially for intervals around an upper percentile, to ensure
a high level of confidence and a sufficiently narrow interval. The principal advantage of non-parametric
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intervals is their flexibility. Not only can large fractions of non-detects be accommodated, but non-
parametric confidence intervals can also be applied to data sets which cannot be normalized.

For heavily censored small data sets of 4-6 observations, the options are limited. One approach is
to replace each non-detect by half its RL and compute the confidence interval as if the sample were
normal. Though the resulting interval will be approximate, it can provide a preliminary indication of the
well’s compliance with the standard until further sampling data can be accumulated and the confidence
interval recomputed.

Confidence bands around a trend can be constructed with censored data using a bootstrapped
Theil-Sen non-parametric trend line (Section 21.3.2). In this method, the Theil-Sen trend is first
computed using the sample data, accounting for the non-detects. Then a large number bootstrap
resamples are drawn from the original sample, and an alternate Theil-Sen trend is conducted on each
bootstrap sample. Variability in these alternate trend estimates is then used to construct a confidence
band around the original trend.

LOGNORMAL AND OTHER NORMALIZED DATA

Lognormal data may require special treatment when building a confidence interval around the
mean. Land’s method (Section 21.1.3) can offer a reasonable way to accommodate the transformation
bias associated with the logarithm, particularly when computing a lower confidence limit as
recommended in compliance/assessment monitoring. For data normalized by transformations other than
the logarithm, one option is to calculate a normal-based confidence interval around the mean using the
transformed measurements, then back-transform the limits to the original concentration scale. The
resulting interval will not represent a confidence interval around the arithmetic mean of the original data,
but rather will estimate the confidence intervals of the median and/or geometric mean.

If the difference between the arithmetic mean and median is not considered important for a given
GWHPS, this strategy will be the easiest to implement. A wide range of results can occur with Land’s
method on highly skewed lognormal populations especially when computing an upper confidence limit
around the arithmetic mean (Singh et al., 1997). It may be better to either construct a confidence interval
around the lognormal geometric mean (Section 21.1.2) or to use the technique of bootstrapping (Efron,
1979; Davison and Hinkley, 1997) to create a non-parametric interval around the arithmetic mean.’

For confidence intervals around an upper percentile, no bias is induced by data that have been
normalized via a transformation. Whatever the transformation used (e.g., logarithm, square root, cube,
etc.), a confidence interval can be constructed on the transformed data. The resulting limits can then be
back-transformed to provide confidence limits around the desired upper percentile in the concentration
domain.

® Bootstrapping is widely available in statistical software, including the open source R computing environment and EPA’s
free-of-charge ProUCL package. In some cases, setting up the procedure correctly may require professional statistical
consultation.
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7.5 COMPARISONS TO BACKGROUND DATA

Statistical tests in compliance/assessment and corrective action monitoring will often involve a
comparison between compliance point measurements and a promulgated fixed health-based limit or a
risk-based remedial action goal as the GWPS, described earlier. But a number of situations arise where
a GWPS must be based on a background limit. The Part 264 regulations presume such a standard as one
of the options under §264.94(a); an ACL may also be determined from background under §264.94(b).
More recent Part 258 rules specify a background GWPS where a promulgated or risk-based standard is
not available or if the historical background is greater than an MCL [§258.55(h)(2) & (3)].

Health-based risk standards bear no necessary relationship to site-specific aquifer concentration
levels. At many sites this poses no problem, since the observed levels of many constituents may be
considerably lower than their GWPS. However, either naturally-occurring or pre-existing aquifer
concentrations of certain analytes can exceed promulgated standards. Two commonly monitored trace
elements in particular-- arsenic and selenium-- are occasionally found at uncontaminated background
well concentrations exceeding their respective MCLs. The regulations then provide that a GWPS based
on background levels is appropriate.

A number of factors should be considered in designing a background-type GWPS testing program
for compliance/assessment or corrective action monitoring. The most fundamental decision is whether
to base such comparisons on two- (or multiple-) sample versus single-sample tests. For the first, many
of the design factors discussed for detection monitoring in Chapter 6 will be appropriate; for single
sample comparisons to a fixed background GWPS, a confidence level approach similar to that discussed
earlier for testing fixed health standards in this Chapter 7 would be applied. This basic decision then
determines how the GWPS is defined, the appropriate test hypotheses, types of statistical tests, what the
background GWPS represents in statistical terms, and the relevance of individual test and cumulative
false positive error rates. Such decisions may also be constrained by State groundwater anti-degradation
policies. Other design factors to consider are the number of wells and constituents tested, interwell
versus intrawell options, background sample sizes, and power. Unlike a single fixed standard like an
MCL, background GWPS’s may be uniquely defined for a given monitoring well constituent by a
number of these factors.

SINGLE- VERSUS TWO-SAMPLE TESTING

One of two fundamental testing approaches can be used with site-specific background GWPSs.
Either 1) a GWPS is defined as the critical limit from a pre-selected detection-level statistical test (e.g., a
prediction limit) based on background measurements, or 2) background data are used to generate a fixed
GWPS somewhat elevated above current background levels. In both cases, the resulting GWPS will be
constituent- and possibly compliance well- specific. The first represents a two-sample test of two
distinct populations (or more if a multiple-sample test) similar to those utilized in detection monitoring.
As such, the individual test false positive rate, historical background sample size, cumulative false
positive considerations, number of annual tests and desired future sample size will uniquely determine
the limit. Whatever the critical value for a selected background test, it becomes the GWPS under
compliance/assessment or corrective action monitoring.
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The only allowable hypothesis test structure for the two-sample approach follows that of detection
and compliance monitoring [7.1]. Once exceeded and in corrective action, a return to compliance is
through evidence that future samples lie below the GWPS using the same hypothesis structure.

The second option uses a fixed statistic from the background data as the GWPS in a single-sample
confidence interval test. Samples from a single population are compared to the fixed limit. In other
respects, the strategy follows that outlined in Chapter 7 for fixed health- or risk-based GWPS tests. The
compliance/assessment test hypothesis structure also follows [7.1], but the hypotheses are reversed as in
[7.2] for corrective action testing.

The choice of the single-sample GWPS deserves careful consideration. In the past, many such
standards were simply computed as multiples of the background sample average (i.e., GWPS = 2-X).
However, this approach may not fully account for natural variation in background levels and lead to
higher than expected false positive rates. If the GWPS were to be set at the historical background
sample mean, even higher false positive rates would occur during compliance monitoring, and
demonstrating corrective action compliance becomes almost impossible.

In the recommendations which follow below, an upper tolerance limit based on both background
sample size and sample variability is recommended for identifying the background GWPS at a suitably
high enough level above current background to allow for reversal of the test hypotheses. Although a
somewhat arbitrary choice, a GWPS based on this method allows for a variety of confidence interval
tests (e.g., a one-way normal mean confidence interval identified in equations [7.3] and [7.4]).

WHAT A BACKGROUND GWPS REPRESENTS

If the testing protocol involves two-sample comparisons, the background GWPS is an upper limit
statistical interval derived from a given set of background data based on one or another detection
monitoring tests discussed in Chapter 6 and detailed in Part I11. In these cases, the appropriate testing
parameter is the true mean for the parametric tests, and the true median for non-parametric tests. This
would include 1-of-m prediction limit detection tests involving future values. If a single-sample
comparison against a fixed background GWPS is used, the appropriate parameter will also depend upon
the type of confidence interval test to be used (Part 1V). Except for parametric or non-parametric upper
percentile comparisons, the likely statistical parameter would again be a mean (arithmetic, logarithmic,
geometric) or the median. A background GWPS could be defined as an upper percentile parameter,
making use of normal test confidence interval structures found in Section 21.1.4. Non-parametric
percentile options would likely require test sample sizes too large for most applications. The Unified
Guidance recommended approaches for defining single-sample GWPSs discussed later in this section
presume a central tendency test parameter like the mean or median.

NUMBER OF MONITORED WELLS AND CONSTITUENTS

Compliance/assessment or corrective action monitoring tests against a fixed health- or risk-based
standard (including single-sample background GWPSs) are not affected in a significant manner by the
number of annual tests. But this would not be true for two- or multiple-sample background GWPS
testing. In similar fashion to detection monitoring, the total number of tests is an important
consideration in defining the appropriate false positive error test rate (awst). The total number of annual
tests is determined by how many compliance wells, constituents and evaluations occur per year.
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Regulatory agency interpretations will determine the number and location of compliance
monitoring wells. These can differ depending on whether the wells are unit-specific, and if a reasonable
subset can be shown to be affected by a release. Perhaps only those compliance wells containing
detectable levels of a compliance monitoring constituent need be included. Formal annual tests are
generally required semi-annually, but other approaches may be applied.

The number of constituents subject to two-sample background GWPS testing will also depend on
several factors. Only hazardous constituents not having a health- or risk-based standard are considered
here.  The basic criterion in interpreting required Part 264 Appendix IX or Part 258 Appendix Il
analyses is to identify those hazardous constituents found in downgradient compliance wells. Some
initially detected common laboratory or sampling contaminants might be eliminated following a repeat
scan. The remainder of the qualifying constituents will then require some form of background GWPS’s.
Along with the number of wells and annual evaluations, the total annual number of background tests will
then be used in addressing an overall design cumulative design false positive rate.

In corrective action testing (for either the one- or two-sample approaches), the number of
compliance wells and constituents may differ. Only those wells and constituents showing a significant
compliance test exceedance might be used. However, from a standpoint of eventually demonstrating
compliance under corrective action, it might be appropriate to still use the compliance/assessment
GWPS for two-sample tests. With single-sample tests, the GWPS is compared individually by well and
constituent as described.

BACKGROUND SAMPLE SIZES and INTERWELL vs. INTRAWELL TESTING

Some potential constituents may already have been monitored during the detection phase, and have
a reasonable background size. Others identified under Part 264 Appendix IX or part 258 Appendix Il
testing may have no historical background data bases and require a period of background sampling.

Historical constituent well data patterns and the results of this testing may help determine if an
interwell or intrawell approach should be used for a given constituent. For example, if arsenic and
selenium were historical constituents in detection monitoring, they might also be identified as candidates
for compliance background GWPS testing. There may already be indications that individual well spatial
differences will need to be taken into account and an intrawell approach followed. In this case,
individual compliance well background GWPSs need to be established and tested. On the other hand,
certain hazardous trace elements and organics may only be detected and confirmed in one or more
compliance wells with non-detects in background upgradient wells and possibly historical compliance
well data. Under the latter conditions, the simpler Double Quantification Rule (Section 6.2.2.) might be
used with the GWPS set at a quantification limit. However, this could pose some interpretation
problems. Subsequent testing against the background GWPS at the same compliance well concentration
levels causing the initial detection monitoring exceedance, might very likely result in further excursions
above the background GWPS. The more realistic option would be to collect and use additional
compliance well data to establish a specific minimum intrawell background, and only apply the Double
Quantification Rule at other wells not exhibiting detections. Even this approach might be unnecessarily
stringent if a contaminant plume were to expand in size and gradually affect other compliance wells
(now subject to GWPS testing).
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CUMULATIVE & INDIVIDUAL TEST FALSE POSITIVE RATES

Each of the independent two-sample tests against background standards will have a roughly equal
probability of being exceeded by chance alone. Since an exceedance in the compliance monitoring
mode based on background can result in a need for corrective action, it is recommended that the
individual test false positive rate be set sufficiently low. Much of the discussion in Chapter 6, Section
6.2.2 is relevant here. An a priori, cumulative error design rate must first be identified. To allow for
application of the Unified Guidance detection monitoring strategies and Appendix D tables, it is
suggested that the .1 SWVFPR value also be applied to two-sample background GWPS testing. In similar
fashion to Chapter 6 and Part |11, this can be translated into individual test configurations.

If the single-sample confidence interval option will be used with an elevated GWPS, the
compliance level test will have a very low probability of being exceeded by truly background data.
Cumulative false positive error considerations are generally negligible. For testing
compliance/assessment or corrective action hypotheses, there is still a need to identify an appropriately
low single test false positive rate which meets the regulatory goals. Generally, a single test false
positive error rate of .1 to .05 will be suitable with the recommended approach for defining the
background GWPS.

UNIFIED GUIDANCE RECOMMENDATIONS
Two-Sample GWPS Definition and Testing

As indicated above, any of the detection monitoring tests described in Chapter 6 might be selected
for two- or multiple- sample background compliance testing. One highly recommended statistical test
approach is a prediction limit. Either a parametric prediction limit for a future mean (Section 18.2.2) or
a non-parametric prediction limit for a future median (Section 18.3.2) can be used, depending on the
constituent being tested and its statistical and distributional characteristics (e.g., detection rate,
normality, etc.). It would be equally possible to utilize one of the 1-of-m future value prediction limit
tests, on an interwell or intrawell basis. Use of repeat samples as part of the selected test is appropriate,
although the expected number of annual compliance/corrective action samples may dictate which tests

can apply.

One parametric example is the 1-of-1 future mean test. If the background data can be normalized,
background observations are used to construct a parametric prediction limit with (1-o)) confidence
around a mean of order p, using the equation:

PRE-1 l+— [7.5]
Y

The next p measurements from each compliance well are averaged and the future mean compared
to the background prediction limit, PL (considered the background GWPS). In compliance/assessment
monitoring, if any of the means exceeds the limit, those well-constituent pairs are deemed to be out of
compliance. In corrective action, if the future mean is no greater than PL, it can be concluded that the
well-constituent pair is sufficiently similar to background to be within the remediation goal. In both
monitoring phases, the prediction limit is constructed to represent a reasonable upper limit on the
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background distribution. Compliance point means above this limit are statistically different from
background; means below it are similar to background.

If the background sample cannot be normalized perhaps due to a large fraction of non-detects, two-
sample non-parametric upper prediction limit detection monitoring tests (Chapters 18 & 19) can be
used. As an example, a maximal order statistic (often the highest or second-highest value) can be
selected from background as a non-parametric 1-of-1 upper prediction limit test of the median. Table
18-2 is used to guide the choice based on background sample size (n) and the achievable confidence
level (o). The median of the next 3 measurements from each compliance well is compared to the upper
prediction limit. As with the parametric case in compliance/assessment, if any of the medians exceeds
the limit, those well-constituent pairs would be considered out of compliance. In corrective action, well-
constituent pairs with medians no greater than the background prediction limit would be considered as
having met the standard.

If background measurements for a particular constituent are all non-detect, the GWPS should be
set equal to the highest RL. In similar fashion to detection monitoring, 1-of-2 or 1-of-3 future value
prediction limit tests can be applied (Section 6.2.2 Double Quantification rule).

Single-Sample GWPS Definition and Testing

For single-sample testing, the Unified Guidance recommendation is to define a fixed GWPS or
ACL based on a background upper tolerance limit with 95% confidence and 95% coverage (Chapter
17). For normal background, the appropriate formula for the GWPS would be the same as that given in
Section 17.2.1, namely:

GWPS = X+ 7(n,.95,.95)-s [7.6]

where n = number of background measurements, X and s represent the background sample mean and
standard deviation, and 1 is a tolerance factor selected from Table 17-3. If the background sample is a
mixture of detects and non-detects, but the non-detect fraction is no more than 50%, a censored
estimation method such as Kaplan-Meier or robust regression on order statistics [ROS] (Chapter 15)
can be attempted to compute adjusted estimates of the background mean p and standard deviation ¢ in
equation [7.5].

For larger fractions of non-detects, a non-parametric tolerance limit can be constructed, as
explained in Section 17.2.2. In this case, the GWPS median will often be set to the largest or second-
largest observed value in background. Table 17-4 can be used to determine the achieved confidence
level (1-o) associated with a 95% coverage GWPS constructed in this way. Ideally, enough background
measurements should be used to set the tolerance limit as close to the target of 95% coverage, 95%
confidence as possible. However, this could require very large background sample sizes (n > 60).

Multiple independent measurements are used to form either a mean or median confidence interval
for comparison with the background GWPS. Preferably at least 4 distinct compliance point
measurements should be used to define the mean confidence interval in the parametric case, and 3-7
values should be used with a non-parametric median test. The guidance does not recommend retesting in
single-sample background GWPS compliance/assessment monitoring. An implicit kind of retesting is
built in to any test of a sample mean or median as explained in Section 19.3.2.
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In essence, the background tolerance limit is used to set a somewhat higher mean target GWPS
which can accommodate both compliance and corrective action testing under background conditions.
The GWPS in equation [7.6] can be interpreted as an approximation to the upper 95th percentile of the
background distribution. It is designed to be a reasonable maximum on the likely range of background
concentrations. It is high enough that compliance wells exceeding the GWPS via a confidence interval
test (i.e, LCL > GWPS) are probably impacted and not mere false positives. At the same time,
successful remedial efforts must show that concentrations at contaminated wells have decreased to levels
similar to background. The GWPS above represents an upper bound on background but is not so low as
to make proof of remediation via an upper confidence limit [GWPS] impossible.

To ensure that the GWPS in equation [7.6] sets a reasonable target, the Unified Guidance
recommends that at least 8 to 10 background measurements (n) be utilized, and more if available. If the
background sample is not normal, but can be normalized via a transformation, the tolerance limit should
be computed on the transformed measurements and the result back-transformed to obtain a limit in the
concentration scale (see Chapter 17 for further details).

TRADEOFFS IN BACKGROUND GWPS TESTING METHODS

A two-sample GWPS approach offers a stricter test of background exceedances. There is also
greater flexibility in designing tests for a variety of future comparison values (single with repeat, small
sample means, etc.). The true test parameter is explicitly defined by the type of test chosen. Non-
parametric upper prediction limit tests also allow for greater flexibility when data sets include significant
non-detect values or are not transformable to a normal distribution assumption. The approach suggested
in this section accounts for the cumulative false positive error rate.

One negative feature of two-sample GWPS testing is that the test hypotheses cannot be reversed
for correction action monitoring. The trigger for compliance/assessment testing may also be quite small,
resulting in important consequences (the need to move to corrective action). It may also be difficult to
demonstrate longer-term compliance following remedial activities, if the actual background is somewhat
elevated.

Single-sample GWPS testing, by contrast, does allow for the reversal of test hypotheses. Using a
suitable definition of the somewhat elevated GWPS takes into account background sample variability
and size. Cumulative false positive error rates for compliance or corrective action testing are not
considered, and standardized alpha error levels (.1 or .05) can be used. Exceedances under compliance
monitoring also offer clear evidence of a considerable increase above background.

But applying an arbitrary increase above background recommended for single-sample testing may
conflict with State anti-degradation policy. Defining the GWPS as a specific population parameter is
also somewhat arbitrary. Using the suggested guidance approach for defining the GWPS in equation
[7.6] above, may result in very high values if the data are not normal (including logarithmic or non-
parametric applications). There is also less flexibility in identifying testing options, especially with data
sets containing significant non-detect values. Annual testing with quarterly sampling may be the only
realistic choice.

A possible compromise might utilize both approaches. That is, initially apply the two-sample
approach for compliance/assessment testing. Then evaluate the single-sample approach with reversed
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hypotheses. Some of the initially significant increases under the two-sample approach may also meet the
upper confidence level limit when tested against the higher GWPS. Those well constituents that cannot
meet this limit can then be subjected to corrective action remediation and full post-treatment testing.
This implies that the background GWPS would be a range based on the two testing methods rather than
a single value.

» EXAMPLE 7-1

A facility has triggered a significant increase under detection monitoring. One hazardous
constituent (arsenic) was identified which must be tested against a background GWPS at six different
compliance wells, since background well levels were above the appropriate arsenic MCL of 10 ug/I.
Two semi-annual tests are required for compliance/assessment monitoring. Assume that arsenic had
been detected in both background and downgradient wells, but was significantly higher in one of the
compliance wells. It must be determined whether any of the compliance wells have exceeded their
background GWPS, and might require corrective action.

Design a background GWPS monitoring system for the following arsenic data from the elevated
Well #1, consisting of eight hypothetical historical intrawell background samples and four future annual
values for two different simulated data distribution cases shown in the table below. Sample means and
standard deviations are provided in the bottom row:

Compliance Well #1 Arsenic (pg/l)

Historical Well Data Case 1 Case2
74.1 41.5 61.5 95.0
10.8 41.0 58.7 73.4
32.8 30.8 76.8 73.3
25.0 40.0 81.3 90.0

X =37.0 X = 69.58 X = 82.93
s =18.16 s=11.15 s=11.24

Background values were randomly generated from a normal distribution with a true mean of u =
40 and a population standard deviation of o = 16. Case 1 future data were from a normal distribution
with a mean 1.5 times higher, while Case 2 data were from a normal distribution twice as high as the
background true mean. Both cases used the same background population standard deviation. The intent
of these simulated values is to allow exploration of both of the Unified Guidance recommended
background GWPS methods when background increases are relatively modest and sample sizes small.

The two-sample background GWPS approach is first evaluated. Assume that the background
data are normal and stationary (no evidence of spatial or temporal variation and other forms of statistical
dependence). Given a likely limit of future quarterly sampling and required semi-annual evaluations,
two guidance prediction limit options would seem appropriate—either a 1-of-2 future values or a 1-of-1
future mean size 2 test conducted twice a year. The 1-of-2 future values option is chosen.

Since there are a total of 6 compliance wells, one background constituent and two annual
evaluations, there are a total of 12 annual background tests to be conducted. Either the Unified
Guidance tables in Appendix D or R-script can be used to identify the appropriate prediction limit x-

7-26 March 2009




Chapter 7. Compliance Monitoring Strategies Unified Guidance

factor. For the 1-of-2 future values test, x = 1.83 (found by interpolation from the second table on page
D-118), based on w = 6, COC = 1, and two tests per year. The calculated prediction limit using the
background data set statistics and k-factor is 70.2 ug/l, serving as the background GWPS.

When the future values from the table above are tested against the GWPS, the following results
are obtained. A “Pass” indicates that the compliance/assessment null hypothesis was achieved, while a
“Fail” indicates that the alternative hypothesis (the GWPS has been exceeded) is accepted.

Well #1 As Compliance Comparisons
1-of-2 Future Values Test (ng/l)

Case 1 Result Case 2 Result
(data) (data)
61.5 95.0
58.7 Pass 73.4 Fail
76.8 73.3
81.3 Fail 90.0 Fail
GWPS = 70.2

Both cases indicate at least one GWPS exceedance using the 1-of-2 future values tests. These
may be indications of a statistically significant increase above background, but the outcome for Case 1 is
somewhat troubling. While a 50% increase above background (based on the simulated population
parameters) is potentially significant, more detailed power evaluations indicate that such a detected
exceedance would only be expected about 24% of the time (using R-script power calculations with a Z-
value of 1.25 standard deviations above background for the 1-of-2 future values test). In contrast, the
2.5 Z-value for Case 2 would be expected to be exceeded about 76% of the time. In order to further
evaluate the extent of significance of these results, the single-sample GWPS method is also considered.

Following the guidance above, define the single-sample mean GWPS using equation [7.6] for the
upper 95% confidence, 95% proportion tolerance limit. Then apply upper and lower normal mean
confidence intervals tests of the Case 1 and 2 n = 4 sample data using equations [7.3] and [7.4].

From Table 21-9 on page D-246, a z-factor of 3.187 is used with the background mean and
standard deviation to generate the GWPS = 94.9. One-way upper and lower mean confidence levels are
evaluated at 90 or 95% confidence for the tests and compared to the fixed background GWPS.

LCL test Pass/Fail results are the same as above for the two-sample compliance test. However, a
“Pass” for the UCL test implies that the alternative hypothesis (less than the standard) is accepted while
a “Fail” implies greater than or equal to the GWPS under corrective action monitoring hypotheses:
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As Mean Confidence Interval Tests Against Background GWPS (ng/l)

LCL Test UCL Test

90% Result 95% Result 90% Result 95% Result

LCL LCL UCL UCL
Case 1 Data

60.5 Pass 56.5 Pass | 78.7 Pass 82.7 Pass
Case 2 Data

73.7 Pass 69.7 Pass | 92.1 Pass 96.2 Fail
GWPS = 94.9

For either chosen significance level, the Case 1 90% and 95% UCLs of 78.7 and 82.7 are below
the GWPS and the alternative corrective action hypothesis (the mean is less than the standard) can be
accepted. For Case 2, the 90% UCL of 92.1 is below the GWPS, but the 95% UCL of 96.2 is above. If
a higher level of test confidence is appropriate, the Case 2 arsenic values can be considered indicative of
the need for corrective action.

If only the single-sample background GWPS approach were applied to the same data as above in
compliance/assessment monitoring tests, neither case mean LCLs would exceed the standard, and no
corrective action monitoring would be necessary. However, it should be noted from the example that
this approach does allow for a significant increase above the reference background level before any
action would be indicated. <«

The approaches provided above presume that well constituent data subject to background GWPS
testing are stationary over time. If sampling data show evidence of a trend, the situation becomes more
complicated in making compliance or corrective action test decisions. Two- and single-sample stationary
scenarios for identifying standards may not be appropriate. Trend behavior can be determined by
applying one of the methods provided in Chapter 17 (e.g., linear regression or Mann-Kendall trend
tests) to historical data. A significant increasing slope can be indicative of a background exceedance,
although it should be clear that the increase is not due to natural conditions. A decreasing or non-
significant slope can be considered evidence for compliance with historical background. The most
problematic standard would be setting an eventual background target for compliance testing under
corrective action. To a great extent, it will depend on site-specific conditions including the behavior of
specific constituent subject to remediation. A background GWPS might be determined following the
period of remediation and monitoring when aquifer conditions have hopefully stabilized.

Setting and applying background GWPSs have not received a great deal of attention in previous
guidance. The discussions and example above help illustrate the somewhat difficult regulatory choices
that need to be made. A regulatory agency needs to determine what levels, if any, above background can
be considered acceptable. A further consideration is the degree of importance placed on background
GWPS exceedances, particularly when tested along with constituents having health-based limits.
Existing regulatory programs may have already developed procedures to deal with many of the issues
discussed in this section.
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CHAPTER 8. SUMMARY OF RECOMMENDED METHODS

8.1 SELECTING THE RIGHT STATISTICAL METHODS .....cuttteiteitirteauiesiensessessessesseassessessessessessesseensesaessessesnesseensensennens 8-1
8.2 TABLE 8.1 INVENTORY OF RECOMMENDED METHODS ......ccutetieiitiriistinieaiieie st sttt sne s sne s 8-4
8.3 IMIETHOD SUMMARIES ....c.ttitiitieiteuteiteatesteateeseess etttk bt ebe e e eab et e btk e b e eb e e s e s b e nb e eb e ek e e b e e s e et e ke nbeeb e e beent e e e b e nbeane s 8-9

This chapter provides a quick guide to the statistical procedures discussed within the Unified
Guidance. The first section is a basic road map designed to encourage the user to ask a series of key
questions. The other sections offer thumbnail sketches of each method and a matrix of options to help in
selecting the right procedure, depending on site-specific characteristics and constraints.

8.1 SELECTING THE RIGHT STATISTICAL METHODS

Choosing appropriate statistical methods is important in developing a sound groundwater
monitoring statistical program. The statistical test(s) should be selected to match basic site-specific
characteristics such as number and configuration of wells, the water quality constituents being measured,
and general hydrology. Statistical methods should also be selected with reference to the statistical
characteristics of the monitored parameters — proportion of non-detects, type of concentration
distribution (e.g., normal, lognormal), presence or absence of spatial variability, etc.

Because site conditions and permit requirements vary considerably, no single *“cookbook”
approach is readily available to select the right statistical method. The best strategy is to consider site-
specific conditions and ask a series of questions. A table of recommended options (Table 8-1) and
summary descriptions is presented in Section 8.2 to help select an appropriate basic approach.

The first question is: what stage of monitoring is required? Detection monitoring is the first stage
of any groundwater monitoring program and typically involves comparisons between measurements of
background and compliance point groundwater. Most of the methods described in this document (e.g.,
prediction limits, control charts, tests for trend, etc.) are designed for facilities engaged in detection
monitoring. However, it must be determined whether an interwell (e.g., upgradient-to-downgradient) or
an intrawell test is warranted. This entails consideration of the site hydrology, constituent detection rates,
and deciding whether separate (upgradient) wells or past intrawell data serves as the most appropriate
and representative background.

Compliance/assessment monitoring is required for facilities that no longer meet the requirements
of a detection monitoring program by exhibiting statistically significant indications of a release to
groundwater. Once in compliance/assessment, compliance point measurements are typically tested
against a fixed GWPS. Examples of fixed standards include Maximum Concentration Limits [MCL],
risk-derived limits or a single limit derived from background data. The most appropriate statistical
method for tests against GWPS is a lower confidence limit. The type of confidence limit will depend on
whether the regulatory standard represents an average concentration; an absolute maximum, ceiling, or
upper percentile; or whether the compliance data exhibit a trend over time.

In cases where no fixed GWPS is specified for a particular constituent, compliance point data may
be directly compared against background data. In this situation, the most appropriate statistical method is
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one or another detection monitoring two- or multiple-sample tests using the critical design limit as the
GWPS (discussed in Section 7.5).

Corrective action is reserved for facilities where evidence of a groundwater release is confirmed
above a GWPS. In these situations, the facility is required to submit an appropriate remediation plan to
the Regional Administrator and to institute steps to insure adequate containment and/or clean-up of the
release. Remediation of groundwater can be very costly and also difficult to measure. EPA has not
adopted a uniform approach in the setting of clean-up standards or how one should determine whether
those clean-up standards have been attained. Some guidance on this issue is given in the EPA document,
Methods for Evaluating the Attainment of Cleanup Standards, Volume I1: Groundwater (EPA, 1992).

The null hypothesis in corrective action testing is reversed from that of detection and
compliance/assessment monitoring. Not only is it assumed that contamination is above the compliance
or clean-up standard, but corrective action should continue until the average concentration level is below
the clean-up limit for periods specified in the regulations. For any fixed-value standard (e.g., the GWPS
or a remediation goal) a reasonable and consistent statistical test for corrective action is an upper
confidence limit. The type of confidence limit will depend on whether the data have a stable mean
concentration or exhibit a trend over time. For those well constituents requiring remediation, there will
be a period of activity before formal testing can take place. A number of statistical techniques (e.g. trend
testing) can be applied to the data collected in this interim period to gauge prospects for eventual GWPS
compliance. Section 7.5 describes corrective action testing limitations involving a two-sample GWPS.

Another major question involves the statistical distribution most appropriate to the observed
measurements. Parametric tests are those which assume the underlying population follows a known and
identifiable distribution, the most common examples in groundwater monitoring being the normal and
the lognormal. If a specific distribution cannot be determined, non-parametric test methods can be used.
Non-parametric tests do not require a known statistical distribution and can be helpful when the data
contain a substantial proportion of non-detects. All of the parametric tests described in the Unified
Guidance, except for control charts, have non-parametric counterparts that can be used when the
underlying distribution is uncertain or difficult to test.

A special consideration in fitting distributions is the presence of non-detects, also known as left-
censored measurements. As long as a sample contains a small fraction of non-detects (i.e., no more than
10-15%), simple substitution of half the reporting limit [RL] is generally adequate. If the proportion of
non-detects is substantial, it may be difficult or impossible to determine whether a specific parametric
distributional model provides a good fit to the data. For some tests, such as the t-test, one can switch to a
non-parametric test with little loss of power or accuracy. Non-parametric interval tests, however, such as
prediction and tolerance limits, require substantially more data before providing statistical power
equivalent to parametric intervals. Partly because of this drawback, the Unified Guidance discusses
methods to adjust datasets with significant fractions of non-detects so that parametric distributional
models may still be used (Chapter 15).

The Unified Guidance now recommends a single, consistent Double Quantification rule approach
for handling constituents that have either never been detected or have not been recently detected. Such
constituents are not included in cumulative annual site-wide false positive error rate [SWFPR]
computations; and no special adjustment for non-detects is necessary. Any confirmed quantification (i.e.,
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two consecutive detections above the RL) at a compliance point provides sufficient evidence of
groundwater contamination by that parameter.

A key question when picking a test for detection monitoring is whether traditional background-to-
downgradient interwell or single-well intrawell tests are appropriate. If intrawell testing is appropriate,
historical measurements form the individual compliance well’s own background while future values are
tested against these data. Intrawell tests eliminate any natural spatial differences among monitoring
wells. They can also be used when the groundwater flow gradient is uncertain or unstable, since all
samples being tested are collected from the same well.

Possible disadvantages to intrawell tests also need to be considered. First, if the compliance well
has already been impacted, intrawell background will also be impacted. Such contaminated background
may provide a skewed comparison to later data from the same well, making it difficult to identify
contaminated groundwater in the future. Secondly, if intrawell background is constructed from only a
few early measurements, considerable time may be needed to accumulate a sufficient number of
background observations (via periodic updating) to run a statistically powerful test.

If a compliance well has already been impacted by previous contamination, trend testing can still
indicate whether conditions have deteriorated since intrawell background was collected. For sites
historically contaminated above background, the only way to effectively monitor compliance wells may
be to establish an historical intrawell baseline and measure increases above this baseline.

Besides trend tests, techniques recommended for intrawell comparisons include intrawell
prediction limits, control charts, and sometimes the Wilcoxon rank-sum test. The best choice between
these methods is not always clear. Since there is no non-parametric counterpart to control charts, the
choice will depend on whether the data is normal or can be normalized via a transformation. New
guidance for control charts shows they also can be designed to incorporate retesting. For sites with a
large number of well-constituent pairs, intrawell prediction limits can incorporate retesting to meet
specific site-wide false positive rate and statistical power characteristics. Parametric intrawell prediction
limits can be used with background that is normal or transformable to normality; non-parametric
versions can also be applied for many other data sets.

If interwell, upgradient-to-downgradient tests are appropriate, the choice of statistical method
depends primarily on the number of compliance wells and constituents being monitored, the number of
observations available from each of these wells, and the detection rates and distributional properties of
these parameters. If a very small number of comparisons must be tested (i.e., two or three compliance
wells versus background, for one or two constituents), a t-test or Wilcoxon rank-sum test may be
appropriate if there are a sufficient number of compliance measurements (i.e., at least two per well).

For other cases, the Unified Guidance recommends a prediction limit or control chart constructed
from background. Whenever more than a few statistical tests must be run, retesting should be
incorporated into the procedure. If multiple observations per compliance well can be collected during a
given evaluation period, either a prediction limit for “future’ observations, a prediction limit for means
or medians, or a control chart can be considered, depending on which option best achieves statistical
power and SWFPR targets, while balancing the site-specific costs and feasibility of sampling. If only one
observation per compliance well can be collected per evaluation, the only practical choices are a
prediction limit for individual observations or a control chart.
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8.2 TABLE 8-1 INVENTORY OF RECOMMENDED METHODS

Chapter 9. Exploratory Tools

Statistical Method Chapter Use

Time Series Plot §9.1 Plot of measurement levels over time; Useful for assessing trends,
data inconsistencies, etc.

Box Plot §9.2 Graphical summary of sample distribution; Useful for comparing key
statistical characteristics in multiple wells

Histogram §9.3 Graphical summary of sample distribution; Useful for assessing
probability density of single data set

Scatter Plot §9.4 Diagnostic tool; Plot of one variable vs. another; Useful for exploring
statistical associations

Probability Plot §9.5 Graphical fit to normality; Useful for raw or transformed data

Chapter 10. Fitting Distributions

Statistical Method Chapter Use

Skewness Coefficient §10.4  Measures symmetry/asymmetry in distribution; Screening level test
for plausibility of normal fit

Coefficient of Variation §10.4 Measures symmetry/asymmetry in distribution; Screening tool for
plausibility of normal fit; Only for non-negative data

Shapiro-Wilk Test §10.5.1 Numerical normality test of a single sample; for n < 50

Shapiro-Francia Test §10.5.2 Numerical test of normality for a single sample; Supplement to
Shapiro-Wilk; Use with n > 50

Filliben’s Probability §10.6 Numerical test of normality for a single sample; Interchangeable with

Plot Correlation Shapiro-Wilk; Use with n < 100; Good supplement to probability plot

Coefficient

Shapiro-Wilk Multiple §10.7 Extension of Shapiro-Wilk test for multiple samples with possibly

Group Test different means and/or variances; Good check to use with Welch'’s t-
test

Chapter 11. Equality of Variance

Statistical Method Chapter Use

Box Plots (side-by- §11.1 Graphical test of differences in population variances; Good screening

side) tool for equal variance assumption in ANOVA

Levene's Test §11.2 Numerical, robust ANOVA-type test of equality of variance for > 2
populations; Useful for testing assumptions in ANOVA

Mean-SD Scatter Plot §11.3  Visual test of association between SD and mean levels across group

of wells; Use to check for proportional effect or if variance-stabilizing
transformation is needed

Chapter 12. Outliers

Statistical Method Chapter Use

Probability Plot §12.1 Graphical fit of distribution to normality; Useful for identifying
extreme points not coinciding with predicted tail of distribution

Box Plot §12.2 Graphical screening tool for outliers; quasi-non-parametric, only
requires rough symmetry in distribution

Dixon’s Test §12.3 Numerical test for single low or single high outlier; Use when n < 25

Rosner’s Test §12.4 Numerical test for up to 5 outliers in single dataset; Recommended

when n = 20; User must identify a specific number of possible
outliers before running
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Chapter 13. Spatial Variation

Statistical Method Chapter Use

Box Plots (side-by- §13.2.1 Quick screen for spatial variability; Look for noticeably staggered
side) boxes

One-Way Analysis of §13.2.2 Test to compare means of several populations; Use to identify spatial
Variance [ANOVA] for variability across a group of wells and to estimate pooled (background)
Spatial Variation standard deviation for use in intrawell tests; Data must be normal or

normalized; Assumption of equal variances across populations

Chapter 14. Temporal Variability

Statistical Method Chapter Use

Time Series Plot §14.2.1 Quick screen for temporal (and/or spatial) variation; Look for parallel
(parallel) movement in the graph traces at several wells over time

One-way ANOVA for §14.2.2 Testto compare means of distinct sampling events, in order to
Temporal Effects assess systematic temporal dependence across wells; Use to get

better estimate of (background) variance and degrees of freedom in
data with temporal patterns; Residuals from ANOVA also used to
create stationary, adjusted data

Sample §14.2.3 Plot of autocorrelation by lag between sampling events; Requires

Autocorrelation approximately normal data; Use to test for temporal correlation

Function and/or to adjust sampling frequency

Rank von Neumann §14.2.4 Non-parametric numerical test of dependence in time-ordered data

Ratio series; Use to test for first-order autocorrelation in data from single
well or population

Darcy Equation §14.3.2 Method to approximate groundwater flow velocity; Use to determine

sampling interval guaranteeing physical independence of consecutive
groundwater samples; Does not ensure statistical independence

Seasonal Adjustment §14.3.3 Method to adjust single data series exhibiting seasonal correlations

(single well) (i.e., cyclical fluctuations); At least 3 seasonal cycles must be evident
on time series plot

Temporally-Adjusted §14.3.3 Method to adjust multiple wells for a common temporal dependence;

Data Using ANOVA Use adjusted data in subsequent tests

Seasonal Mann-Kendall §14.3.4 Extension of Mann-Kendall trend test when seasonality is present; At

Test least 3 seasonal cycles must be evident

Chapter 15. Managing Non-Detect Data

Statistical Method Chapter Use

Simple Substitution §15.2 Simplest imputation scheme for non-detects; Useful when < 10-15%
of dataset is non-detect

Censored Probability §15.3 Probability plot for mixture of non-detects and detects; Use to check

Plot normality of left-censored sample

Kaplan-Meier §15.3 Method to estimate mean and standard deviation of left-censored

sample; Use when < 50% of dataset is non-detect; Multiple detects
and non-detects must originate from same distribution

Robust Regression on §15.4  Method to estimate mean and standard deviation of left-censored

Order Statistics sample; Use when < 50% of dataset is non-detect; Multiple detects
and non-detects must originate from same distribution

Cohen’ Method and §15.5  Other methods to estimate mean and standard deviation of left-

Parametric Regression censored sample; Use when < 50% of dataset is non-detect; Detects

on Order Statistics and non-detects must originate from same distribution and there

must be a single censoring limit
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Chapter 16. Two-sample Tests

Statistical Method Chapter Use

Pooled Variance t-Test  g16,1,1 Test to compare means of two populations; Data must be normal or
normalized, with no significant spatial variability; Useful at very small
sites in upgradient-to-downgradient comparisons; Also useful for
updating background; Population variances must be equal

Welch’s t-Test §16.1.2 Test to compare means of two populations; Data must be normal or
normalized, with no significant spatial variability; Useful at very small
sites in interwell comparisons; Also useful for updating background;
Population variances can differ

Wilcoxon Rank-Sum §16.2 Non-parametric test to compare medians of two populations; Data

Test need not be normal; Some non-detects OK; Should have no
significant spatial variability; Useful at very small sites in interwell
comparisons and for certain intrawell comparisons; Also useful for
updating background

Tarone-Ware Test §16.3 Extension of Wilcoxon rank-sum; non-parametric test to compare
medians of two populations; Data need not be normal; Designed to
accommodate left-censored data; Should have no significant spatial
variability; Useful at very small sites in interwell comparisons and for
certain intrawell comparisons; Also useful for updating background

Chapter 17. ANOVA, Tolerance Limits, & Trend Tests

Statistical Method Chapter Use
One-Way ANOVA §17.1.1 Test to compare means across multiple populations; Data must be

normal or normalized; Should have no significant spatial variability if
used as interwell test; Assumes equal variances; Mandated in some
permits, but generally superceded by other tests; Useful for
identifying spatial variation; RMSE from ANOVA can be used to
improve intrawell background limits

Kruskal-Wallis Test §17.1.2 Test to compare medians across multiple populations; Data need not
be normal; some non-detects OK; Should have no significant spatial
variability if used as interwell test; Useful alternative to ANOVA for
identifying spatial variation

Tolerance Limit §17.2.1 Test to compare background vs. = 1 compliance well; Data must be
normal or normalized; Should have no significant spatial variability if
used as interwell test; Alternative to ANOVA; Mostly superceded by
prediction limits; Useful for constructing alternate clean-up standard
in corrective action

Non-parametric §17.2.2 Testto compare background vs. = 1 compliance well; Data need not

Tolerance Limit be normal; Non-Detects OK; Should have no significant spatial
variability if used as interwell test; Alternative to Kruskal-Wallis;
Mostly superceded by prediction limits

Linear Regression §17.3.1 Parametric estimate of linear trend; Trend residuals must be normal
or normalized; Useful for testing trends in background or at already
contaminated wells; Can be used to estimate linear association
between two random variables

Mann-Kendall Trend §17.3.2 Non-parametric test for linear trend; Non-detects OK; Useful for

Test documenting upward trend at already contaminated wells or where
trend already exists in background

Theil-Sen Trend Line §17.3.3 Non-parametric estimate of linear trend; Non-detects OK; Useful for

estimating magnitude of an increasing trend in conjunction with
Mann-Kendall test
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Chapter 18. Prediction Limit Primer

Statistical Method Chapter Use

Prediction Limit for m §18.2.1 Test to compare m measurements from compliance well against

Future Values background; Data must be normal normalized; Useful in retesting
schemes; Can be adapted to either intrawell or interwell tests; No
significant spatial variability allowed if used as interwell test

Prediction Limit for §18.2.2 Test to compare mean of compliance well against background; Data

Future Mean must be normal or normalized; Useful alternative to traditional
ANOVA; Can be useful in retesting schemes; Most useful for interwell
(e.g., upgradient to downgradient) comparisons; No significant
spatial variability allowed if used as interwell test

Non-Parametric §18.3.1 Non-parametric test to compare m measurements from compliance

Prediction Limit for m well against order statistics of background; Non-normal data and/or

Future Values non-detects OK; Useful in non-parametric retesting schemes; Should
have no significant spatial variability if used as interwell test

Non-parametric §18.3.2 Iest to compare median of compliance well against order statistics of

Prediction Limit for
Future Median

background; Non-normal data and/or non-detects OK; Useful in non-
parametric retesting schemes; Most useful for interwell (e.g.,
upgradient to downgradient) comparisons; No significant spatial
variability allowed if used as interwell test

Chapter 19. Prediction Limit Strategies with Retesting

Statistical Method Chapter Use

Prediction Limits for §19.3.1 Iests individual compliance point measurements against background;

Individual Data must be normal or normalized; Assumes common population

Observations With variance across wells; No significant spatial variability allowed if used

Retesting as interwell test; Replacement for traditional ANOVA, extends
Dunnett’s multiple comparison with control (MCC) procedure; Allows
control of SWFPR across multiple well-constituent pairs; Retesting
explicitly incorporated; Useful at any size site

Prediction Limits for §19.3.2 Tests compliance point means against background; Data must be

Means With Retesting normal or normalized; Assumes common population variance across
wells; No significant spatial variability allowed if used as interwell
test; Replacement for traditional ANOVA, extends Dunnett’s multiple
comparison with control (MCC) procedure; More flexible than a series
of intrawell t-tests if used as intrawell test; Allows control of SWFPR
across multiple well-constituent pairs; Must be feasible to collect 22
resamples per evaluation period to incorporate retesting; 1-of-1
scheme does not require explicit retesting

Non-Parametric §19.4.1 Non-parametric test of individual compliance point observations

Prediction Limits for against background; Non-normal data and/or non-detects OK; No

Individual significant spatial variability allowed if used as interwell test;

Observations With Retesting explicitly incorporated; Large background sample size

Retesting helpful

Non-Parametric §19.4.2 Non-parametric test of compliance point medians against

Prediction Limits for background; Non-normal and/or non-detects OK; No significant

Medians With spatial variability allowed if used as interwell test; Large background

Retesting sample size helpful; Must be feasible to collect > 3 resamples per

evaluation period to incorporate retesting; 1-of-1 scheme does not
require explicit retesting
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Chapter 20. Control Charts

Statistical Method Chapter Use
Shewhart-CUSUM §20.2 Graphical test of significant increase above background; Data must

Control Chart

be normal or normalized; Some non-detects OK if left-censored
adjustment made; At least 8 background observations
recommended; Viable alternative to prediction limits; Retesting can
be explicitly incorporated; Control limits can be set via published
literature or Monte Carlo simulation

Chapter 21. Confidence Intervals

Statistical Method Chapter Use
Confidence Interval §21.1.1 Data must be normal; Some non-detects OK if left-censored
Around Normal Mean adjustment made; Used in compliance/assessment or corrective
action to compare compliance well against fixed, mean-based
groundwater standard; Should be no significant trend; 4 or more
observations recommended
Confidence Interval §21.1.2 Data must be lognormal; Some non-detects OK if left-censored
Around Lognormal adjustment made; Used in compliance/assessment or corrective
Geometric Mean action to compare compliance well against fixed, mean-based
groundwater standard; Should be no significant trend; 4 or more
observations recommended; Geometric mean equivalent to
lognormal median, smaller than lognormal mean
Confidence Interval §21.1.3 Data must be lognormal; Some non-detects OK if left-censored
Around Lognormal adjustment made; Used in compliance/assessment or corrective
Arithmetic Mean action to compare compliance well against fixed, mean-based
groundwater standard; Should be no significant trend; 4 or more
observations recommended; Lognormal arithmetic mean larger than
lognormal geometric mean
Confidence Interval §21.1.4 Data must be normal or normalized; Some non-detects OK if left-
Around Upper censored adjustment made; Used in compliance/assessment to
Percentile compare compliance well against percentile-based or maximum
groundwater standard; Should be no significant trend
Non-Parametric §21.2 For non-normal, non-lognormal data; Non-detects OK; Used in
Confidence Interval compliance/assessment or corrective action to compare compliance
around Median well against fixed, mean-based groundwater standard; Should be no
significant trend; 7 or more observations recommended
Non-Parametric §21.2 For non-normal, non-lognormal data; Non-detects OK; Used in
Confidence Interval compliance/assessment or corrective action to compare compliance
Around Upper well against percentile-based or maximum groundwater standard;
Percentile Should be no significant trend; Large background sample size helpful
Confidence Band §21.3.1 Useon data with significant trend; Trend residuals must be normal or
Around Linear normalized; Used in compliance/assessment or corrective action to
Regression compare compliance well against fixed groundwater standard; = 8
observations recommended
Non-parametric §21.3.2 Use on data with significant trend; Non-normal data and/or non-

Confidence Band
Around Theil-Sen Line

detects OK; Used in compliance/assessment or corrective action to
compare compliance well against fixed groundwater standard;
Bootstrapping of Theil-Sen trend line used to construct confidence
band
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8.3 METHOD SUMMARIES

TIME SERIES PLOT (SECTIONS 9.1 AND 14.2.1)

Basic purpose: Diagnostic and exploratory tool. It is a graphical technique to display changes in
concentrations at one or more wells over a specified period of time or series of sampling events.

Hypothesis tested: Not a formal statistical test. Time series plots can be used to informally gauge the
presence of temporal and/or spatial variability in a collection of distinct wells sampled during the
same time frame.

Underlying assumptions. None.

When to use: Given a collection of wells with several sampling events recorded at each well, a time
series plot can provide information not only on whether the mean concentration level changes from
well to well (an indication of possible spatial variation), but also on whether there exists time-related
or temporal dependence in the data. Such temporal dependence can be seen in parallel movement on
the time series plot, that is, when several wells exhibit the same pattern of up-and-down fluctuations
over time.

Steps involved: 1) For each well, make a plot of concentration against time or date of sampling for the
sampling events that occurred during the specified time period; 2) Make sure each well is identified
on the plot with a distinct symbol and/or connected line pattern (or trace); 3) To observe possible
spatial variation, look for well traces that are substantially separated from one another in
concentration level; 4) To look for temporal dependence, look for well traces that rise and fall
together in roughly the same (parallel) pattern; 5) To ensure that artificial trends due to changing
reporting limits are not reported, plot any non-detects with a distinct symbol, color, and/or fill.

Advantages/Disadvantages: Time series plots are an excellent tool for examining the behavior of one
or more samples over time. Although, they do not offer the compact summary of distributional
characteristics that, say, box plots do, time series plots display each and every data point and provide
an excellent initial indication of temporal dependence. Since temporal dependence affects the
underlying variability in the data, its identification is important so adjustments can be made to the
estimated standard deviation.

Box PLOT (SECTIONS 9.2, 12.2, AND 13.2.1)

Basic purpose: Diagnostic and exploratory tool. Graphical summary of data distribution; gives compact
picture of central tendency and dispersion.

Hypothesistested: Although not a formal statistical test, a side-by-side box plot of multiple datasets can
be used as a rough indicator of either unequal variances or spatial variation (via unequal
means/medians). Also serves as a quasi-non-parametric screening tool for outliers in a symmetric
population.

Underlying assumptions. When used to screen outliers, underlying population should be approximately
symmetric.
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When to use: Can be used as a quick screen in testing for unequal variances across multiple
populations. Box lengths indicate the range of the central 50% of sample data values. Substantially
different box lengths suggest possibly different population variances. It is useful as a rough
indication of spatial variability across multiple well locations. Since the median (and often the mean)
are graphed on each box, significantly staggered medians and/or means on a multiple side-by-side
box plot can suggest possibly different population means at distinct well locations. Can also be used
to screen for outliers: values falling beyond the *whiskers’ on the box plot are labeled as potential
outliers.

Steps involved: 1) Compute the median, mean, lower and upper quartiles (i.e, 25th and 75th
percentiles) of each dataset; 2) Graph each set of summary statistics side-by-side on the same set of
axes. Connect the lower and upper quartiles as the ends of a box, cut the box in two with a line at the
median, and use an ‘X’ or other symbol to represent the mean. 3) Compute the ‘whiskers’ by
extending lines below and above the box by an amount equal to 1.5 times the interquartile range

[IQR].

Advantages/Disadvantages: The box plot is an excellent screening tool and visual aid in diagnosing
either unequal variances for testing the assumptions of ANOVA, the possible presence of spatial
variability, or potential outliers. It is not a formal statistical test, however, and should generally be
used in conjunction with numerical test procedures.

HISTOGRAM (SECTION 9.3)
Basic purpose: Diagnostic and exploratory tool. It is a graphical summary of an entire data distribution.

Hypothesistested: Not a formal statistical test.
Under lying assumptions. None.

When to use: Can be used as a rough estimate of the probability density of a single sample. Shape of
histogram helps determine whether the distribution is symmetric or skewed. For larger data sets,
histogram can be visually compared to a normal distribution or other known model to assess whether
the shapes are similar.

Steps involved: 1) Sort and bin the data set into non-overlapping concentration segments that span the
range of measurement values; 2) Create a bar chart of the bins created in Step 1: put the height of
each bar equal to the number or fraction of values falling into each bin.

Advantages/Disadvantages. The histogram is a good visual aid in exploring possible distributional
models that might be appropriate. Since it is not a formal test, there is no way to judge possible
models solely on the basis of the histogram; however, it provides a visual ‘feel’ for a data set.

SCATTER PLOT (SECTION 9.4)

Basic purpose: Diagnostic tool. It is a graphical method to explore the association between two random
variables or two paired statistical samples.

Hypothesistested: None.
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Underlying Assumptions: None.

When to use: Useful as an exploratory tool for discovering or identifying statistical relationships
between pairs of variables. Graphically illustrates the degree of correlation or association between
two quantities.

Steps involved: Using Cartesian pairs of the variables of interest, graph each pair on the scatter plot,
using one symbol per pair.

Advantages/Disadvantages. A scatter plot is not a formal test, but rather an excellent exploratory tool.
Helps identify statistical relationships.

PROBABILITY PLOT (SECTIONS 9.5 AND 12.1)

Basic purpose: Diagnostic tool. A graphical method to compare a dataset against a particular statistical
distribution, usually the normal. Designed to show how well the data match up to or ‘fit’ the
hypothesized distribution. An absolutely straight line fit indicates perfect consistency with the
hypothesized model.

Hypothesis tested: Although not a formal test, the probability plot can be used to graphically indicate
whether a dataset is normal. The straighter the plot, the more consistent the dataset with a null
hypothesis of normality; significant curves, bends, or other non-linear patterns suggest a rejection of
the normal model as a poor fit.

Underlying Assumptions: All observations come from a single statistical population.

When to use: Can be used as a graphical indication of normality on a set of raw measurements or, by
first making a transformation, as an indication of normality on the transformed scale. It should
generally be supplemented by a formal numerical test of normality. It can be used on the residuals
from a one-way ANOVA to test the joint normality of the groups being compared. The test can also
be used to help identify potential outliers (i.e., individual values not part of the same basic
underlying population).

Steps involved: 1) Order the dataset and determine matching percentiles (or quantiles) from the
hypothesized distribution (typically the standard normal); 2) Plot the ordered data values against the
matching percentiles; 3) Examine the plot for a straight line fit.

Advantages/Disadvantages: Not a formal test of normality; however, the probability plot is an
excellent graphical supplement to any goodness-of-fit test. Because each data value is depicted,
specific departures from normality can be identified (e.g., excessive skewness, possible outliers,
etc.).

SKEWNESS COEFFICIENT (SECTION 10.4)

Basic purpose: Diagnostic tool. Sample statistic designed to measure the degree of symmetry in a
sample. Because the normal distribution is perfectly symmetric, the skewness coefficient can provide
a quick indication of whether a given dataset is symmetric enough to be consistent with the normal
model. Skewness coefficients close to zero are consistent with normality; skewness values large in
absolute value suggest the underlying population is asymmetric and non-normal.
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Hypothesis tested: The skewness coefficient is used in groundwater monitoring as a screening tool
rather than a formal hypothesis test. Still, it can be used to roughly test whether a given sample is
normal by using the following rule of thumb: if the skewness coefficient is no greater than one in
absolute value, accept a null hypothesis of normality; if not, reject the normal model as ill-fitting.

Underlying Assumptions: None

Steps involved: 1) Compute skewness coefficient; 2) Compare to cutoff of 1; 3) If skewness is greater
than 1, considering running a formal test of normality.

Advantages/Disadvantages: Fairly simple calculation, good screening tool. Skewness coefficient can
be positive or negative, indicating positive or negative skewness in the dataset, respectively.
Measures symmetry rather than normality, per se; since other non-normal distributions can also be
symmetric, might give a misleading result. Not as powerful or accurate a test of normality as either
the Shapiro-Wilk or Filliben tests, but a more accurate indicator than the coefficient of variation,
particularly for data on a transformed scale.

COEFFICIENT OF VARIATION [CV] (SECTION 10.4)

Basic purpose: Diagnostic tool. Sample statistic used to measure skewness in a sample of positively-
valued measurements. Because the CV of positively-valued normal measurements must be close to
zero, the CV provides an easy indication of whether a given sample is symmetric enough to be
normal. Coefficients of variation close to zero are consistent with normality; large CVs indicate a
skewed, non-normal population.

Hypothesis tested: The coefficient of variation is not a formal hypothesis test. Still, it can be used to
provide a “‘quick and easy’ gauge of non-normality: if the CV exceeds 0.5, the population is probably
not normal.

Underlying Assumptions: Sample must be positively-valued for CV to have meaningful interpretation.

Stepsinvolved: 1) Compute sample mean and standard deviation; 2) Divide standard deviation by mean
to get coefficient of variation.

Advantages/Disadvantages: Simple calculation, good screening tool. It measures skewness and
variability in positively-valued data. Not an accurate a test of normality, especially if data have been
transformed.

SHAPIRO-WILK AND SHAPIRO-FRANCIA TESTS (SECTION 10.5)

Basic purpose: Diagnostic tool and a formal numerical goodness-of-fit test of normality. Shapiro-
Francia test is a close variant of the Shapiro-Wilk useful when the sample size is larger than 50.

Hypothesis tested: Hy — the dataset being tested comes from an underlying normal population. Ha —
the underlying population is non-normal (note that the form of this alternative population is not
specified).

Underlying assumptions: All observations come from a single normal population.
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When to use: To test normality on a set of raw measurements or following transformation of the data. It
can also be used with the residuals from a one-way ANOVA to test the joint normality of the groups
being compared.

Steps involved (for Shapiro-Wilk): 1) Order the dataset and compute successive differences between
pairs of extreme values (i.e., most extreme pair = maximum — minimum, next most extreme pair =
2nd largest — 2nd smallest, etc.); 2) Multiply the pair differences by the Shapiro-Wilk coefficients
and compute the Shapiro-Wilk test statistic; 3) Compare the test statistic against an o-level critical
point; 4) Values higher than the critical point are consistent with the null hypothesis of normality,
while values lower than the critical point suggest a non-normal fit.

Advantages/Disadvantages: The Shapiro-Wilk procedure is considered one of the very best tests of
normality. It is much more powerful than the skewness coefficient or chi-square goodness-of-fit test.
The Shapiro-Wilk and Shapiro-Francia test statistics will tend to be large (and more indicative of
normality) when a probability plot of the same data exhibits a close-to-linear pattern. Special
Shapiro-Wilk coefficients are available for sample sizes up to 50. For larger sample sizes, the
Shapiro-Francia test does not require a table of special coefficients, just the ability to compute
inverse normal probabilities.

FILLIBEN’S PROBABILITY PLOT CORRELATION COEFFICIENT TEST (SECTION 10.6)
Basic purpose: Diagnostic tool and a formal numerical goodness-of-fit procedure to test for normality.

Hypothesis tested: Hy, — the dataset being tested comes from an underlying normal population. Ha —
the underlying population is non-normal (note that the form of this alternative population is not
specified).

Underlying assumptions: All observations come from a single normal population.

When to use: To test normality on a set of raw measurements or following transformation of the data on
the transformed scale. It can also be used on the residuals from a one-way ANOVA to test the joint
normality of the groups being compared.

Steps involved: 1) Construct a normal probability plot of the dataset; 2) Calculate the correlation
between the pairs on the probability plot; 3) Compare the test statistic against an a-level critical
point; 4) Values higher than the critical point are consistent with the null hypothesis of normality,
while values lower than the critical point suggest a non-normal fit.

Advantages/Disadvantages. Filliben’s procedure is an excellent test of normality, with very similar
characteristics to the Shapiro-Wilk test. As a correlation on a probability plot, the Filliben’s test
statistic will tend to be close to one (and more indicative of normality) when a probability plot of the
same data exhibits a close-to-linear pattern. Critical points for Filliben’s test are available for sample
sizes up to 100. A table of special coefficients is not needed to run Filliben’s test, only the ability to
compute inverse normal probabilities.

SHAPIRO-WILK MULTIPLE GROUP TEST (SECTION 10.7)
Basic purpose: Diagnostic tool and a formal normality goodness-of-fit test for multiple groups.
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Hypothesis tested: Hy — datasets being tested all come from underlying normal populations, possibly
with different means and/or variances. Ha — at least one underlying population is non-normal (note
that the form of this alternative population is not specified).

Underlying assumptions: The observations in each group all come from, possibly different, normal
populations.

When to use: Can be used to test normality on multiple sets of raw measurements or, by first making a
transformation, to test normality of the data groups on the transformed scale. It is particularly
helpful when used in conjunction with Welch’s t-test.

Steps involved: 1) Compute Shapiro-Wilk statistic (Section 10.5) on each group separately; 2)
Transform the Shapiro-Wilk statistics into z-scores and combine into an omnibus z-score; 3)
Compare the test statistic against an a-level critical point; 4) Values higher than the critical point are
consistent with the null hypothesis of normality for all the populations, while values lower than the
critical point suggest a non-normal fit of one or more groups.

Advantages/Disadvantages: As an extension of the Shapiro-Wilk test, the multiple group test shares
many of its desirable properties. Users should be careful, however, not to assume that a result
consistent with the hypothesis of normality implies that all groups follow the same normal
distribution. The multiple group test does not assume that all groups have the same means or
variances. Special coefficients are needed to convert Shapiro-Wilk statistics into z-scores, but once
converted, no other special tables needed to run test besides a standard normal table.

LEVENE'S TEST (SECTION 11.2)

Basic purpose: Diagnostic tool. Levene’s test is a formal numerical test of equality of variances across
multiple populations.

Hypothesis tested: Hy — The population variances across all the datasets being tested are equal. Ha —
One or more pairs of population variances are unequal.

Underlying assumptions: The data set from each population is assumed to be roughly normal in
distribution. Since Levene’s test is designed to work well even with somewhat non-normal data (i.e.,
it is fairly robust to non-normality), precise normality is not an overriding concern.

When to use: Levene’s method can be used to test the equal variance assumption underlying one-way
ANOVA for a group of wells. Used in this way, the test is run on the absolute values of the residuals
after first subtracting the mean of each group being compared. If Levene’s test is significant, the
original data may need to be transformed to stabilize the variances before running an ANOVA.

Steps involved: 1) Compute the residuals of each group by subtracting the group mean; 2) conduct a
one-way ANOVA on the absolute values of the residuals; and 3) if the ANOVA F-statistic is
significant at the 5% o-level, conclude the underlying population variances are unequal. If not,
conclude the data are consistent with the null hypothesis of equal variances.

Advantages/Disadvantages: As a test of equal variances, Levene’s test is reasonably robust to non-
normality. It is much more so than for Bartlett’s test (recommended within the 1989 Interim Final
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Guidance [IFG]). In addition, Levene’s method uses the same basic equations as those needed to run
a one-way ANOVA.

MEAN-STANDARD DEVIATION SCATTER PLOT (SECTION 11.3)

Basic purpose: Diagnostic tool. It is a graphical method to examine degree of association between mean
levels and standard deviations at a series of wells. Positive correlation or association between these
quantities is known as a ‘proportional effect’ and is characteristic of skewed distributions such as the
lognormal.

Hypothesis tested: Though not a formal test, the mean-standard deviation scatter plot provides a visual
indication of whether variances are roughly equal from well to well, or whether the variance depends
on the well mean.

Underlying Assumptions: None.

When to use: Useful as a graphical indication of 1) equal variances or 2) proportional effects between
the standard deviation and mean levels. A positive correlation between well means and standard
deviations may signify that a transformation is needed to stabilize the variances.

Steps involved: 1) Compute the sample mean and standard deviation for each well; 2) plot the mean-
standard deviation pairs on a scatter plot; and 3) examine the plot for any association between the
two quantities.

Advantages/Disadvantages: Not a formal test of homoscedasticity (i.e., equal variances). It is helpful in
assessing whether a transformation might be warranted to stabilize unequal variances.

DixoN’s TEST (SECTION 12.3)
Basic purpose: Diagnostic tool. It is used to identify (single) outliers within smaller datasets.

Hypothesis tested: Hy — Outlier(s) comes from same normal distribution as rest of the dataset. Ha —
Outlier(s) comes from different distribution than rest of the dataset.

Underlying assumptions. Data without the suspected outlier(s) are normally distributed. Test
recommended only for sample sizes up to 25.

When to use: Try Dixon’s test when one value in a dataset appears anomalously low or anomalously
high when compared to the other data values. Be cautious about screening apparent high outliers in
compliance point wells. Even if found to be statistical outliers, such extreme concentrations may
represent contamination events. A safer application of outlier tests is with background or baseline
samples. Even then, always try to establish a physical reason for the outlier if possible (e.g.,
analytical error, transcription mistake, etc.).

Steps involved: 1) Remove the suspected outlier and test remaining data for normality. If non-normal,
try a transformation to achieve normality; 2) Once remaining data are normal, calculate Dixon’s
statistic, depending on the sample size n; 3) Compare Dixon’s statistic against an a-level critical
point; and 4) If Dixon’s statistic exceeds the critical point, conclude the suspected value is a
statistical outlier. Investigate this measurement further.
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Advantages/Disadvantages. Dixon’s test is only recommended for sample sizes up to 25. Furthermore,
if there is more than one outlier, Dixon’s test may lead to masking (i.e., a non-significant result)
where two or more outliers close in value ‘hide’ one another. If more than one outlier is suspected,
always test the least extreme value first.

ROSNER’S TEST (SECTION 12.4)
Basic purpose: Diagnostic tool. It is used to identify multiple outliers within larger datasets.

Hypothesis tested: Hy — Outliers come from same normal distribution as the rest of the dataset. Hya —
Outliers come from different distribution than the rest of the dataset.

Underlying assumptions: Data without the suspected outliers are normally distributed. Test
recommended for sample sizes of at least 20.

When to use: Try Rosners’s test when multiple values in a dataset appear anomalously low or
anomalously high when compared to the other data values. As Dixon’s test, be cautious about
screening apparent high outliers in compliance point wells. Always try to establish a physical reason
for an outlier if possible (e.g., analytical error, transcription mistake, etc.).

Steps involved: 1) Identify the maximum number of possible outliers (ro < 5) and the number of
suspected outliers (r < rp). Remove the suspected outliers and test the remaining data for normality.
If non-normal, try a transformation to achieve normality; 2) Once remaining data are normal,
successively compute the mean and standard deviation, removing the next most extreme value each
time until ro possible outliers have been removed; 3) Compute Rosner’s statistic based on the
number (r) of suspected outliers; and 4) If Rosner’s statistic exceeds an o-level critical point,
conclude there are r statistical outliers. Investigate these measurements further. If Rosner’s statistic
does not exceed the critical point, recompute the test for (r-1) possible outliers, successively

reducing r until either the critical point is exceeded or r = 0.

Advantages/Disadvantages: Rosner’s test is only recommended for sample sizes of 20 or more, but can
be used to identify up to 5 outliers per use. It is more complicated to use than some other outlier
tests, but does not require special tables other than to determine o-level critical points.

ONE-WAY ANALYSIS OF VARIANCE [ANOVA] FOR SPATIAL VARIATION (SECTION 13.2.2)

Basic purpose: Diagnostic tool. Test to compare population means at multiple wells, in order to gauge
the presence of spatial variability.

Hypothesis tested: Hy — Population means across all tested wells are equal. Ha — One or more pairs
of population means are unequal.

Underlying assumptions. 1) ANOVA residuals at each well or group must be normally distributed
using the original data or after transformation. Residuals should be tested for normality using a
goodness-of-fit procedure; 2) population variances across all wells must be equal. This assumption
can be tested with box plots and Levene’s test; and 3) each tested well should have at least 3 to 4
separate observations.
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When to use: The one-way ANOVA procedure can be used to identify significant spatial variation
across a group of distinct well locations. The method is particularly useful for a group of multiple
upgradient wells, to determine whether or not there are large average concentration differences from
one location to the next due to natural groundwater fluctuations and/or differences in geochemistry.
If downgradient wells are included in an ANOVA, the downgradient groundwater should not be
contaminated, at least if a test of natural spatial variation is desired. Otherwise, a significant
difference in population means could reflect the presence of either recent or historical contamination.

Steps involved: 1) Form the ANOVA residuals by subtracting from each measurement its sample well
mean; 2) test the ANOVA residuals for normality and equal variance. If either of these assumptions
is violated, try a transformation of the data and retest the assumptions; 3) compute the one-way
ANOVA F-statistic; 4) if the F-statistic exceeds an a-level critical point, conclude the null
hypothesis of equal population means has been violated and that there is some (perhaps substantial)
degree of spatial variation; 5) if the F-statistic does not exceed the critical point, conclude that the
well averages are close enough to treat the combined data as coming from the same statistical
population.

Advantages/Disadvantages: One-way ANOVA is an excellent technique for identifying differences in
separate well populations, as long as the assumptions are generally met. However, a finding of
significant spatial variability does not specify the reason for the well-to-well differences. Additional
information or investigation may be necessary to determine why the spatial differences exist. Be
especially careful when (1) testing a combination of upgradient and downgradient wells that
downgradient contamination is not the source of the difference found with ANOVA,; and 2) when
ANOVA identifies significant spatial variation and intrawell tests are called for. In the latter case, the
ANOVA results can sometimes be used to estimate more powerful intrawell prediction and control
limits. Such an adjustment comes directly from the ANOVA computations, requiring no additional
calculation.

ANALYSIS OF VARIANCE [ANOVA] FOR TEMPORAL EFFECTS (SECTIONS 14.2.2 & 14.3.3)

Basic purpose: Diagnostic tool. It is a test to compare population means at multiple sampling events,
after pooling the event data across wells. The test can also used to adjust data across multiple wells
for common temporal dependence.

Hypothesis tested: Hyo — Population means across all sampling events are equal. Ha — One or more
pairs of population means are unequal.

Underlying assumptions: 1) ANOVA residuals from the population at each sampling event must be
normal or normalized. These should be tested for normality using a goodness-of-fit procedure; 2) the
population variances across all sampling events must be equal. Test this assumption with box plots
and Levene’s test; and 3) each tested well should have at least 3 to 4 observations per sampling
event.

When to use: 1) The ANOVA procedure for temporal effects should be used to identify significant
temporal variation over a series of distinct sampling events. The method assumes that spatial
variation by well location is not a significant factor (this should have already been tested). ANOVA
for temporal effects should be used when a time series plot of a group of wells exhibits roughly
parallel traces over time, indicating a time-related phenomenon affecting all the wells in a similar

8-17 March 2009




Chapter 8. Methods Summary Unified Guidance

way on any given sampling event. If a significant temporal effect is found, the results of the ANOVA
can be employed to adjust the standard deviation estimate and the degrees of freedom quantities
needed for further upgradient-to-downgradient comparisons; 2) compliance wells can be included in
ANOVA for temporal effects, since the temporal pattern is assumed to affect all the wells on-site,
regardless of gradient; and 3) residuals from ANOVA for temporal effects can be used to create
adjusted, temporally-stationary measurements in order to eliminate the temporal dependence.

Steps involved: 1) Compute the mean (across wells) from data collected on each separate sampling
event; 2) form the ANOVA residuals by subtracting from each measurement its sampling event
mean,; 3) test the ANOVA residuals for normality and equal variance. If either of these assumptions
is violated, try a transformation of the data and retest the assumptions; 4) compute the one-way
ANOVA F-statistic; 5) if the F-statistic exceeds an a-level critical point, conclude the null
hypothesis of equal population means has been violated and that there is some (perhaps substantial)
degree of temporal dependence; 6) compute the degrees of freedom adjustment factor and the
adjusted standard deviation for use in interwell comparisons; 7) if the F-statistic does not exceed the
critical point, conclude that the sampling event averages are close enough to treat the combined data
as if there were no temporal dependence; and use the residuals, if necessary, to create adjusted,
temporally-stationary measurements, regardless of the significance of the F-test (Section 14.3.3).

Advantages/Disadvantages: 1) One-way ANOVA for temporal effects is a good technique for
identifying time-related effects among a group of wells. The procedure should be employed when a
strong temporal dependence is indicated by parallel traces in time series plots; 2) if there is both
temporal dependence and strong spatial variability, the ANOVA for temporal effects may be non-
significant due to the added spatial variation. A two-way ANOVA for temporal and spatial effects
might be considered instead; and 3) even if the ANOVA is non-significant, the ANOVA residuals
can still be used to adjust data for apparent temporal dependence.

SAMPLE AUTOCORRELATION FUNCTION (SECTION 14.2.3)

Basic purpose: Diagnostic tool. This is a parametric estimate and test of autocorrelation (i.e., time-
related dependence) in a data series from a single population.

Hypothesis tested: Hy — Measurements from the population are independent of sampling events (i.e.,
they are not influenced by the time when the data were collected). Ha — The distribution of
measurements is impacted by the time of data collection.

Underlying assumptions. Data should be approximately normal, with few non-detects. Sampling
events represented in the sample should be fairly regular and evenly spaced in time.

When to use: When testing a data series from a single population (e.g., a single well), the sample
autocorrelation function (also known as the correlogram) can determine whether there is a significant
temporal dependence in the data.

Steps involved: 1) Form overlapping ordered pairs from the data series by pairing measurements
‘lagged’ by a certain number of sampling events (e.g., all pairs with measurements spaced by k = 2
sampling events); 2) for each distinct lag (k), compute the sample autocorrelation; 3) plot the
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autocorrelations from Step 2 by lag (k) on a scatter plot; and 4) count any autocorrelation as
significantly different from zero if its absolute magnitude exceeds 2/\5 where n is the sample size.

Advantages/Disadvantages. 1) The sample autocorrelation function provides a graphical test of
temporal dependence. It can be used not only to identify autocorrelation, but also as a planning tool
for adjusting the sampling interval between events. The smallest lag (k) at which the autocorrelation
is insignificantly different from zero is the minimum sampling interval ensuring temporally
uncorrelated data; 2) the test only applies to a single population at a time and cannot be used to
identify temporal effects that span across groups of wells simultaneously. In that scenario, use a one-
way ANOVA for temporal effects; and 3) tests for significant autocorrelation depend on the data
being approximately normal; use the rank von Neumann ratio for non-normal samples.

RANK VON NEUMANN RATIO (SECTION 9.4)

Basic purpose: Diagnostic tool. It is a non-parametric test of first-order autocorrelation (i.e., time-
related dependence) in a data series from a single population.

Hypothesis tested: Hy, — Measurements from the population are independent of sampling events (i.e.,
they are not influenced by the time when the data were collected). Hao — The distribution of
measurements is impacted by the time of data collection.

Underlying assumptions. Data need not be normally distributed. However, it is assumed that the data
series can be uniquely ranked according to concentration level. Ties in the data (e.g., non-detects) are
not technically allowed. Although a mid-rank procedure (as used in the Wilcoxon rank-sum test) to
rank tied values might be considered, the available critical points for the rank von Neumann ratio
statistic only directly apply to cases where a unique ranking is possible.

When to use: When testing a data series from a single population (e.g., a single well) for use in,
perhaps, an intrawell prediction limit, control chart, or test of trend, the rank von Neumann ratio can
determine whether there is a significant temporal dependence in the data. If the dependence is
seasonal, the data may be adjusted using a seasonal correction (Section 14.3.3). If the dependence is
a linear trend, remove the estimated trend and re-run the rank von Neumann ratio on the trend
residuals before concluding there are additional time-related effects. Complex dependence may
require consultation with a professional statistician.

Stepsinvolved: 1) Rank the measurements by concentration level, but then list the ranks in the order the
samples were collected; 2) using the ranks, compute the von Neumann ratio; 3) if the rank von
Neumann ratio exceeds an a-level critical point, conclude the data exhibit no significant temporal
correlation. Otherwise, conclude that a time-related pattern does exist. Check for seasonal cycles or
linear trends using time series plots. Consult a professional statistician regarding possible statistical
adjustments if the pattern is more complex.

Advantages/Disadvantages. The rank von Neumann ratio, as opposed to other common time series
methods for determining autocorrelation, is a non-parametric test based on using the ranks of the
data instead of the actual concentration measurements. The test is simple to compute and can be used
as a formal confirmation of temporal dependence, even if the autocorrelation appears fairly obvious
on a time series plot. As a limiting feature, the test only applies to a single population at a time and
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cannot be used to identify temporal effects that span across groups of wells simultaneously. In that
scenario, a one-way ANOVA for temporal effects is a better diagnostic tool. Because critical points
for the rank von Neumann ratio have not been developed for the presence of ties, the test will not be
useful for datasets with substantial portions of non-detects.

DARCY EQUATION (SECTION 14.3.2)

Basic purpose: Method to determine a sampling interval ensuring that distinct physical volumes of
groundwater are sampled on any pair of consecutive events.

Hypothesistested: Not a statistical test or formal procedure.
Underlying assumptions: Flow regime is one in which Darcy’s equation is approximately valid.

When to use: Use Darcy’s equation to gauge the minimum travel time necessary for distinct volumes of
groundwater to pass through each well screen. Physical independence of samples does not guarantee
statistical independence, but it increases the likelihood of statistical independence. Use to design or
plan for a site-specific sampling frequency, as well as what formal statistical tests and retesting
strategies are possible given the amount of temporally-independent data that can be collected each
evaluation period.

Steps involved: 1) Using knowledge of the site hydrogeology, calculate the horizontal and vertical
components of average groundwater velocity with Darcy’s equation; 2) Determine the minimum
travel time needed between field samples to ensure physical independence; 3) Specify a sampling
interval during monitoring no less than the travel time obtained via the Darcy computation.

Advantages/Disadvantages. Darcy’s equation is relatively straightforward, but is not a statistical
procedure. It is not applicable to certain hydrologic environments. Further, it is not a substitute for a
direct estimate of autocorrelation. Statistical independence is not assured using Darcy’s equation, so
caution is advised.

SEASONAL CORRECTION (SECTION 14.3.3)

Basic purpose: Method to adjust a longer data series from a single population for an obvious seasonal
cycle or fluctuation pattern. By removing the seasonal pattern, the remaining residuals can be used in
further statistical procedures (e.g., prediction limits, control charts) and treated as independent of the
seasonal correlation.

Hypothesis tested: The seasonal correction is not a formal statistical test. Rather, it is a statistical
adjustment to data for which a definite seasonal pattern has been identified.

Underlying assumptions: There should be enough data so that at least 3 full seasonal cycles are
displayed on a time series plot. It is also assumed that the seasonal component has a stationary (i.e.,
stable) mean and variance during the period of data collection.

When to use: Use the seasonal correction when a longer series of data must be examined, but a time
series plot indicates a clearly recurring, seasonal fluctuation of concentration levels. If not removed,
the seasonal dependence will tend to upwardly bias the estimated variability and could lead to
inaccurate or insufficiently powerful tests.
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Stepsinvolved: 1) Using a time series plot of the data series, separate the values into common sampling
events for each year (e.g., all January measurements, all third quarter values, etc.); 2) compute the
average of each subgroup and the overall mean of the dataset; and 3) adjust the data by removing the
seasonal pattern.

Advantages/Disadvantages. The seasonal correction described in the Unified Guidance is relatively
simple to perform and offers a more accurate standard deviation estimates compared to using
unadjusted data. Removal of the seasonal component may reveal other previously unnoticed features
of the data, such as a slow-moving trend. A fairly long data series is required to confirm the
presence of a recurring seasonal cycle. Furthermore, many complex time-related patterns cannot be
handled by this simple correction. In such cases, consultation with a professional statistician may be
necessary.

SEASONAL MANN-KENDALL TEST FOR TREND (SECTION 14.3.4)

Basic purpose: Method for detection monitoring. It is used to identify the presence of a significant
(upward) trend at a compliance point when data also exhibit seasonal fluctuations. It may also be
used in compliance/assessment and corrective action monitoring to track upward or downward
trends.

Hypothesistested: Ho — No discernible linear trend exists in the concentration data over time. Ha — A
non-zero, (upward) linear component to the trend does exist.

Underlying assumptions: Since the seasonal Mann-Kendall trend test is a non-parametric method, the
underlying data need not be normal or follow a particular distribution. No special adjustment for ties
IS needed.

When to use: Use when 1) upgradient-to-downgradient comparisons are inappropriate so that intrawell
tests are called for; 2) a control chart or intrawell prediction limit cannot be used because of possible
trends in the intrawell background, and 3) the data also exhibit seasonality. A trend test can be
particularly helpful at sites with recent or historical contamination where it is uncertain if
background is already contaminated. An upward trend in these cases will document the changing
concentration levels more accurately than either a control chart or intrawell prediction limit, both of
which assume a stationary background mean concentration.

Steps involved: 1) Divide the data into separate groups representing common sampling events from
each year; 2) compute the Mann-Kendall test statistic (S) and its standard deviation (SD[S]) on each
group; 3) sum the separate Mann-Kendall statistics into an overall test statistic; 4) compare this
statistic against an a-level critical point; and 5) if the statistic exceeds the critical point, conclude
that a significant upward trend exists. If not, conclude there is insufficient evidence for identifying a
significant, non-zero trend.

Advantages/Disadvantages: 1) The seasonal Mann-Kendall test does not require any special treatment
for non-detects, only that all non-detects be set to a common value lower than any of the detected
values; and 2) the test is easy to compute and reasonably efficient for detecting (upward) trends in
the presence of seasonality. Approximate critical points are derived from the standard normal
distribution.
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SIMPLE SUBSTITUTION (SECTION 15.2)

Basic purpose: A simple adjustment for non-detects in a dataset. One-half the reporting limit [RL] is
substituted for each non-detect to provide a numerical approximation to the unknown true
concentration.

Hypothesistested: None.

Underlying assumptions: The true non-detect concentration is assumed to lie somewhere between zero
and the reporting limit. Furthermore, that the probability of the true concentration being less than
half the RL is about the same as the probability of it being greater than half the RL.

When to use: In general, simple substitution should be used when the dataset contains a relatively small
proportion of non-detects, say no more than 10-15%. Use with larger non-detect proportions can
result in biased estimates, especially if most of the detected concentrations are recorded at low levels
(e.g., at or near RL).

Steps involved: 1) Determine the reporting limit; and 2) replace each non-detect with one-half RL as a
numerical approximation.

Advantages/Disadvantages: Simple substitution of half the RL is the easiest adjustment available for
non-detect data. However, it can lead to biased estimates of the mean and particularly the variance if
employed when more than 10-15% of the data are non-detects.

CENSORED PROBABILITY PLOT (SECTIONS 15.3 AND 15.4)

Basic purpose: Diagnostic tool. It is a graphical fit to normality of a mixture of detected and non-detect
measurements. Adjustments are made to the plotting positions of the detected data under the
assumption that all measurements come from a common distributional model.

Hypothesis tested: As a graphical tool, the censored probability plot is not a formal statistical test.
However, it can provide an indication as to whether a dataset is consistent with the hypothesis that
the mixture of detects and non-detects come from the same distribution and that the non-detects
make up the lower tail of that distribution.

Underlying assumptions: Dataset consists of a mixture of detects and non-detects, all arising from a
common distribution. Data must be normal or normalized.

When to use: Use the censored probability plot to check the viability of the Kaplan-Meier or robust
regression on order statistics [ROS] adjustments for non-detect measurements. If the plot is linear,
the data are consistent with a model in which the unobserved non-detect concentrations comprise the
lower tail of the underlying distribution.

Stepsinvolved: 1) Using either Kaplan-Meier or ROS, construct a partial ranking of the detected values
to account for the presence of non-detects; 2) determine standard normal quantiles that match the
ranking of the detects; and 3) graph the detected values against their matched normal quantiles on a
probability plot and examine for a linear fit.
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Advantages/Disadvantages: The censored probability plot offers a visual indication of whether a
mixture of detects and non-detects come from the same (normal) distribution. There are, however, no
formal critical points to aid in deciding when the fit is ‘linear enough.” Correlation coefficients can
be computed to informally aid the assessment. Censored probability plots can also be constructed on
transformed data to help select a normalizing transformation.

KAPLAN-MEIER ADJUSTMENT (SECTION 15.3)

Basic purpose: Diagnostic tool. It is used to adjust a mixture of detected and non-detect data for the
unknown concentrations of non-detect values. The Kaplan-Meier procedure leads to adjusted
estimates for the mean and standard deviation of the underlying population.

Hypothesis tested: As a statistical adjustment procedure, the Kaplan-Meier method is not a formal
statistical test. Rather, it allows estimation of characteristics of the population by assuming the
combined group of detects and non-detects come from a common distribution.

Underlying assumptions: Dataset consists of a mixture of detects and non-detects, all arising from the
same distribution. Data must be normal or normalized in the context of the Unified Guidance.
Kaplan-Meier should not be used when more than 50% of the data are non-detects.

When to use: Since the Kaplan-Meier adjustment assumes all the measurements arise from the same
statistical process, but that some of these measurements (i.e., the non-detects) are unobservable due
to limitations in analytical technology, Kaplan-Meier should be used when this model is the most
realistic or reasonable choice. In particular, when constructing prediction limits, confidence limits, or
control charts, the mean and standard deviation of the underlying population must be estimated. If
non-detects occur in the dataset (but do not account for more than half of the observations), the
Kaplan-Meier adjustment can be used to determine these estimates, which in turn can be utilized in
constructing the desired statistical test.

Steps involved: 1) Sort the detected values and compute the ‘risk set’ associated with each detect; 2)
using the risk set, compute the Kaplan-Meier cumulative distribution function [CDF] estimate
associated with each detect; 3) calculate adjusted estimates of the population mean and standard
deviation using the Kaplan-Meier CDF values; and 4) use these adjusted population estimates in
place of the sample mean and standard deviation in prediction limits, confidence limits, and control
charts.

Advantages/Disadvantages: Kaplan-Meier offers a way to adjust for significant fractions of non-detects
without having to know the actual non-detect concentration values. It is more difficult to use than
simple substitution, but avoids the biases inherent in that method.

ROBUST REGRESSION ON ORDER STATISTICS [ROS] (SECTION 15.4)

Basic purpose: Diagnostic tool. It is a method to adjust mixture of detects and non-detects for the
unknown concentrations of non-detect values. Robust ROS leads to adjusted estimates for the mean
and standard deviation of the underlying population by imputing a distinct estimated value for each
non-detect.
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Hypothesis tested: As a statistical adjustment procedure, robust ROS is not a formal statistical test.
Rather, it allows estimation of characteristics of the population by assuming the combined group of
detects and non-detects come from a common distribution.

Underlying assumptions: Dataset consists of a mixture of detects and non-detects, all arising from the
same distribution. Data must be normal or normalized in the context of the Unified Guidance.
Robust ROS should not be used when more than 50% of the data are non-detects.

When to use: Since robust regression on order statistics assumes all the measurements arise from the
same statistical process, robust ROS should be used when this model is reasonable. In particular,
when constructing prediction limits, confidence limits, or control charts, the mean and standard
deviation of the underlying population must be estimated. If non-detects occur in the dataset (but do
not account for more than half of the observations), robust ROS can be used to determine these
estimates, which in turn can be utilized to construct the desired statistical test.

Stepsinvolved: 1) Sort the distinct reporting limits [RL] for non-detect values and compute ‘exceedance
probabilities’ associated with each RL; 2) using the exceedance probabilities, compute ‘plotting
positions’ for the non-detects, essentially representing CDF estimates associated with each RL; 3)
impute values for individual non-detects based on their RLs and plotting positions; 4) compute
adjusted mean and standard deviation estimates via the sample mean and standard deviation of the
combined set of detects and imputed non-detects; and 5) use these adjusted population estimates in
place of the (unadjusted) sample mean and standard deviation in prediction limits, confidence limits,
and control charts.

Advantages/Disadvantages: Robust ROS offers an alternative to Kaplan-Meier to adjust for significant
fractions of non-detects without having to know the actual non-detect concentration values. It is
more difficult to use than simple substitution, but avoids the biases inherent in that method.

COHEN’s METHOD AND PARAMETRIC ROS (SECTION 15.5)

Basic purpose: Diagnostic tools. These are other methods to adjust mixture of detects and non-detects
to obtain the unknown mean and standard deviation for the entire data set

Hypothesis tested:  Neither technique is a formal statistical test. Rather, they allow estimation of
characteristics of the population by assuming the combined group of detects and non-detects come
from a common distribution.

Underlying assumptions: Dataset consists of a mixture of detects and non-detects, all arising from the
same distribution. Data must be normal or normalized in the context of the Unified Guidance.
Neither should be used when more than 50% of the data are non-detects nor when data contain
multiple non-detect levels.

When to use: Since these methods assume that all the measurements arise from the same statistical
process, they should be used when this model is reasonable. In particular, when constructing
prediction limits, confidence limits, or control charts, the mean and standard deviation of the
underlying population must be estimated. If non-detects occur in the dataset (but do not account for
more than half of the observations), they can be used to determine these estimates, which in turn can
be utilized to construct the desired statistical test.
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Steps involved: Cohen’s Method: 1) data are sorted into non-detect and detected portions; 2) detect
mean and standard deviation estimates are calculated; 3) intermediate quantities of the ND% and a
factor y are calculated and used to locate the appropriate A value from a table; and 4) full data set
mean and standard deviation estimates are then obtained using formulas based on the detected mean,
standard deviation, the detection limit and A. Parametric ROS: 1) detected data are sorted in
ascending order; 2) standardized normal distribution Z-values are generated from the full set of
ranked values. Those corresponding to the sorted detected values are retained; 3) the detected
values are then regressed against the Z-values; and 4) the resulting regression intercept and slope are
the estimates of the mean and standard deviation for the full data set.

Advantages/Disadvantages: These two methods offer alternatives to Kaplan-Meier and robust ROS.
The key limitation is that only data containing a single censoring limit can be used. In some
situations using logarithmic data, their application can lead to biased estimates of the mean and
standard deviation. Where appropriate, these methods are less computationally intensive that either
Kaplan-Meier or robust ROS.

POOLED VARIANCE T-TEST (SECTION 16.1.1)
Basic purpose: Method for detection monitoring. This test compares the means of two populations.

Hypothesis tested: Hy — Means of the two populations are equal; Ha — Means of the two populations
are unequal (for the usual one-sided alternative, the hypothesis would state that the mean of the
second population is greater than the mean of the first population).

Underlying assumptions: 1) The data from each population must be normal or normalized; 2) when
used for interwell tests, there should be no significant spatial variability; 3) at least 4 observations
per well should be available before applying the test; and 4) the two group variances are equal.

When to use: The pooled variance t-test can be used to test for groundwater contamination at very small
sites, those consisting of maybe 3 or 4 wells and monitoring for 1 or 2 constituents. Site
configurations with larger combinations of wells and constituents should employ a retesting scheme
using either prediction limits or control charts. The pooled variance t-test can also be used to test
proposed updates to intrawell background. A non-significant t-test in this latter case suggests the two
sets of data are sufficiently similar to allow the initial background to be updated by augmenting with
more recent measurements.

Steps involved: 1) Test the combined residuals from each population for normality. Make a data
transformation if necessary; 2) test for equal variances, and if equal, compute a pooled variance
estimate; 3) compute the pooled variance t-statistic and the degrees of freedom; 3) compare the t-
statistic against a critical point based on both the a-level and the degrees of freedom; and 4) if the t-
statistic exceeds the critical point, conclude the null hypothesis of equal means has been violated.

Advantages/Disadvantages: 1) The pooled variance t-test is one of the easiest to compute t-test
procedures, but requires an assumption of equal variances across both populations; 2) because the t-
test is a well-understood statistical procedure, the Unified Guidance recommends its use at very
small groundwater monitoring facilities. For larger sites, however, repeated use of the t-test at a
given o-level will lead to an unacceptably high risk of false positive error; and 3) if substantial
spatial variability exists, the use of any t-test for upgradient-to-downgradient comparisons may lead
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to inaccurate conclusions. A significant difference in the population averages could also indicate the
presence of natural geochemical factors differentially affecting the concentration levels at different
wells. In these situations, consider an intrawell test instead.

WELCH’S T-TEST (SECTION 16.1.2)
Basic purpose: Method for detection monitoring. This test compares the means of two populations.

Hypothesis tested: Hy — Means of the two populations are equal; Ha — Means of the two populations
are unequal (for the usual one-sided alternative, the hypothesis would state that the mean of the
second population is greater than the mean of the first population).

Underlying assumptions: 1) The data from each population must be normal or normalized; 2) when
used for interwell tests, there should be no significant spatial variability; and 3) At least 4
observations per well should be available before applying the test.

When to use: Welch’s t-test can be used to test for groundwater contamination at very small sites, those
consisting of maybe 3 or 4 wells and monitoring for 1 or 2 constituents. Site configurations with
larger combinations of wells and constituents should employ a retesting scheme using either
prediction limits or control charts. Welch’s t-test can also be used to test proposed updates to
intrawell background data. A non-significant t-test in this latter case suggests the two sets of data are
sufficiently similar to allow the initial background to be updated by augmenting with the more recent
measurements.

Steps involved: 1) Test the combined residuals from each population for normality. Make a data
transformation if necessary; 2) compute Welch’s t-statistic and approximate degrees of freedom; 3)
compare the t-statistic against a critical point based on both the a-level and the estimated degrees of
freedom; and 4) if the t-statistic exceeds the critical point, conclude the null hypothesis of equal
means has been violated.

Advantages/Disadvantages: 1) Welch’s t-test is slightly more difficult to compute than other common
t-test procedures, but has the advantage of not requiring equal variances across both populations.
Furthermore, it has been shown to perform statistically as well or better than other t-tests; 2) it can be
used at very small groundwater monitoring facilities, but should be avoided at larger sites. Repeated
use of the t-test at a given a-level will lead to an unacceptably high risk of false positive error; and 3)
if there is substantial spatial variability, use of Welch’s t-test for interwell tests may lead to
inaccurate conclusions. A significant difference in the population averages may reflect the presence
of natural geochemical factors differentially affecting the concentration levels at different wells. In
these situations, consider an intrawell test instead.

WILCOXON RANK-SUM TEST (SECTION 16.2)
Basic purpose: Method for detection monitoring. This test compares the medians of two populations.

Hypothesis tested: Hy — Both populations have equal medians (and, in fact, are identical in
distribution). Ha — The two population medians are unequal (in the usual one-sided alternative, the
hypothesis would state that the median of the second population is larger than the median of the
first).
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Underlying assumptions. 1) While the Wilcoxon rank-sum test does not require normal data, it does
assume both populations have the same distributional form and that the variances are equal. If the
data are non-normal but there at most a few non-detects, the equal variance assumption may be
tested through the use of box plots and/or Levene’s test. If non-detects make-up a large fraction of
the observations, equal variances may have to be assumed rather than formally verified; 2) use of the
Wilcoxon rank-sum procedure for interwell tests assumes there is no significant spatial variability.
This is more likely to be the case in precisely those circumstances where the Wilcoxon procedure
might be used: when there are high fractions of non-detects, so that most of the concentration
measurements at any location are at low levels; and 3) there should be at least 4 background
measurements and at least 2-4 compliance point values.

When to use: The Wilcoxon rank-sum test can be used to test for groundwater contamination at very
small sites, those consisting of maybe 3 or 4 wells and monitoring for 1 or 2 constituents. Site
configurations with larger combinations of wells and constituents should employ a retesting scheme
using non-parametric prediction limits. Note, however, that non-parametric prediction limits often
require large background sample sizes to be effective. The Wilcoxon rank-sum can be useful when a
high percentage of the data is non-detect, but the amount of available background data is limited.
Indeed, an intrawell Wilcoxon procedure may be helpful in some situations where the false positive
rate would otherwise be too high to run intrawell prediction limits.

Stepsinvolved: 1) Rank the combined set of values from the two datasets, breaking ties if necessary by
using midranks; 2) compute the sum of the ranks from the compliance point well and calculate the
Wilcoxon test statistic; 3) compare the Wilcoxon test statistic against an o-level critical point; and 4)
if the test statistic exceeds the critical point, conclude that the null hypothesis of equal medians has
been violated.

Advantages/Disadvantages: 1) The Wilcoxon rank-sum test is an excellent technique for small sites
with constituent non-detect data. Compared to other possible methods such as the test of proportions
or exact binomial prediction limits, the Wilcoxon rank-sum does a better job overall of correctly
identifying elevated groundwater concentrations while limiting false positive error; 2) because the
Wilcoxon rank-sum is easy to compute and understand, the Unified Guidance recommends its use at
very small groundwater monitoring facilities. For larger sites, repeated use of the Wilcoxon rank-
sum at a given a-level will lead to an unacceptably high risk of false positive error; and 3) if
substantial spatial variability exists, the use of the Wilcoxon rank-sum for interwell tests may lead to
inaccurate conclusions. A significant difference in the population medians may signal the presence
of natural geochemical differences rather than contaminated groundwater. In these situations,
consider an intrawell test instead.

TARONE-WARE TEST (SECTION 16.3)

Basic purpose: Non-parametric method for detection monitoring. This is an extension of Wilcoxon
rank-sum, an alternative test to compare the medians in two populations when non-detects are
prevalent.

Hypothesis tested: Hy — Both populations have equal medians (and, in fact, are identical in
distribution). Ha — The two population medians are unequal (in the usual one-sided alternative, the
hypothesis would state that the median of the second population is larger than the median of the
first).
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Underlying assumptions: 1) The Tarone-Ware test does not require normal data, but does assume both
populations have the same distributional form and that the variances are equal; and 2) use of the
Tarone-Ware procedure for interwell tests assumes there is no significant spatial variability. This is
more likely to be the case when there are high fractions of data non-detects, so that most of the
concentration measurements at any location are at low and similar levels.

When to use: The Tarone-Ware test can be used to test for groundwater contamination at very small
sites, those consisting of perhaps 3 or 4 wells and monitoring for 1 or 2 constituents. Site
configurations with larger combinations of wells and constituents should employ a retesting scheme
using non-parametric prediction limits. Note, however, that non-parametric prediction limits often
require large background sample sizes to be effective. The Tarone-Ware test can be useful when a
high percentage of the data is non-detect, but the amount of available background data is limited.
The Tarone-Ware test is also an alternative to the Wilcoxon rank-sum when there are multiple
reporting limits and/or it is unclear how to fully rank the data as required by the Wilcoxon.

Steps involved: 1) Sort the distinct detected values in the combined data set; 2) count the ‘risk set’
associated with each distinct value from Step 1 and compute the expected number of compliance
point detections within each risk set; 3) form the Tarone-Ware test statistic from the expected counts
in Step 2; 4) compare the test statistic against a standard normal a-level critical point; and 5) if the
test statistic exceeds the critical point, conclude that the null hypothesis of equal medians has been
violated.

Advantages/Disadvantages. The Tarone-Ware test is an excellent technique for small sites with
constituent non-detect data having multiple reporting limits. If substantial spatial variability exists,
use of the Tarone-Ware test for interwell tests may lead to inaccurate conclusions. A significant
difference in the population medians may signal the presence of natural geochemical differences
rather than contaminated groundwater. In these situations, consider an intrawell test instead.

ONE-WAY ANALYSIS OF VARIANCE [ANOVA] (SECTION 17.1.1)

Basic purpose: Formal interwell detection monitoring test and diagnostic tool. It compares population
means at multiple wells, in order to detect contaminated groundwater when tested against
background.

Hypothesis tested: Hy — Population means across all tested wells are equal. Ha — One or more pairs
of population means are unequal.

Underlying assumptions: 1) ANOVA residuals at each well or population must be normally distributed
or transformable to normality. These should be tested for normality using a goodness-of-fit
procedure; 2) the population variances across all wells must be equal. This assumption can be tested
with box plots and Levene’s test; and 3) each tested well should have at least 3 to 4 separate
observations.

When to use: The one-way ANOVA can sometimes be used to identify to simultaneously test for
contaminated groundwater across a group of distinct well locations. As an inherently interwell test,
ANOVA should be utilized only on constituents exhibiting little to no spatial variation. Most uses of
ANOVA have been superseded by prediction limits and control charts, although it is commonly
employed to identify spatial variability or temporal dependence across a group of wells.
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Steps involved: 1) Form the ANOVA residuals by subtracting from each measurement its sample well
mean,; 2) tcst the ANOVA residuals for normality and equal variance. If either of these assumptions
is violated, try a transformation of the data and retest the assumptions; 3) compute the one-way
ANOVA F-statistic; 4) if the F-statistic exceeds an a-level critical point, conclude the null
hypothesis of equal population means has been violated and that at least one pair of wells shows a
significant difference in concentration levels; and 5) test each compliance well individually to
determine which one or more exceeds background.

Advantages/Disadvantages: ANOVA is only likely to be infrequently used to make upgradient-to-
downgradient comparisons in formal detection monitoring testing. The regulatory restrictions for
per-constituent a-levels using ANOVA make it difficult to adequately control site-wide false positive
rates [SWFPR]. Even if spatial variability is not a significant problem, users are advised to consider
interwell prediction limits or control charts, and to incorporate some form of retesting

KRUSKAL-WALLIS TEST (SECTION 17.1.2)

Basic purpose: Formal interwell detection monitoring test and diagnostic tool. It compares population
medians at multiple wells, in order to detect contaminated groundwater when tested against
background. It is also useful as a non-parametric alternative to ANOVA for identifying spatial
variability in constituents with non-detects or for data that cannot be normalized.

Hypothesis tested: Hy — Population medians across all tested wells are equal. Ha — One or more pairs
of population medians are unequal.

Underlying assumptions. 1) As a non-parametric alternative to ANOVA, data need not be normal; 2)
the population variances across all wells must be equal. This assumption can be tested with box plots
and Levene’s test if the non-detect proportion is not too high; and 3) each tested well should have at
least 3 to 4 separate observations.

When to use: The Kruskal-Wallis test can sometimes be used to identify to simultaneously test for
contaminated groundwater across a group of distinct well locations. As an inherently interwell test,
Kruskal-Wallis should be utilized for this purpose only with constituents exhibiting little to no
spatial variation. Most uses of the Kruskal-Wallis (similar to ANOVA) have been superseded by
prediction limits, although it can be used to identify spatial variability and/or temporal dependence
across a group of wells when the sample data are non-normal or have higher proportions of non-
detects.

Steps involved: 1) Sort and form the ranks of the combined measurements; 2) compute the rank-based
Kruskal-Wallis test statistic (H); 3) if the H-statistic exceeds an a-level critical point, conclude the
null hypothesis of equal population medians has been violated and that at least one pair of wells
shows a significant difference in concentration levels; and 5) test each compliance well individually
to determine which one or more exceeds background.

Advantages/Disadvantages: 1) The Kruskal-Wallis test is only likely to be infrequently used to make
upgradient-to-downgradient comparisons in formal detection monitoring testing. The regulatory
restrictions for per-constituent a-levels using ANOVA make it difficult to adequately control the
SWFPR. Even if spatial variability is not a significant problem, users are advised to consider
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interwell prediction limits, and to incorporate some form of retesting; and 2) the Kruskal-Wallis test
can be used to test for spatial variability in constituents with significant fractions of non-detects.

TOLERANCE LIMIT (SECTION 17.2.1)

Basic purpose: Formal interwell detection monitoring test of background versus one or more
compliance wells. Tolerance limits can be used as an alternative to one-way ANOVA. These can
also be used in corrective action as an alternative clean-up limit.

Hypothesis tested: Hy — Population means across all tested wells are equal. Ha — One or more pairs
of population means are unequal.

Underlying assumptions: 1) Data should be normal or normalized; 2) the population variances across
all wells are assumed to be equal. This assumption can be difficult to test when comparing a single
new observation from each compliance well against a tolerance limit based on background; and 3)
there should be a minimum of 4 background measurements, preferably 8-10 or more.

When to use: A tolerance limit can be used in place of ANOVA for detecting contaminated
groundwater. It is more flexible than ANOVA since 1) as few as one new measurement per
compliance well is needed to run a tolerance limit test, and 2) no post-hoc testing is necessary to
identify which compliance wells are elevated over background. Most uses of tolerance limits (similar
to ANOVA) have been superseded by prediction limits, due to difficulty of incorporating retesting
into tolerance limit schemes. If a hazardous constituent requires a background-type standard in
compliance/assessment or corrective action, a tolerance limit can be computed on background and
used as a fixed GWPS.

Steps involved: 1) Compute background sample mean and standard deviation; 2) calculate upper
tolerance limit on background with high confidence and high coverage; 3) collect one or more
observations from each compliance well and test each against the tolerance limit; and 4) identify a
well as contaminated if any of its observations exceed the tolerance limit.

Advantages/Disadvantages. Tolerance limits are likely to be used only infrequently to be used as either
interwell or intrawell tests. Prediction limits or control charts offer better control of false positive
rates, and less is known about the impact of retesting on tolerance limit performance.

NON-PARAMETRIC TOLERANCE LIMIT (SECTION 17.2.2)

Basic purpose: Formal interwell detection monitoring test of background versus one or more
compliance wells. Non-parametric tolerance limits can be used as an alternative to the Kruskal-
Wallis test. They may also be used in compliance/assessment or corrective action to define a
background GWPS.

Hypothesis tested: Hy — Population medians across all tested wells are equal. Ha — One or more pairs
of population medians are unequal.

Underlying assumptions: 1) As a non-parametric test, non-normal data with non-detects can be used,
and 2) there should be a minimum of 8-10 background measurements and preferably more.
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When to use: A non-parametric tolerance limit can be used in place of the Kruskal-Wallis test for
detecting contaminated groundwater. It is more flexible than Kruskal-Wallis since 1) as few as one
new measurement per compliance well is needed to run a tolerance limit test, and 2) no post-hoc
testing is necessary to identify which compliance wells are elevated over background. Most uses of
tolerance limits have been superseded by prediction limits, due to difficulty of incorporating retesting
into tolerance limit schemes. However, when a clean-up limit cannot or has not been specified in
corrective action, a tolerance limit can be computed on background and used as a site-specific
alternate concentration limit [ACL].

Steps involved: 1) Compute a large order statistic from background and set this value as the upper
tolerance limit; 2) calculate the confidence and coverage associated with the tolerance limit; 3)
collect one or more observations from each compliance well and test each against the tolerance limit;
and 4) identify a well as contaminated if any of its observations exceed the tolerance limit.

Advantages/Disadvantages. 1) Tolerance limits are likely to be used only infrequently to be used as
either interwell or intrawell tests. Prediction limits or control charts offer better control of false
positive rates, and less is known about the impact of retesting on tolerance limit performance; and 2)
non-parametric tolerance limits have the added disadvantage of generally requiring large background
samples to ensure adequate confidence and/or coverage. For this reason, it is strongly recommended
that a parametric tolerance limit be constructed whenever possible.

LINEAR REGRESSION (SECTION 14.4)

Basic purpose: Method for detection monitoring and diagnostic tool. It is used to identify the presence
of a significantly increasing trend at a compliance point or any trend in background data sets.

Hypothesistested: Ho — No discernible linear trend exists in the concentration data over time. Ha — A
non-zero, (upward) linear component to the trend does exist.

Underlying assumptions: Trend residuals should be normal or normalized, equal in variance, and
statistically independent. If a small fraction of non-detects exists (<10-15%), use simple substitution
to replace each non-detect by half the reporting limit [RL]. Test homoscedasticity of residuals with a
scatter plot (Section 9.1).

When to use: Use a test for trend when 1) upgradient-to-downgradient comparisons are inappropriate so
that intrawell tests are called for, and 2) a control chart or intrawell prediction limit cannot be used
because of possible trends in the intrawell background. A trend test can be particularly helpful at
sites with recent or historical contamination where it is uncertain to what degree intrawell
background is already contaminated. The presence of an upward trend in these cases will document
the changing nature of the concentration data much more accurately than either a control chart or
intrawell prediction limit, both of which assume a stable baseline concentration.

Steps involved: 1) If a linear trend is evident on a time series plot, construct the linear regression
equation; 2) subtract the estimated trend line from each observation to form residuals; 3) test
residuals for assumptions listed above; and 4) test regression slope to determine whether it is
significantly different from zero. If so and the slope is positive, conclude there is evidence of a
significant upward trend.
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Advantages/Disadvantages. Linear regression is a standard statistical method for identifying trends and
other linear associations between pairs of random variables. However, it requires approximate
normality of the trend residuals. Confidence bands around regression trends can be used in
compliance/assessment and corrective action to determine compliance with fixed standards even
when concentration levels are actively changing (i.e., when a trend is apparent).

MANN-KENDALL TEST FOR TREND (SECTION 17.3.2)

Basic purpose: Method for detection monitoring and diagnostic tool. It is used to identify the presence
of a significant (upward) trend at a compliance point or any trend in background data.

Hypothesistested: Ho — No discernible linear trend exists in the concentration data over time. Ha — A
non-zero, (upward) linear component to the trend does exist.

Underlying assumptions: Since the Mann-Kendall trend test is a non-parametric method, the
underlying data need not be normal or follow any particular distribution. No special adjustment for
ties is needed.

When to use: Use a test for trend when 1) interwell tests are inappropriate so that intrawell tests are
called for, and 2) a control chart or intrawell prediction limit cannot be used because of possible
trends in intrawell background. A trend test can be particularly helpful at sites with recent or
historical contamination where it is uncertain if intrawell background is already contaminated. An
upward trend in these cases documents changing concentration levels more accurately than either a
control chart or intrawell prediction limit, both of which assume a stationary background mean
concentration.

Steps involved: 1) Sort the data values by time of sampling/collection; 2) consider all possible pairs of
measurements from different sampling events; 3) score each pair depending on whether the later data
point is higher or lower in concentration than the earlier one, and sum the scores to get Mann-
Kendall statistic; 4) compare this statistic against an o-level critical point; and 5) if the statistic
exceeds the critical point, conclude that a significant upward trend exists. If not, conclude there is
insufficient evidence for identifying a significant, non-zero trend.

Advantages/Disadvantages: The Mann-Kendall test does not require any special treatment for non-
detects, only that all non-detects can be set to a common value lower than any of the detects. The
test is easy to compute and reasonably efficient for detecting (upward) trends. Exact critical points
are provided in the Unified Guidance for n < 20; a normal approximation can be used for n > 20. 3)
A version of the Mann-Kendall test (the seasonal Mann-Kendall, Section 14.3.4) can be used to test
for trends in data that exhibit seasonality.

THEIL-SEN TREND LINE (SECTION 17.3.3)

Basic purpose: Method for detection monitoring. This is a non-parametric alternative to linear
regression for estimating a linear trend.

Hypothesis tested: As presented in the Unified Guidance, the Theil-Sen trend line is not a formal
hypothesis test but rather an estimation procedure. The algorithm can be modified to formally test
whether the true slope is significantly different from zero, but this question will already be answered
if used in conjunction with the Mann-Kendall procedure.
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Underlying assumptions: Like the Mann-Kendall trend test, the Theil-Sen trend line is non-parametric,
so the underlying data need not be normal or follow a particular distribution. Furthermore, data ranks
are not used, so no special adjustment for ties is needed.

When to use: It is particularly helpful when used in conjunction with the Mann-Kendall test for trend.
The latter test offers information about whether a trend exists, but does not estimate the trend line
itself. Once a trend is identified, the Theil-Sen procedure indicates how quickly the concentration
level is changing with time.

Steps involved: 1) Sort the data set by date/time of sampling; 2) for each pair of distinct sampling
events, compute the simple pairwise slope; 3) sort the list of pairwise slopes and set the overall slope
estimate (Q) as the median slope in this list; 4) compute the median concentration and the median
date/time of sampling; and 5) construct the Theil-Sen trend as the line passing through the median
scatter point from Step 4 with slope Q.

Advantages/Disadvantages: Although non-parametric, the Theil-Sen slope estimator does not use data
ranks but rather the concentrations themselves. The method is non-parametric because the median
pairwise slope is utilized, thus ignoring extreme values that might otherwise skew the slope estimate.
The Theil-Sen trend line is as easy to compute as the Mann-Kendall test and does not require any
special adjustment for ties (e.g., non-detects).

PREDICTION LIMIT FOR M FUTURE VALUES (SECTION 18.2.1)

Basic purpose: Method for detection monitoring. This technique estimates numerical bound(s) on a
series of mindependent future values. The prediction limit(s) can be used to test whether the mean of
one or more compliance well populations are equal to the mean of a background population.

Hypothesistested: Hy — The true mean of m future observations arises from the same population as the
mean of measurements used to construct the prediction limit. Ha — The m future observations come
from a distribution with a different mean than the population of measurements. Since an upper
prediction limit is of interest in detection monitoring, the alternative hypothesis would state that the
future observations are distributed with a larger mean than the background population.

Underlying assumptions: 1) Data used to construct the prediction limit must be normal or normalized.
Adjustments for small to moderate fractions of non-detects can be made, perhaps using Kaplan-
Meier or robust ROS; 2) although the variances of both populations (background and future values)
are assumed to be equal, rarely will there be enough data from the future population to verify this
assumption except during periodic updates to background; and 3) if used for upgradient-to-
downgradient comparisons, there should be no significant spatial variability.

When to use: Prediction limits on individual observations can be used as an alternative in detection
monitoring to either one-way ANOVA or Dunnett’s multiple comparison with control [MCC]
procedure. Assuming there is insignificant natural spatial variability, an interwell prediction limit can
be constructed using upgradient or other representative background data. The number of future
samples (m) should be chosen to reflect a single new observation collected from each downgradient
or compliance well prior to the next statistical evaluation, plus a fixed number (m-1) of possible
resamples. The initial future observation at each compliance point is then compared against the
prediction limit. If it exceeds the prediction limit, one or more resamples are collected from the
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‘triggered” well and also tested against the prediction limit. If substantial spatial variability exists,
prediction limits for individual values can be constructed on a well-specific basis using intrawell
background. The larger the intrawell background size, the better. To incorporate retesting, it must be
feasible to collect up to (m-1) additional, but independent, resamples from each well.

Steps involved: 1) Compute the estimated mean and standard deviation of the background data; 2)
considering the type of prediction limit (i.e., interwell or intrawell), the number of future samples m,
the desired site-wide false positive rate, and the number of wells and monitoring parameters,
determine the prediction limit multiplier (x); 3) compute the prediction limit as the background mean
plus k times the background standard deviation; and 4) compare each initial future observation
against the prediction limit. If both the initial measurement and resample(s) exceed the limit,
conclude the null hypothesis of equal means has been violated.

Advantages/Disadvantages: Prediction limits for individual values offer several advantages compared
to the traditional one-way ANOVA and Dunnett’s multiple comparison with control [MCC]
procedures. Prediction limits are not bound to a minimum 5% per-constituent false positive rate and
can be constructed to meet a target site-wide false positive rate [SWFPR] while maintaining
acceptable statistical power. Unlike the one-way ANOVA F-test, only the comparisons of interest
(i.e.,, each compliance point against background) are tested. This gives the prediction limit more
statistical power. Prediction limits can be designed for intrawell as well as interwell comparisons.

PREDICTION LIMIT FOR FUTURE MEAN (SECTION 18.2.2)

Basic purpose: Method for detection monitoring or compliance monitoring. It is used to estimate
numerical limit(s) on an independent mean constructed from p future values. The prediction limits(s)
can be used to test whether the mean of one population is equal to the mean of a separate
(background) population.

Hypothesis tested: Hyo — The true mean of p future observations arise from the same population as the
mean of measurements used to construct the prediction limit. Ha — The p future observations come
from a distribution with a different mean than the population of background measurements. Since an
upper prediction limit is of interest in both detection and compliance monitoring, the alternative
hypothesis would state that the future observations are distributed with a larger mean than that of the
background population.

Underlying assumptions: 1) Data used to construct the prediction limit must be normal or normalized.
Adjustments for small to moderate fractions of non-detects can be made, perhaps using Kaplan-
Meier or robust ROS; 2) although the variances of both populations (background and future values)
are assumed to be equal, rarely will there be enough data from the future population to verify this
assumption; and 3) if used for upgradient-to-downgradient comparisons, there should be no
significant spatial variability.

When to use: Prediction limits on means can be used as an alternative in detection monitoring to either
one-way ANOVA or Dunnett’s multiple comparison with control [MCC] procedure. Assuming there
is insignificant natural spatial variability, an interwell prediction limit can be constructed using
upgradient or other representative background data. The number of future samples p should be
chosen to reflect the number of samples that will be collected at each compliance well prior to the
next statistical evaluation (e.g., 2, 4, etc.). The average of these p observations at each compliance
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point is then compared against the prediction limit. If it is feasible to collect at least p additional, but
independent, resamples from each well, retesting can be incorporated into the procedure by using
independent mean(s) of p samples as confirmation value(s).

If substantial spatial variability exists, prediction limits for means can be constructed on a well-
specific basis using intrawell background. At least two future values must be available per well.
Larger intrawell background size are preferable. To incorporate retesting, it must be feasible to
collect at least p independent resamples from each well, in addition to the initial set of p samples. A
prediction limit can also be used in some compliance monitoring settings when a fixed compliance
health based limit cannot be use and the compliance point data must be compared directly to a
background GWPS. In this case, the compliance point mean concentration is tested against an upper
prediction limit computed from background. No retesting would be employed for this latter kind of
test.

Steps involved: 1) Compute the background sample mean and standard deviation; 2) considering the
type of prediction limit (i.e., interwell or intrawell), the number of future samples p, use of retesting,
the desired site-wide false positive rate, and the number of wells and monitoring parameters,
determine the prediction limit multiplier (x); 3) compute the prediction limit as the background mean
plus k times the background standard deviation; 4) compare each future mean of order p (i.e., a mean
constructed from p values) against the prediction limit; and 5) if the future mean exceeds the limit
and retesting is not feasible (or if used for compliance monitoring), conclude the null hypothesis of
equal means has been violated. If retesting is feasible, conclude the null hypothesis has been violated
only when the resampled mean(s) of order p also exceeds the prediction limit.

Advantages/Disadvantages: Prediction limits on means offer several advantages compared to the
traditional one-way ANOVA and Dunnett’s multiple comparison with control [MCC] procedure:
Prediction limits are not bound to a minimum 5% per-constituent false positive rate. As such,
prediction limits can be constructed to meet a target SWFPR, while maintaining acceptable statistical
power. Unlike the one-way F-test, only the comparisons of interest (i.e., each compliance point
against background) are tested, giving the prediction limit more statistical power. Prediction limits
can be designed for intrawell as well as interwell comparisons. One slight disadvantage is that
ANOVA combines compliance point data with background to give a somewhat better per-well
estimate of variability. But even this disadvantage can be overcome when using an interwell
prediction limit by first running ANOVA on the combined background and compliance point data to
generate a better variance estimate with a larger degree of freedom. A disadvantage compared to
prediction limits on individual future values is that two or more new compliance point observations
per well must be available to run the prediction limit on means. If only one new measurement per
evaluation period can be collected, the user should instead construct a prediction limit on individual
values.

NON-PARAMETRIC PREDICTION LIMIT FOR M FUTURE VALUES (SECTION 18.3.1)

Basic purpose: Method for detection monitoring. It is a non-parametric technique to estimate numerical
limits(s) on a series of m independent future values. The prediction limit(s) can be used to test
whether two samples are drawn from the same or different populations.

Hypothesis tested: Ho — The m future observations come from the same distribution as the
measurements used to construct the prediction limit. Ha — The m future observations come from a
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different distribution than the population of measurements used to build the prediction limit. Since
an upper prediction limit is of interest in detection monitoring, the alternative hypothesis is that the
future observations are distributed with a larger median than the background population.

Underlying assumptions: 1) The data used to construct the prediction limit need not be normal;
however, the forms of the both the background distribution and the future distribution are assumed to
be the same. Since the non-parametric prediction limit is constructed as an order statistic of
background, high fractions of non-detects are acceptable; 2) although the variances of both
populations (background and future values) are assumed to be equal, rarely will there be enough data
from the future population to verify this assumption; and 3) if used for upgradient-to-downgradient
comparisons, there should be no significant spatial variability. Spatial variation is less likely to be
significant in many cases where constituent data are primarily non-detect, allowing the use of a non-
parametric interwell prediction limit test.

When to use: Prediction limits on individual values can be used as a non-parametric alternative in
detection monitoring to either one-way ANOVA or Dunnett’s multiple comparison with control
[MCC] procedure. Assuming there is insignificant natural spatial variability, an interwell prediction
limit can be constructed using upgradient or other representative background data. The number of
future samples m should be chosen to reflect a single new observation collected from each
compliance well prior to the next statistical evaluation, plus a fixed number (m-1) of possible
resamples. The initial future observation at each compliance point is then compared against the
prediction limit. If it exceeds the prediction limit, one or more resamples are collected from the
‘triggered” well and also compared to the prediction limit.

Stepsinvolved: 1) Determine the maximum, second-largest, or other highly ranked value in background
and set the non-parametric prediction limit equal to this level; 2) considering the number of future
samples m, and the number of wells and monitoring parameters, determine the achievable site-wide
false positive rate [SWFPRY]. If the error rate is not acceptable, consider possibly enlarging the pool
of background data used to construct the limit or increasing the number of future samples m; 3)
compare each initial future observation against the prediction limit; and 4) if both the initial
measurement and resample(s) exceed the limit, conclude the null hypothesis of equal distributions
has been violated.

Advantages/Disadvantages. Non-parametric prediction limits on individual values offer distinct
advantages compared to the Kruskal-Wallis non-parametric ANOVA test. Prediction limits are not
bound to a minimum 5% per-constituent false positive rate. As such, prediction limits can be
constructed to meet a target SWFPR, while maintaining acceptable statistical power. Unlike the
Kruskal-Wallis test, only the comparisons of interest (i.e, each compliance point against
background) are tested, giving the prediction limit more statistical power. Non-parametric prediction
limits have the disadvantage of generally requiring fairly large background samples to effectively
control false positive error and ensure adequate power.

PREDICTION LIMIT FOR FUTURE MEDIAN (SECTION 18.3.2)

Basic purpose: Method for detection monitoring and compliance monitoring. This is a non-parametric
technique to estimate numerical limits(s) on the median of p independent future values. The
prediction limit(s) is used to test whether the median of one or more compliance well populations is
equal to the median of the background population.
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Hypothesis tested: Hy — The true median of p future observations arise from the same population as
the median of measurements used to construct the prediction limit. Ha — The p future observations
come from a distribution with a different median than the background population of measurements.
Since an upper prediction limit is of interest in both detection monitoring and compliance
monitoring, the alternative hypothesis is that the future observations are distributed with a larger
median than the background population.

Underlying assumptions: 1) The data used to construct the prediction limit need not be normal;
however, the forms of the both the background distribution and the future distribution are assumed to
be the same. Since the non-parametric prediction limit is constructed as an order statistic of
background, high fractions of non-detects are acceptable: 2) although the variances of both
populations (background and future values) are assumed to be equal, rarely will there be enough data
from the future population to verify this assumption; and 3) if used for upgradient-to-downgradient
comparisons, there should be no significant spatial variability.

When to use: Prediction limits on medians can be used as a non-parametric alternative in detection
monitoring to either one-way ANOVA or Dunnett’s multiple comparison with control [MCC]
procedure. Assuming there is insignificant natural spatial variability, an interwell prediction limit
can be constructed using upgradient or other representative background data. The number of future
samples p should be odd and chosen to reflect the number of samples that will be collected at each
compliance well prior to the next statistical evaluation (e.g., 3). The median of these p observations
at each compliance point is then compared against the prediction limit. If it is feasible to collect at
least p additional, but independent, resamples from each well, retesting can be incorporated into the
procedure by using independent median(s) of p samples as confirmation value(s). A prediction limit
for a compliance point median can also be constructed in certain compliance monitoring settings,
when no fixed health-based compliance limit can be used and the compliance point data must be
directly compared against a background GWPS. In this case, the compliance point median
concentration is compared to an upper prediction limit computed from background. No retesting is
employed for this latter kind of test.

Stepsinvolved: 1) Determine the maximum, second-largest, or other highly ranked value in background
and set the non-parametric prediction limit equal to this level; 2) considering the number of future
samples p, whether or not retesting will be incorporated, and the number of wells and monitoring
parameters, determine the achievable SWFPR. If the error rate is not acceptable, increase the
background sample size or consider a non-parametric prediction limit on individual future values
instead; 3) compare each future median of order p (i.e., a median of p values) against the prediction
limit; and 4) if the future median exceeds the limit and retesting is not feasible (or if the test is used
for compliance monitoring), conclude the null hypothesis of equal medians has been violated. If
retesting is feasible, conclude the null hypothesis has been violated only when the resampled
median(s) of order p also exceeds the prediction limit.

Advantages/Disadvantages: Non-parametric prediction limits on medians offer distinct advantages
compared to the Kruskal-Wallis test (a non-parametric one-way ANOVA). Prediction limits are not
bound to a minimum 5% per-constituent false positive rate. As such, prediction limits can be
constructed to meet a target SWFPR, while maintaining acceptable statistical power. Unlike the
Kruskal-Wallis test, only the comparisons of interest (i.e, each compliance point against
background) are tested, giving the prediction limit more statistical power. A disadvantage in
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detection monitoring compared to non-parametric prediction limits on individual future values is that
at least three new compliance point observations per well must be available to run the prediction
limit on medians. If only one new observation per evaluation period can be collected, construct
instead a non-parametric prediction limit for individual values. All non-parametric prediction limits
have the disadvantage of usually requiring fairly large background samples to effectively control
false positive error and ensure adequate power.

SHEWHART-CUSUM CoONTROL CHART (SECTION 20.2)

Basic purpose: Method for detection monitoring. These are used to quantitatively and visually track
concentrations at a given well over time to determine whether they exceed a critical threshold (i.e.,
control limit), thus implying a significant increase above background conditions.

Hypothesis tested: Hy — Data plotted on the control chart follow the same distribution as the
background data used to compute the baseline chart parameters. Hya — Data plotted on the chart
follow a different distribution with higher mean level than the baseline data.

Underlying assumptions: Data used to construct the control chart must be approximately normal or
normalized. Adjustments for small to moderate fractions of non-detects, perhaps using Kaplan-Meier
or ROS, can be acceptable. There should be no discernible trend in the baseline data used to calculate
the control limit.

When to use: Use control charts as an alternative to parametric prediction limits, when 1) there are
enough uncontaminated baseline data to compute an accurate control limit, and 2) there are no trends
in intrawell background. Retesting can be incorporated into control charts by judicious choice of
control limit. This may need to be estimated using Monte Carlo simulations.

Steps involved: 1) Compute the intrawell baseline mean and standard deviation; 2) calculate an
appropriate control limit from these baseline parameters, the desired retesting strategy and number of
well-constituent pairs in the network; 3) construct the chart, plotting the control limit, the
compliance point observations, and the cumulative sums [CUSUM]; and 4) determine that the null
hypothesis is violated when either an individual concentration measurement or the cumulative sum
exceeds the control limit.

Advantages/Disadvantages: Unlike prediction limits, control charts offer an explicit visual tracking of
compliance point values over time and provide a method to judge whether these concentrations have
exceeded a critical threshold. The Shewhart portion of the chart is especially good at detecting
sudden concentration increases, while the CUSUM portion is preferred for detecting slower, steady
increases over time. No non-parametric version of the combined Shewhart-CUSUM control chart
exists, so non-parametric prediction limits should be considered if the data cannot be normalized.

CONFIDENCE INTERVAL AROUND NORMAL MEAN (SECTION 21.1.1)

Basic purpose: Method for compliance/assessment monitoring or corrective action. This is a technique
for estimating a range of concentration values from sample data, in which the true mean of a normal
population is expected to occur at a certain probability.

Hypothesistested: In compliance monitoring, Ho — True mean concentration at the compliance point is
no greater than the predetermined groundwater protection standard [GWPS]. Ha — True mean
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concentration is greater than the GWPS. In corrective action, Hy — True mean concentration at the
compliance point is greater than or equal to the fixed GWPS. Ha — True mean concentration is less
than or equal to the fixed standard.

Underlying assumptions. 1) Compliance point data are approximately normal in distribution.
Adjustments for small to moderate fractions of non-detects, perhaps using Kaplan-Meier or ROS, are
encouraged; 2) data do not exhibit any significant trend over time; 3) there are a minimum of 4
observations for testing. Generally, at least 8 to 10 measurements are recommended; and 4) the fixed
GWHPS is assumed to represent a true mean average concentration, rather than a maximum or upper
percentile.

When to use: A mean confidence interval can be used for normal data to determine whether there is
statistically significant evidence that the average is either above a fixed GWPS (in compliance
monitoring) or below the fixed standard (in corrective action). In either case, the null hypothesis is
rejected only when the entire confidence interval lies on one or the other side of the GWPS. The key
determinant in compliance monitoring is whether the lower confidence limit exceeds the GWPS,
while in corrective action the upper confidence limit lies below the clean-up standard. Because of
bias introduced by transformations when estimating a mean, this approach should not be used for
highly-skewed or non-normal data. Instead consider a confidence interval around a lognormal mean
or a non-parametric confidence interval. It is also not recommended for use when the data exhibit a
significant trend. In that case, the estimate of variability will likely be too high, leading to an
unnecessarily wide interval and possibly little chance of deciding the hypothesis. When a trend is
present, consider instead a confidence interval around a trend line.

Steps involved: 1) Compute the sample mean and standard deviation; 2) based on the sample size and
choice of a confidence level (1-a), calculate either the lower confidence limit (for use in compliance
monitoring) or the upper confidence limit (for use in corrective action); 3) compare the confidence
limit against the GWPS or clean-up standard; and 4) if the lower confidence limit exceeds the GWPS
in compliance monitoring or the upper confidence limit is below the clean-up standard, conclude that
the null hypothesis should be rejected.

Advantages/Disadvantages: Use of a confidence interval instead of simply the sample mean for
comparison to a fixed standard accounts for both the level of statistical variation in the data and the
desired or targeted confidence level. The same basic test can be used both to document
contamination above the compliance standard in compliance/assessment and to show a sufficient
decrease in concentration levels below the clean-up standard in corrective action.

CONFIDENCE INTERVAL ON LOGNORMAL GEOMETRIC MEAN (SECTION 21.1.2)

Basic purpose: Method for compliance/assessment monitoring or corrective action. It is a technique to
estimate the range of concentration values from sample data, in which the true geometric mean of a
lognormal population is expected to occur at a certain probability.

Hypothesistested: In compliance monitoring, Ho — True mean concentration at the compliance point is
no greater than the fixed compliance or groundwater protection standard [GWPS]. Ha — True mean
concentration is greater than the GWPS. In corrective action, Ho — True mean concentration at the
compliance point is greater than the fixed compliance or clean-up standard. Ha — True mean
concentration is less than or equal to the fixed standard.
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Underlying assumptions: 1) Compliance point data are approximately lognormal in distribution.
Adjustments for small to moderate fractions of non-detects, perhaps using Kaplan-Meier or ROS, are
encouraged; 2) data do not exhibit any significant trend over time; 3) there are a minimum of 4
observations. Generally, at least 8 to 10 measurements are recommended; and 4) the fixed GWPS is
assumed to represent a true geometric mean average concentration following a lognormal
distribution, rather than a maximum or upper percentile. The GWPS also represents the true median.

When to use: A confidence interval on the geometric mean can be used for lognormal data to determine
whether there is statistically significant evidence that the geometric average is either above a fixed
numerical standard (in compliance monitoring) or below a fixed standard (in corrective action). In
either case, the null hypothesis is rejected only when the entire confidence interval is to one side of
the compliance or clean-up standard. Because of this fact, the key question in compliance monitoring
is whether the lower confidence limit exceeds the GWPS, while in corrective action the user must
determine whether the upper confidence limit is below the clean-up standard. Because of bias
introduced by transformations when estimating the arithmetic lognormal mean, and the often
unreasonably high upper confidence limits generated by Land’s method for lognormal mean
confidence intervals (see below), this approach is an alternative approach for lognormal data. One
could also consider a non-parametric confidence interval. It is also not recommended for use when
data exhibit a significant trend. In that case, the estimate of variability will likely be too high, leading
to an unnecessarily wide interval and possibly little chance of deciding the hypothesis. When a trend
is present, consider instead a confidence interval around a trend line.

Steps involved: 1) Compute the sample log-mean and log-standard deviation; 2) based on the sample
size and choice of confidence level (1-o), calculate either the lower confidence limit (for use in
compliance monitoring) or the upper confidence limit (for use in corrective action) using the logged
measurements and exponentiate the result; 3) compare the confidence limit against the GWPS or
clean-up standard; and 4) if the lower confidence limit exceeds the GWPS in compliance monitoring
or the upper confidence limit is below the clean-up standard, conclude that the null hypothesis
should be rejected.

Advantages/Disadvantages. Use of a confidence interval instead of simply the sample geometric mean
for comparison to a fixed standard accounts for both statistical variation in the data and the targeted
confidence level. The same basic test can be used both to document contamination above the
compliance standard in compliance/assessment and to show a sufficient decrease in concentration
levels below the clean-up standard in corrective action.

CONFIDENCE INTERVAL ON LOGNORMAL ARITHMETIC MEAN (SECTION 21.1.3)

Basic purpose: Test for compliance/assessment monitoring or corrective action. This is a method by
Land (1971) used to estimate the range of concentration values from sample data, in which the true
arithmetic mean of a lognormal population is expected to occur at a certain probability.

Hypothesistested: In compliance monitoring, Ho — True mean concentration at the compliance point is
no greater than the fixed compliance or groundwater protection standard [GWPS]. Ha — True mean
concentration is greater than the GWPS. In corrective action, Ho — True mean concentration at the
compliance point is greater than the fixed compliance or clean-up standard. Ha — True mean
concentration is less than or equal to the fixed standard.
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Underlying assumptions: 1) Compliance point data are approximately lognormal in distribution.
Adjustments for small to moderate fractions of non-detects, perhaps using Kaplan-Meier or ROS, are
encouraged; 2) data do not exhibit any significant trend over time; 3) there are a minimum of 4
observations. Generally, at least 8 to 10 measurements are strongly recommended; and 4) the fixed
GWHPS is assumed to represent the true arithmetic mean average concentration, rather than a
maximum or upper percentile.

When to use: Land’s confidence interval procedure can be used for lognormally-distributed data to
determine whether there is statistically significant evidence that the average is either above a fixed
numerical standard (in compliance monitoring) or below a fixed standard (in corrective action). In
either case, the null hypothesis is rejected only when the entire confidence interval is to one side of
the compliance or clean-up standard. Because of this fact, the key question in compliance monitoring
is whether the lower confidence limit exceeds the GWPS, while in corrective action the user must
determine whether the upper confidence limit is below the clean-up standard. Because the
lognormal distribution can have a highly skewed upper tail, this approach should only be used when
the data fit the lognormal model rather closely, especially if used in corrective action. Consider
instead a confidence interval around the lognormal geometric mean or a non-parametric confidence
interval if this is not the case. It is also not recommended for data that exhibit a significant trend. In
that situation, the estimate of variability will likely be too high, leading to an unnecessarily wide
interval and possibly little chance of deciding the hypothesis. When a trend is present, consider
instead a confidence interval around a trend line.

Steps involved: 1) Compute the sample log-mean and log-standard deviation; 2) based on the sample
size, magnitude of the log-standard deviation and choice of confidence level (1-o), determine Land’s
adjustment factor; 3) then calculate either the lower confidence limit (for use in compliance
monitoring) or the upper confidence limit (for use in corrective action); 4) compare the confidence
limit against the GWPS or clean-up standard; and 5) if the lower confidence limit exceeds the GWPS
in compliance montoring or the upper confidence limit is below the clean-up standard, conclude that
the null hypothesis should be rejected.

Advantages/Disadvantages: Use of a confidence interval instead of simply the sample mean for
comparison to a fixed standard accounts for both statistical variation in the data and the targeted
confidence level. The same basic test can be used both to document contamination above the
compliance standard in compliance/assessment and to show a sufficient decrease in concentration
levels below the clean-up standard in corrective action. Since the upper confidence limit on a
lognormal mean can be extremely high for some populations, the user may need to consider a non-
parametric upper confidence limit on the median concentration as an alternative or use a program
such as Pro-UCL to determine an alternate upper confidence limit.

CONFIDENCE INTERVAL ON UPPER PERCENTILE (SECTION 21.1.4)

Basic purpose: Method for compliance monitoring. It is used to estimate the range of concentration
values from sample data in which a pre-specified true proportion of a normal population is expected
to occur at a certain probability. The test can also be used to identify the range of a true proportion
or percentile (e.g., the 95th) in population data which can be normalized.
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Hypothesis tested: Hy — True upper percentile concentration at the compliance point is no greater than
the fixed compliance or groundwater protection standard [GWPS]. Ha — True upper percentile
concentration is greater than the fixed GWPS.

Underlying assumptions: 1) Compliance point data are either normal in distribution or can be
normalized. Adjustments for small to moderate fractions of non-detects, perhaps using Kaplan-Meier
or ROS, are encouraged; 2) data do not exhibit any significant trend over time; 3) there are a
minimum of at least 8 to 10 measurements; and 4) the fixed GWPS is assumed to represent a
maximum or upper percentile, rather than an average concentration.

When to use: A confidence interval around an upper percentile can be used to determine whether there
is statistically significant evidence that the percentile is above a fixed numerical standard. The null
hypothesis is rejected only when the entire confidence interval is greater than the compliance
standard. Because of this fact, the key question in compliance monitoring is whether the lower
confidence limit exceeds the GWPS. This approach is not recommended for use when the data
exhibit a significant trend. The estimate of variability will likely be too high, leading to an
unnecessarily wide interval and possibly little chance of deciding the hypothesis.

Steps involved: 1) Compute the sample mean and standard deviation; 2) based on the sample size, pre-
determined true proportion and test confidence level (1-a), calculate the lower confidence limit; 3)
compare the confidence limit against the GWPS; and 4) if the lower confidence limit exceeds the
GWPS, conclude that the true upper percentile is larger than the compliance standard.

Advantages/Disadvantages: If a fixed GWPS is intended to represent a ‘not-to-be-exceeded” maximum
or an upper percentile, statistical comparison requires the prior definition of a true or expected upper
percentile against which sample data can be compared. Some standards may explicitly identify the
expected percentile. The appropriate test then must estimate the confidence interval in which this
true proportion is expected to lie. Either an upper or lower confidence limit can be generated,
depending on whether compliance or corrective action hypothesis testing is appropriate. Whatever
the interpretation of a given limit used as a GWPS, it should be determined in advance what a given
standard represents before choosing which type of confidence interval to construct.

NON-PARAMETRIC CONFIDENCE INTERVAL ON MEDIAN (SECTION 21.2)

Basic purpose: Test for compliance/assessment monitoring or corrective action. It is a non-parametric
method used to estimate the range of concentration values from sample data in which the true
median of a population is expected to occur at a certain probability.

Hypothesis tested: In compliance monitoring, Hyo — True median concentration at the compliance point
IS no greater than the fixed compliance or groundwater protection standard [GWPS]. Hao — True
median concentration is greater than the GWPS. In corrective action, Hy — True median
concentration at the compliance point is greater than the fixed compliance or clean-up standard. Ha
— True median concentration is less than or equal to the fixed standard.

Underlying assumptions: 1) Compliance data need not be normal in distribution; up to 50% non-
detects are acceptable; 2) data do not exhibit any significant trend over time; 3) there are a minimum
of at least 7 measurements; and 4) the fixed GWPS is assumed to represent a true median average
concentration, rather than a maximum or upper percentile.
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When to use: A confidence interval on the median can be used for non-normal data (e.g., samples with
non-detects) to determine whether there is statistically significant evidence that the average (i.e.,
median) is either above a fixed numerical standard (in compliance monitoring) or below a fixed
standard (in corrective action). In either case, the null hypothesis is rejected only when the entire
confidence interval is to one side of the compliance or clean-up standard. Because of this fact, the
key question in compliance monitoring is whether the lower confidence limit exceeds the GWPS,
while in corrective action the user must determine whether the upper confidence limit is below the
clean-up standard. This approach is not recommended for use when data exhibit a significant trend.
In that case, the variation in the data will likely be too high, leading to an unnecessarily wide interval
and possibly little chance of deciding the hypothesis. It is also possible that the apparent trend is an
artifact of differing detection or reporting limits that have changed over time. The trend may
disappear if all non-detects are imputed at a common value or RL. If a trend is still present after
investigating this possibility, but a significant portion of the data are non-detect, consultation with a
professional statistician is recommended.

Steps involved: 1) Order and rank the data values; 2) pick tentative interval endpoints close to the
estimated median concentration; 3) using the selected endpoints, compute the achieved confidence
level of the lower confidence limit for use in compliance monitoring or that of the upper confidence
limit for corrective action; 4) iteratively expand the interval until either the selected endpoints
achieve the targeted confidence level or the maximum or minimum data value is chosen as the
confidence limit; and 5) compare the confidence limit against the GWPS or clean-up standard. If the
lower confidence limit exceeds the GWPS in compliance monitoring or the upper confidence limit is
below the clean-up standard, conclude that the null hypothesis should be rejected.

Advantages/Disadvantages. Use of a confidence interval instead of simply the sample median for
comparison to a fixed limit accounts for both statistical variation in the data and the targeted
confidence level. The same basic test can be used both to document contamination above the
compliance standard in compliance/assessment and to show a sufficient decrease in concentration
levels below the clean-up standard in corrective action. By not requiring normal or normalized data,
the non-parametric confidence interval can accommodate a substantial fraction of non-detects. A
minor disadvantage is that a non-parametric confidence interval estimates the location of the median,
instead of the mean. For symmetric populations, these quantities will be the same, but for skewed
distributions they will differ. So if the compliance or clean-up standard is designed to represent a
mean concentration, the non-parametric interval around the median may not provide a completely
fair and/or accurate comparison. In some cases, the non-parametric confidence limit will not achieve
the desired confidence level even if set to the maximum or minimum data value, leading to a higher
risk of false positive error.

NON-PARAMETRIC CONFIDENCE INTERVAL ON UPPER PERCENTILE (SECTION 21.2)

Basic purpose: Non-parametric method for compliance monitoring. It is used to estimate the range of
concentration values from sample data in which a pre-specified true proportion of a population is
expected to occur at a certain probability. Exact probabilities will depend upon sample data ranks.

Hypothesis tested: Hy — True upper percentile concentration at the compliance point is no greater than
the fixed compliance or groundwater protection standard [GWPS]. Ho — True upper percentile
concentration is greater than the GWPS.
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Underlying assumptions: 1) Compliance point data need not be normal; large fractions of non-detects
can be acceptable; 2) data do not exhibit any significant trend over time; 3) there are a minimum of
at least 8 to 10 measurements; and 4) the fixed GWPS is assumed to represent a true upper percentile
of the population, rather than an average concentration.

When to use: A confidence interval on an upper percentile can be used to determine whether there is
statistically significant evidence that the percentile is above a fixed numerical standard. The null
hypothesis is rejected only when the entire confidence interval is greater than the compliance
standard. Because of this fact, the key determinant in compliance/assessment monitoring is whether
the lower confidence limit exceeds the GWPS. This approach is not recommended for use when data
exhibit a significant trend. In that case, the estimate of variability will likely be too high, leading to
an unnecessarily wide interval and possibly little chance of deciding the hypothesis.

Steps involved: 1) Order and rank the data values; 2) select tentative interval endpoints close to the
estimated upper percentile concentration; 3) using the selected endpoints, compute the achieved
confidence level of the lower confidence limit; 4) iteratively expand the interval until either the
selected lower endpoint achieves the targeted confidence level or the minimum data value is chosen
as the confidence limit; and 5) compare the confidence limit against the GWPS. If the lower
confidence limit exceeds the GWPS, conclude that the population upper percentile is larger than the
compliance standard.

Advantages/Disadvantages: If a fixed GWPS is intended to represent a ‘not-to-be-exceeded” maximum
or an upper percentile, statistical comparison requires the prior definition of a true or expected upper
percentile against which sample data can be compared. Some standards may explicitly identify the
expected percentile. The appropriate test then must estimate the confidence interval in which this
true proportion is expected to lie. Either an upper or lower confidence limit can be generated,
depending on whether compliance or corrective action hypothesis testing is appropriate. Whatever
the interpretation of a given limit used as a GWPS, it should be determined in advance what a given
standard represents before choosing which type of confidence interval to construct. However,
precise non-parametric estimation of upper percentiles often requires much larger sample sizes than
the parametric option (Section 21.1.4). For this reason, a parametric confidence interval for upper
percentile tests is recommended whenever possible, especially if a suitable transformation can be
found or adjustments made for non-detect values.

CONFIDENCE BAND AROUND LINEAR REGRESSION (SECTION 21.3.1)

Basic purpose: Method for compliance/assessment monitoring or corrective action when stationarity
cannot be assumed. It is used to estimate ranges of concentration values from sample data around
each point of a predicted linear regression line at a specified probability. The prediction line (based
on regression of concentration values against time) represents the best estimate of gradually changing
true mean levels over the time period.

Hypothesistested: In compliance monitoring, Ho — True mean concentration at the compliance point is
no greater than the fixed compliance or groundwater protection standard [GWPS]. Ha — True mean
concentration is greater than the GWPS. In corrective action, Ho — True mean concentration at the
compliance point is greater than the fixed compliance or clean-up standard. Ha — True mean
concentration is less than or equal to the fixed standard.
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Underlying assumptions: 1) Compliance point values exhibit a linear trend with time, with normally
distributed residuals. Use simple substitution with small (<10-15%) fractions of non-detects. Non-
detect adjustment methods are not recommended; 2) there are a minimum of 4 observations.
Generally, at least 8 to 10 measurements are recommended; and 3) the fixed GWPS is assumed to
represent an average concentration, rather than a maximum or upper percentile.

When to use: A confidence interval around a trend line should be used in cases where a linear trend is
apparent on a time series plot of the compliance point data. Even if observed well concentrations are
either increasing under compliance monitoring or decreasing in corrective action, it does not
necessarily imply that the true mean concentration at the current time is either above or below the
fixed GWPS. While the trend line properly accounts for the fact that the mean is changing with
time, the null hypothesis is rejected only when the entire confidence interval is to one side of the
compliance or clean-up standard at the most recent point(s) in time. The key determinant in
compliance monitoring is whether the lower confidence limit at a specified point in time exceeds the
GWPS, while in corrective action the upper confidence limit at a specific time must lie below the
clean-up standard to be considered in compliance.

Stepsinvolved: 1) Check for presence of a trend on a time series plot; 2) estimate the coefficients of the
best-fitting linear regression line; 3) compute the trend line residuals and check for normality; 4) if
data are non-normal, try re-computing the regression and residuals after transforming the data; 5)
compute the lower confidence limit band around the trend line for compliance monitoring or the
upper confidence limit band around the trend line for corrective action; and 6) compare the
confidence limit at each sampling event against the GWPS or clean-up standard. If the lower
confidence limit exceeds the GWPS in compliance/assessment or the upper confidence limit is below
the clean-up standard on one or more recent sampling events, conclude that the null hypothesis
should be rejected.

Advantages/Disadvantages: Use of a confidence interval around the trend line instead of simply the
regression line itself for comparison to a fixed standard accounts for both statistical variation in the
data and the targeted confidence level. The same basic test can be used both to document
contamination above the compliance standard in compliance/assessment and to show a sufficient
decrease in concentration levels below the clean-up standard in corrective action. By estimating the
trend line first and then using the residuals to construct the confidence interval, variation due to the
trend itself is removed, providing a more powerful test (via a narrower interval) of whether or not the
true mean is on one side of the fixed standard. This technique can only be used when the identified
trend is reasonably linear and the trend residuals are approximately normal.

NON-PARAMETRIC CONFIDENCE BAND AROUND THEIL-SEN TREND (SECTION 21.3.1)

Basic purpose. Non-parametric method for compliance/assessment or corrective action when
stationarity cannot be assumed. It is used to estimate ranges of concentration values from sample
data around each point of a predicted Theil-Sen trend line at a specified probability. The prediction
line represents the best estimate of gradually changing true median levels over the time period.

Hypothesistested: In compliance monitoring, Ho — True mean concentration at the compliance point is
no greater than the fixed compliance or groundwater protection standard [GWPS]. Ha — True mean
concentration is greater than the GWPS. In corrective action, Ho — True mean concentration at the
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compliance point is greater than the fixed compliance or clean-up standard. Ha — True mean
concentration is less than or equal to the fixed standard.

Underlying assumptions. 1) Compliance point values exhibit a linear trend with time; 2) non-normal
data and substantial levels of non-detects up to 50% are acceptable; 3) there are a minimum of 8-10
observations available to construct the confidence band; and 4) the fixed GWPS is assumed to
represent a median average concentration, rather than a maximum or upper percentile.

When to use: A confidence interval around a trend line should be used in cases where a linear trend is
apparent on a time series plot of the compliance point data. Even if observed well concentrations are
either increasing under compliance monitoring or decreasing in corrective action, it does not
necessarily imply that the true mean concentration at the current time is either above or below the
fixed GWPS. While the trend line properly accounts for the fact that the mean is changing with
time, the null hypothesis is rejected only when the entire confidence interval is to one side of the
compliance or clean-up standard at the most recent point(s) in time. The key determinant in
compliance monitoring is whether the lower confidence limit at a specified point in time exceeds the
GWPS, while in corrective action the upper confidence limit at a specific time must lie below the
clean-up standard to be considered in compliance.

Steps involved: 1) Check for presence of a trend on a time series plot; 2) construct a Theil-Sen trend
line; 3) use bootstrapping to create a large number of simulated Theil-Sen trends on the sample data;
4) construct a confidence band by selecting lower and upper percentiles from the set of bootstrapped
Theil-Sen trend estimates; and 5) compare the confidence band at each sampling event against the
GWPS or clean-up standard. If the lower confidence band exceeds the GWPS in
compliance/assessment or the upper confidence band is below the clean-up standard on one or more
recent sampling events, conclude that the null hypothesis should be rejected.

Advantages/Disadvantages: Use of a confidence band around the trend line instead of simply the Theil-
Sen trend line itself for comparison to a fixed standard accounts for both statistical variation in the
data and the targeted confidence level. The same basic test can be used both in
compliance/assessment and in corrective action. By estimating the trend line first and then using
bootstrapping to construct the confidence band, variation due to the trend itself is removed,
providing a more powerful test (via a narrower interval) of whether or not the true mean is on one
side of the fixed standard. This technique can only be used when the identified trend is reasonably
linear. The Theil-Sen trend estimates the change in median level rather than the mean. For roughly
symmetric populations, this will make little difference; for highly skewed populations, the trend in
the median may not accurately reflect changes in mean concentration levels.
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PART II: DIAGNOSTIC METHODS AND
TESTING

Part I covers diagnostic evaluations of historical facility data for checking key assumptions
implicit in the recommended statistical tests and for making appropriate adjustments to
the data (e.g., consideration of outliers, seasonal autocorrelation, or non-detects). Also included is a
discussion of groundwater sampling and how hydrologic factors such as flow and gradient can
impact the sampling program.

Chapter 9 provides a number of exploratory data tools and examples, which can generally be
used in data evaluations. Approaches for fitting data sets to normal and other parametric distributions
follows in Chapter 10. The importance of the normal distribution and its potential uses is also
discussed. Chapter 11 provides methods for assessing the equality of variance necessary for some
formal testing. The subject of outliers and means of testing for them is covered in Chapter 12.
Chapter 13 addresses spatial variability, with particular emphasis on ANOVA means testing. In
Chapter 14, a number of topics concerning temporal variation are provided. In addition to providing
tests for identifying the presence of temporal variation, specific adjustments for certain types of temporal
dependence are covered. The final Chapter 15 of Part |1 discusses non-detect data and offers several
methods for estimating missing data. In particular, methods are provided to deal with data containing
multiple non-detection limits.
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CHAPTER 9. COMMON EXPLORATORY TOOLS

9.1 TIME SERIES PLOTS ..ttt sttt ettt en e m et s st nr e e nn e e neenn e e s e nnnenree s 9-1
9.2 B OX PLOTS ettt E R Rt et nne e 9-5
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Graphs are an important tool for exploring and understanding patterns in any data set. Plotting the
data visually depicts the structure and helps unmask possible relationships between variables affecting
the data set. Data plots which accompany quantitative statistical tests can better demonstrate the reasons
for the results of a formal test. For example, a Shapiro-Wilk test may conclude that data are not normally
distributed. A probability plot or histogram of the data can confirm this conclusion graphically to show
why the data are not normally distributed (e.g., heavy skewness, bimodality, a single outlier, etc.).

Several common exploratory tools are presented in Chapter 9. These graphical techniques are
discussed in statistical texts, but are presented here in detail for easy reference for the data analyst. An
example data set is used to demonstrate how each of the following plots is created.

+«+ Time series plots (Section 9.1)
++ Box plots (Section 9.2)

+«+ Histograms (Section 9.3)

«¢+ Scatter plots (Section 9.4)

+«+ Probability plots (Section 9.5)

9.1 TIME SERIES PLOTS

Data collected over specific time intervals (e.g., monthly, biweekly, or hourly) have a temporal
component. For example, air monitoring measurements of a pollutant may be collected once a minute or
once a day. Water quality monitoring measurements may be collected weekly or monthly. Typically,
groundwater sample data are collected quarterly from the same monitoring wells, either for detection
monitoring testing or demonstrating compliance to a GWPS. An analyst examining temporal data may
be interested in the trends over time, correlation among time periods, or cyclical patterns. Some
graphical techniques specific to temporal data are the time plot, lag plot, correlogram, and variogram.
The degree to which some of these techniques can be used will depend in part on the frequency and
number of data collected over time.

A data sequence collected at regular time intervals is called a time series. More sophisticated time
series data analyses are beyond the scope of this guidance. If needed, the interested user should consult
with a statistician or appropriate statistical texts. The graphical representations presented in this section
are recommended for any data set that includes a temporal component. Techniques described below will
help identify temporal patterns that need to be accounted for in any analysis of the data. The analyst
examining temporal environmental data may be interested in seasonal trends, directional trends, serial
correlation, or stationarity. Seasonal trends are patterns in the data that repeat over time, i.e., the data
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rise and fall regularly over one or more time periods. Seasonal trends may occur over long periods of
time (large scale), such as a yearly cycle where the data show the same pattern of rising and falling from
year to year, or the trends may be over a relatively short period of time (small scale), such as a daily
cycle. Examples of seasonal trends are quarterly seasons (winter, spring, summer and fall), monthly
seasons, or even hourly (e.g., air temperature rising and falling over the course of a day). Directional
trends are increasing or decreasing patterns over time in monitored constituent data, which may be of
importance in assessing the levels of contaminants. Serial correlation is a measure of the strength in the
linear relationship of successive observations. If successive observations are related, statistical quantities
calculated without accounting for the serial correlation may be biased. A time series is stationary if there
IS no systematic change in the mean (i.e., no trend) and variance across time. Stationary data look the
same over all time periods except for random behavior. Directional trends or a change in the variability
in the data imply non-stationarity.

A time series plot of concentration data versus time makes it easy to identify lack of randomness,
changes in location, change in scale, small scale trends, or large-scale trends over time. Small-scale
trends are displayed as fluctuations over smaller time periods. For example, ozone levels over the course
of one day typically rise until the afternoon, then decrease, and this process is repeated every day. Larger
scale trends such as seasonal fluctuations appear as regular rises and drops in the graph. Ozone levels
tend to be higher in the summer than in the winter, so ozone data tend to show both a daily trend and a
seasonal trend. A time plot can also show directional trends or changing variability over time.

A time plot is constructed by plotting the measurements on the vertical axis versus the actual
time of observation or the order of observation on the horizontal axis. The points plotted may be
connected by lines, but this may create an unfounded sense of continuity. It is important to use the actual
date, time or number at which the observation was made. This can create discontinuities in the plot but
are needed as the data that should have been collected now appear as “missing values” but do not disturb
the integrity of the plot. Plotting the data at equally spaced intervals when in reality there were different
time periods between observations is not advised.

For environmental data, it is also important to use a different symbol or color to distinguish non-
detects from detected data. Non-detects are often reported by the analytical laboratory with a “U” or “<”
analytical qualifier associated with the reporting limit [RL]. In statistical terminology, they are left-
censored data, meaning the actual concentration of the chemical is known only to be below the RL. Non-
detects contrast with detected data, where the laboratory reports the result as a known concentration that
is statistically higher than the analytical limit of detection. For example, the laboratory may report a
trichloroethene concentration in groundwater of “5 U” or “< 5” pg/L, meaning the actual trichloroethene
concentration is unknown, but is bounded between zero and 5 pg/L. This result is different than a
detected concentration of 5 pug/L which is unqualified by the laboratory or data validator. Non-detects
are handled differently than detected data when calculating summary statistics. A statistician should be
consulted on the proper use of non-detects in statistical analysis. For radionuclides negative and zero
concentrations should be plotted as reported by the laboratory, showing the detection status.

The scaling of the vertical axis of a time plot is of some importance. A wider scale tends to
emphasize large-scale trends, whereas a narrower scale tends to emphasize small-scale trends. A wide
scale would emphasize the seasonal component of the data, whereas a smaller scale would tend to
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emphasize the daily fluctuations. The scale needs to contain the full range of the data. Directions for
constructing a time plot are contained in Example 9-1 and Figure 9-1.

» EXAMPLE 9-1

Construct a time series plot using trichloroethene groundwater data in Table 9-1 for each well.
Examine the time series for seasonality, directional trends and stationarity.

Table 9-1. Trichloroethene (TCE) Groundwater Concentrations

Well 1 Well 2
Date TCE Data TCE Data

Collected | (mg/L) Qualifier | (mg/L) Qualifier
1/2/2005 0.005 U 0.10 U
4/7/2005 0.005 U 0.12

7/13/2005 0.004 J 0.125
10/24/2005 0.006 0.107

1/7/2006 0.004 U 0.099 U
3/30/2006 0.009 0.11

6/28/2006 0.017 0.13

10/2/2006 0.045 0.109
10/17/2006 0.05 NA

1/15/2007 0.07 0.10 U
4/10/2007 0.12 0.115

7/9/2007 0.10 0.14

10/5/2007 NA 0.17
10/29/2007 0.20 NA
12/30/2007 0.25 0.11

NA = Not available (missing data).
U denotes a non-detect.
J denotes an estimated detected concentration.

SOLUTION
Step 1. Import the data into data analysis software capable of producing graphics.
Step 2.  Sort the data by date collected.

Step 3.  Determine the range of the data by calculating the minimum and maximum concentrations for
each well, shown in the table below:
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Step 4.

Step 5.

Step 6.

Step 7.

Well 1 Well 2
TCE Data TCE Data
(mg/L) Qualifier | (mg/L) Qualifier
Min 0.004 U 0.099 U
Max 0.25 0.17

Plot the data using a scale from 0 to 0.25 if data from both wells are plotted together on the
same time series plot. Use separate symbols for non-detects and detected concentrations. One
suggestion is to use “open” symbols (whose centers are white) for non-detects and “closed”
symbols for detects.

Examine each series for directional trends, seasonality and stationarity. Note that Well 1
demonstrates a positive directional trend across time, while Well 2 shows seasonality within
each year. Neither well exhibits stationarity.

Examine each series for missing values. Inquire from the project laboratory why data are
missing or collected at unequal time intervals. A response from the laboratory for this data set
noted that on 10/5/2007 the sample was accidentally broken in the laboratory from Well 1, so
Well 1 was resampled on 10/29/2007. Well 1 was resampled on 10/17/2006 to confirm the
historically high concentration collected on 10/2/2006. Well 2 was not sampled on 10/17/2006
because the data collected on 10/2/2006 from Well 2 did not merit a resample, as did Well 1.

Examine each series for elevated detection limits. Inquire why the detection limits for Well 2
are much larger than detection limits for Well 1. A reason may be that different laboratories
analyzed the samples from the two wells. The laboratory analyzing samples from Well 1 used
lower detection limits than did the laboratory analyzing samples from Well 2. €
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Figure 9-1. Time Series Plot of Trichloroethene Groundwater for Wells 1 and
2 from 2005-2007.
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9.2 BOX PLOTS

Box plots (also known as Box and Whisker plots) are useful in situations where a picture of the
distribution is desired, but it is not necessary or feasible to portray all the details of the data. A box plot
displays several percentiles of the data set. It is a simple plot, yet provides insight into the location,
shape, and spread of the data and underlying distribution. A simple box plot contains only the O™
(minimum data value), 25", 50", 75" and 100™ (maximum data value) percentiles. A box-plot divides
the data into 4 sections, each containing 25% of the data. Whiskers are the lines drawn to the minimum
and maximum data values from the 25™ and 75™ percentiles. The box shows the interquartile range
(IQR) which is defined as the difference between the 75" and the 25™ percentiles. The length of the
central box indicates the spread of the data (the central 50%), while the length of the whiskers shows the
breadth of the tails of the distribution. The 50" percentile (median) is the line within the box. In
addition, the mean and the 95% confidence limits around the mean are shown. Potential outliers are
categorized into two groups:

< data points between 1.5 and 3 times the IQR above the 75" percentile or between 1.5 and 3
times the IQR below the 25™ percentile, and

% data points that exceed 3 times the IQR above the 75™ percentile or exceed 3 times the IQR
below the 25™ percentile.
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The mean is shown as a star, while the lower and upper 95% confidence limits around the mean
are shown as bars. Individual data points between 1.5 and 3 times the IQR above the 75" percentile or
below the 25" percentile are shown as circles. Individual data points at least 3 times the IQR above the
75" percentile or below the 25" percentile are shown as squares.

Information from box plots can assist in identifying potential data distributions. If the upper box
and whisker are approximately the same length as the lower box and whisker, with the mean and median
approximately equal, then the data are distributed symmetrically. The normal distribution is one of a
number that is symmetric. If the upper box and whisker are longer than the lower box and whisker, with
the mean greater than the median, then the data are right-skewed (such as lognormal or square root
normal distributions in original units). Conversely, if the upper box and whisker are shorter than the
lower box and whisker with the mean less than the median, then the data are left-skewed.

A box plot showing a normal distribution will have the following characteristics: the mean and
median will be in the center of the box, whiskers to the minimum and maximum values are the same
length, and there would be no potential outliers. A box plot showing a lognormal distribution (in original
units) typical of environmental applications will have the following characteristics: the mean will be
larger than the median, the whisker above the 75" percentile will be longer than the whisker below the
25" percentile, and extreme upper values may be indicated as potential outliers. Once the data have been
logarithmically transformed, the pattern should follow that described for a normal distribution. Other
right-skewed distributions transformable to normality would indicate similar patterns.

It is often helpful to show box plots of different sets of data side by side to show differences
between monitoring stations (see Figure 9-2). This allows a simple method to compare the locations,
spreads and shapes of several data sets or different groups within a single data set. In this situation, the
width of the box can be proportional to the sample size of each data set. If the data will be compared to a
standard, such as a preliminary remediation goal (PRG) or maximum contaminant level (MCL), a line on
the graph can be drawn to show if any results exceed the criteria.

It is important to plot the data as reported by the laboratory for non-detects or negative
radionuclide data. Proxy values for non-detects should not be plotted since we want to see the
distribution of the original data. Different symbols can be used to display non-detects, such as the open
symbols described in Section 9.1. The mean will be biased high if using the RL of non-detects in the
calculation, but the purpose of the box plot is to assess the distribution of the data, not quantifying a
precise estimate of an unbiased mean. Displaying the frequency of detection (number of detected values /
number of total samples) under the station name is also useful. Unlike time series plots, box plots cannot
use missing data, so missing data should be removed before producing a box plot.

Directions for generating a box plot are contained in Example 9-2, and an example is shown in
Figure 9-2. It is important to remove lab and field duplicates from the data before calculating summary
statistics such as the mean and UCL since these statistics assume independent data. The box plot
assumes the data are statistically independent.
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» EXAMPLE 9-2

Construct a box plot using the trichloroethene groundwater data in Table 9-1 for each well.
Examine the box plot to assess how each well is distributed (normal, lognormal, skewed, symmetric,
etc.). Identify possible outliers.

SOLUTION

Step 1.  Import the data into data analysis software capable of producing box plots.
Step 2. Sort the data from smallest to largest results by well.

Step3. Compute the 0™ (minimum value), 25", 50" (median), 75" and 100" (maximum value)
percentiles by well.

Step4. Plot these points vertically. Draw a box around the 25" and 75" percentiles and add a line
through the box at the 50™ percentile. Optionally, make the width of the box proportional to
the sample size. Narrow boxes reflect smaller sample sizes, while wider boxes reflect larger
sample sizes.

Step 5. Compute the mean and the lower and upper 95% confidence limits. Denote the mean with a
star and the confidence limits as bars. Also, identify potential outliers between 1.5%IQR and
3xIQR beyond the box with a circle. Identify potential outliers exceeding 3xIQR beyond the
box with a ~ square.

Step 6.  Draw the whiskers from each end of the box to the furthest data point to show the full range of
the data.

INTERPRETATION

The box plots in Figure 9-2 show the similarities and differences in the distributions of
trichloroethene in Wells 1 and 2. The mean of trichloroethene in Well 1 is significantly lower than the
mean in Well 2. The variance of the data from Well 1 is significantly larger than the variance from Well
2. A parametric t-test or nonparametric Wilcoxon Rank Sum test can quantitatively confirm these
conclusions. Since the mean exceeds the median for both wells and the whiskers at the top of each box
are much longer than the whiskers at the bottom of each box, we can conclude both distributions are
skewed to the right, resembling a lognormal distribution. In fact, the Shapiro-Wilk test quantitatively
confirms that both distributions are lognormally distributed. Both wells have their largest concentrations
between 1.5 and 3 times the IQR, as denoted by a black circle. No data point lies outside 3 times the
IQR. Since the data for both wells are lognormally distributed, the maximum concentrations in each well
should not be removed just because they exceed 1.5 times the IQR. Long tails are expected for the
lognormal distribution. The width of the 95% confidence limits confirms the large variability in Well 1
compared to the width of the confidence limits in Well 2. Well 1 has one concentration exceeding the
PRG of 0.23 mg/L, while Well 2 has all concentrations below the PRG. The width of each box is similar
since the sample size as shown in the frequency of detection (FOD) are nearly the same (11 detects out
of 14 samples for Well 1 and 10 detects out of 13 samples for Well 2). «
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Figure 9-2. Box Plots of Trichloroethene Data for Wells 1 & 2
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9.3 HISTOGRAMS

A histogram is a visual representation of the data collected into groups. This graphical technique
provides a visual method of identifying the underlying distribution of the data. The data range is divided
into several bins or classes and the data is sorted into the bins. A histogram is a bar graph conveying the
bins and the frequency of data points in each bin. Other forms of the histogram use a normalization of
the bin frequencies for the heights of the bars. The two most common normalizations are relative
frequencies (frequencies divided by sample size) and densities (relative frequency divided by the bin
width). Figure 9-3 is an example of a histogram using frequencies and Figure 9-4 is a histogram of
densities. Histograms provide a visual method of accessing location, shape and spread of the data. Also,
extreme values and multiple modes can be identified. The details of the data are lost, but an overall
picture of the data is obtained. A stem and leaf plot offers the same insights into the data as a histogram,
but the data values are retained.

The visual impression of a histogram is sensitive to the number of bins selected. A large number of
bins will increase data detail, while fewer bins will increase the smoothness of the histogram. A good
starting point when choosing the number of bins is the square root of the sample size n. The minimum
number of bins for any histogram should be at least 4. Another factor in choosing bins is the choice of
endpoints. When feasible, using simple bin endpoints can improve the readability of the histogram.
Simple bin endpoints include multiples of 5k units for some integer k> 0 (e.g., 0 to <5, 5 to <10, etc. or
1 to <1.5, 1.5 to <2, etc.). Finally, when plotting a histogram for a continuous variable (e.g.,
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concentration), it is necessary to decide on an endpoint convention; that is, what to do with data points
that fall on the boundary of a bin. Also, use the data as reported by the laboratory for non-detects and
eliminate any missing values, since histograms cannot include missing data. With discrete variables,
(e.g., family size) the intervals can be centered in between the variables. For the family size data, the
intervals can span between 1.5 and 2.5, 2.5 and 3.5, and so on. Then the whole numbers that relate to the
family size can be centered within the box. Directions for generating a histogram are contained in
Example 9-3.

» EXAMPLE 9-3

Construct a histogram using the trichloroethene groundwater data in Table 9-1 for each well.
Examine the histogram to assess how each well is distributed (normal, lognormal, skewed, symmetric,
etc.).

SOLUTION

Step 1.  Import the data into data analysis software capable of producing histograms.

Step 2.  Sort the data from smallest to largest results by well.

Step3.  With n = 14 concentrations for Well 1, a rough estimate of the number of bins is\14 = 3.74
or 4 bins. Since the data from Well 1 range from 0.004 to 0.25, the suggested bin width is
calculated as (maximum concentration — minimum concentration) / number of bins = (0.25 -
0.004) / 4 = 0.0615. Therefore, the bins for Well 1 are 0.004 to <0.0655, 0.0655 to <0.127,
0.127 to <0.1885, and 0.1885 to 0.25 mg/L.

Similarly, with n = 13 concentrations for Well 2, the number of bins isv13 = 3.61 or 4 bins.
Since the data from Well 2 range from 0.099 to 0.17, the suggested bin width is calculated as
(maximum concentration — minimum concentration) / number of bins = (0.17 — 0.099) / 4 =
0.01775. Therefore, the bins for Well 2 are 0.099 to <0.11675, 0.11675 to <0.1345, 0.1345 to
<0.15225, and 0.15225 to 0.17 mg/L.

Step 4.  Construct a frequency table using the bins defined in Step 3. Table 9-2 shows the frequency or
number of observations within each bin defined in Step 3 for Wells 1 and 2. The third column
shows the relative frequency which is the frequency divided by the sample size n. The final
column of the table gives the densities or the relative frequencies divided by the bin widths
calculated in Step 3.

Step 5.  The horizontal axis for the data is from 0.004 to 0.25 mg/L for Well 1 and 0.099 to 0.17 for
Well 2. The vertical axis for the histogram of frequencies is from 0 to 9 and the vertical axis
for the histogram of relative frequencies is from 0% - 70%.

Step 6. The histograms of frequencies are shown in Figure 9-3. The histograms of relative
frequencies or densities are shown in Figure 9-4. Note that frequency, relative frequency and
density histograms all show the same shape since the scale of the vertical axis is divided by
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the sample size or the bin width. These histograms confirm the data are not normally
distributed for either well, but are closer to lognormal.

Table 9-2. Histogram Bins for Trichloroethene Groundwater Data

Relative
Bin Frequency Frequency (%) Density
Well 1
0.0040 to <0.0655 mg/L 9 64.3 10.5
0.0655 to <0.1270 mg/L 3 21.4 3.5
0.1270 to <0.1885 mg/L 0 0 0
0.1885 to 0.2500 mg/L 2 14.3 2.3
Well 2
0.099 to <0.11675 mg/L 8 61.5 34.7
0.11675 to <0.1345 mg/L 3 23.1 13.0
0.1345 to <0.15225 mg/L 1 7.7 4.3
0.15225 t0 0.17 mg/L 1 1.7 4.3
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Figure 9-3. Frequency Histograms of Trichloroethene by Well.
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Figure 9-4. Relative Frequency Histograms of Trichloroethene by Well.
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9.4 SCATTER PLOTS

For data sets consisting of multiple observations per sampling point, a scatter plot is one of the
most powerful graphical tools for analyzing the relationship between two or more variables. Scatter plots
are easy to construct for two variables, and many software packages can construct 3-dimensional scatter
plots. A scatter plot can clearly show the relationship between two variables if the data range is
sufficiently large. Truly linear relationships can always be identified in scatter plots, but truly nonlinear
relationships may appear linear (or some other form) if the data range is relatively small. Scatter plots of
linearly correlated variables cluster about a straight line.

As an example of a nonlinear relationship, consider two variables where one variable is
approximately equal to the square of the other. With an adequate range in the data, a scatter plot of this
data would display a partial parabolic curve. Other important modeling relationships that may appear are
exponential or logarithmic. Two additional uses of scatter plots are the identification of potential outliers
for a single variable or for the paired variables and the identification of clustering in the data. Directions
for generating a scatter plot are contained in Example 9-4.

» EXAMPLE 9-4

Construct a scatter plot using the groundwater data in Table 9-3 for arsenic and mercury from a
single well collected approximately quarterly across time. Examine the scatter plot for linear or quadratic
relationships between arsenic and mercury, correlation, and for potential outliers.

Table 9-3. Groundwater Concentrations from Well 3

Arsenic Mercury Strontium
Date Conc. Data Conc. Data Conc. Data

Collected | (mg/L) Qualifier | (mg/L) Qualifier | (mg/L) | Qualifier

1/2/2005 0.01 U 0.02 U 0.10

4/7/2005 0.01 U 0.03 0.02 U
7/13/2005 0.02 0.04 U 0.05 U
10/24/2005  0.04 0.06 0.11

1/7/2006 0.01 0.02 0.05

3/30/2006 0.05 0.07 0.07

6/28/2006 0.09 0.10 0.03

10/2/2006 0.07 0.08 0.04
10/17/2006  0.10 NA 0.02 U
1/15/2007 0.02 U 0.03 U 0.15

4/10/2007 0.15 0.11 0.03

7/9/2007 0.12 0.08 0.10

10/5/2007 0.10 0.07 0.09
10/29/2007  0.30 0.29 0.05
12/30/2007  0.25 0.23 0.22

NA = Not available (missing data).
U denotes a non-detect.
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SOLUTION

Step 1. Import the data into data analysis software capable of producing scatter plots.
Step 2.  Sort the data by date collected.

Step 3.  Calculate the range of concentrations for each constituent. If the range of both constituents are
similar, then scale both the X and Y axes from the minimum to the maximum concentrations
of both constituents. If the range of concentrations are very different (e.g., two or more orders
of magnitude), then perhaps the scales for both axes should be logarithmic (logio). The data
will be plotted as pairs from (Xi, Y1) to (X, Yp) for each sampling date, where n = number of
samples.

Step 4.  Use separate symbols to distinguish detected from non-detected concentrations. Note that the
concentration for one constituent may be detected, while the concentration for the other
constituent may not be detected for the same sampling date. If the concentration for one
constituent is missing, then the pair (X;, Y;) cannot be plotted since both concentrations are
required. Figure 9-5 shows a linear correlation between arsenic and mercury with two
possible outliers. The Pearson correlation coefficient is 0.97, indicating a significantly high
correlation. The linear regression line is displayed to show the linear correlation between
arsenic and mercury. «

Figure 9-5. Scatter Plot of Arsenic with Mercury from Well 3
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Many software packages can extend the 2-dimensional scatter plot by constructing a 3-dimensional
scatter plot for 3 constituents. However, with more than 3 variables, it is difficult to construct and
interpret a scatter plot. Therefore, several graphical representations have been developed that extend the
idea of a scatter plot for data consisting of more than 2 variables. The simplest of these graphical
techniques is a coded scatter plot. All possible two-way combinations are given a symbol and the pairs
of data are plotted on one 2-dimensional scatter plot. The coded scatter plot does not provide
information on three way or higher interactions between the variables since only two dimensions are
plotted. If the data ranges for the variables are comparable, then a single set of axes may suffice. If the
data ranges are too dissimilar (e.g., at least two orders of magnitude), different scales may be required.

» EXAMPLE 9-5

Construct a coded scatter plot using the groundwater data in Table 9-3 for arsenic, mercury, and
strontium from Well 3 collected approximately quarterly across time. Examine the scatter plot for linear
or quadratic relationships between the three inorganics, correlation, and for potential outliers.

SOLUTION

Step 1. Import the data into data analysis software capable of producing scatter plots.
Step 2.  Sort the data by date collected.

Step 3.  Calculate the range of concentrations for each constituent. If the ranges of both constituents
are similar, then scale both the X and Y axes from the minimum to the maximum
concentrations of all three constituents. Since the ranges of concentrations are very similar, the
minimum to the maximum concentrations of all three constituents will be used for both axes.

Step 4.  Let each arsenic concentration be denoted by X, each mercury concentration be denoted by
Yi, and each strontium concentration be denoted by Z;. The arsenic and mercury paired data
will be plotted as pairs (X, Y;) with solid blue circles for 1 <i < n. The arsenic and strontium
paired data will be plotted as pairs (X, Z;) with solid red squares. The mercury and strontium
paired data will be plotted as pairs (i, Z;) with solid green diamonds. If either concentration
in each pair is a non-detect, then the non-detects will be displayed similar to Figure 9-5.

Step 5. Interpret the plot. Figure 9-6 shows the linear correlation between arsenic and mercury with
two possible outliers. The Pearson correlation coefficient is 0.97, indicating a significantly
high correlation. The approximate 45° slope of the regression line indicates a strong
correlation between arsenic and mercury. However, the nearly zero slope of the regression line
between arsenic and strontium indicates little or no correlation between arsenic and strontium.
There are two possible outliers for arsenic and strontium. Similarly, the nearly zero slope of
the regression line between mercury and strontium indicates little or no correlation between
mercury and strontium. There are also two possible outliers for mercury and strontium. The
Pearson correlation coefficients for both arsenic with strontium and mercury with strontium
are 0.23 which are not significantly different from zero. <
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Figure 9-6. Coded Scatter Plot of Well 3 Arsenic, Mercury, and Strontium
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9.5 PROBABILITY PLOTS

A simple, but extremely useful visual assessment of normality is to graph the data as a probability
plot. The y-axis is scaled to represent quantiles or z-scores from a standard normal distribution and the
concentration measurements are arranged in increasing order along the x-axis. As each observed value is
plotted on the x-axis, the z-score corresponding to the proportion of observations less than or equal to
that measurement is plotted as the y-coordinate. Often, the y-coordinate is computed by the following
formula:

L0
y, =@ \ns1) [9.1]

where @ denotes the inverse of the cumulative standard normal distribution, n represents the sample
size, and i represents the rank position of the i™ ordered concentration. The plot is constructed so that, if
the data are normal, the points when plotted will lie on a straight line. Visually apparent curves or bends
indicate that the data do not follow a normal distribution.

Probability plots are particularly useful for spotting irregularities within the data when compared to
a specific distributional model (usually, but not always, the normal). It is easy to determine whether
departures from normality are occurring more or less in the middle ranges of the data or in the extreme
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tails. Probability plots can also indicate the presence of possible outlier values that do not follow the
basic pattern of the data and can show the presence of significant positive or negative skewness.

If a (normal) probability plot is constructed on the combined data from several wells and normality
IS accepted, it suggests — but does not prove — that all of the data came from the same normal
distribution. Consequently, each subgroup of the data set (e.g., observations from distinct wells)
probably has the same mean and standard deviation. If a probability plot is constructed on the data
residuals (each value minus its subgroup mean) and is not a straight line, the interpretation is more
complicated. In this case, either the residuals are not normally-distributed, or there is a subgroup of the
data with a normal distribution but a different mean or standard deviation than the other subgroups. The
probability plot will indicate a deviation from the underlying assumption of a common normal
distribution in either case. It would be prudent to examine normal probability plots by well on the same
plot if the ranges of the data are similar. This would show how the data are distributed by well to
determine which wells may depart from normality.

The same probability plot technique may be used to investigate whether a set of data or residuals
follows a lognormal distribution. The procedure is generally the same, except that one first replaces each
observation by its natural logarithm. After the data have been transformed to their natural logarithms, the
probability plot is constructed as before. The only difference is that the natural logarithms of the
observations are used on the x-axis. If the data are lognormal, the probability plot of the logged
observations will approximate a straight line.

» EXAMPLE 9-6

Determine whether the dataset in Table 9-4 is normal by using a probability plot.

SOLUTION

Step 1.  After combining the data into a single group, list the measured nickel concentrations in order
from lowest to highest.

Step 2. The cumulative probabilities, representing for each observation (x) the proportion of values
less than or equal to x;, are given in the third column of the table below. These are computed
as i/ (n+ 1) where nis the total number of samples (n = 20).

Step 3.  Determine the quantiles or z-scores from the standard normal distribution corresponding to the
cumulative probabilities in Step 2. These can be found by successively letting P equal each
cumulative probability and then looking up the entry in Table 10-1 (Appendix D)
corresponding to P. Since the standard normal distribution is symmetric about zero, for
cumulative probabilities P < 0.50, look up the entry for (1-P) and give this value a negative
sign.

Step 4.  Plot the normal quantile (z-score) versus the ordered concentration for each sample, as in the
plot below (Figure 9-7). The curvature found in the probability plot indicates that there is
evidence of non-normality in the data. <«
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Step 1.

Step 2.

Step 3.

Table 9-4. Nickel Concentrations from a Single Well

Nickel Order Cumulative Normal

Concentration ) Probability Quantile

(Ppb) [i/(n+1)] (z-500r®)
1.0 1 0.048 -1.668
3.1 2 0.095 -1.309
8.7 3 0.143 -1.068
10.0 4 0.190 -0.876
14.0 5 0.238 -0.712
19.0 6 0.286 -0.566
21.4 7 0.333 -0.431
27.0 8 0.381 -0.303
39.0 9 0.429 -0.180
56.0 10 0.476 -0.060
58.8 11 0.524 0.060
64.4 12 0.571 0.180
81.5 13 0.619 0.303
85.6 14 0.667 0.431
151.0 15 0.714 0.566
262.0 16 0.762 0.712
331.0 17 0.810 0.876
578.0 18 0.857 1.068
637.0 19 0.905 1.309
942.0 20 0.952 1.668

PROBABILITY PLOTS FOR LOG TRANSFORMED DATA

List the natural logarithms of the measured nickel concentrations in Table 9-4 in order from
lowest to highest. These are shown in Table 9-5.

The cumulative probabilities representing the proportion of values less than or equal to x; for
each observation (x;), are given in the third column of Table 9-4. These are computed as i / (n
+ 1) where n is the total number of samples (n = 20).

Determine the quantiles or z-scores from the standard normal distribution corresponding to the
cumulative probabilities in Step 2. These can be found by successively letting P equal each
cumulative probability and then looking up the entry in Table 10-1 Appendix D
corresponding to P. Since the standard normal distribution is symmetric about zero, for
cumulative probabilities P < 0.50, look up the entry for (1-P) and give this value a negative
sign.
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Table 9-5. Nickel Log Concentrations from a Single Well

Order L og Nickel Cumulative Normal

() Concentration Probability Quantile
log(ppb) [iI/(n+1)] (z-score)

1 0.00 0.048 -1.668
2 1.13 0.095 -1.309
3 2.16 0.143 -1.068
4 2.30 0.190 -0.876
5 2.64 0.238 -0.712
6 2.94 0.286 -0.566
7 3.06 0.333 -0.431
8 3.30 0.381 -0.303
9 3.66 0.429 -0.180
10 4.03 0.476 -0.060
11 4.07 0.524 0.060
12 4.17 0.571 0.180
13 4.40 0.619 0.303
14 4.45 0.667 0.431
15 5.02 0.714 0.566
16 5.57 0.762 0.712
17 5.80 0.810 0.876
18 6.36 0.857 1.068
19 6.46 0.905 1.309
20 6.85 0.952 1.668

Step 4.  Plot the normal quantile (z-score) versus the ordered logged concentration for each sample, as
in the plot below (Figure 9-8). The reasonably linear trend found in the probability plot
indicates that the log-scale data closely follow a normal pattern, further suggesting that the
original data closely follow a lognormal distribution.
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CHAPTER 10. FITTING DISTRIBUTIONS
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10.2  TRANSFORMATIONS TO NORMALITY w..cutiiviieesteteiaseseessesessssesesessesessasesessssesessasessssesesessesessssesessssesensssesesenss 10-3
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10.5.1  Shapiro-Wilk TESE (N <50) .ueiuiieeiieiieeiie ettt et sttt bttt bbb 10-13

10.5.2  Shapiro-Francia TESt (N = 50) .....cccuciiiiiieiiii et resreere e e eeesrenes 10-15
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Because a statistical or mathematical model is at best an approximation of reality, all statistical
tests and procedures require certain assumptions for the methods to be used correctly and for the results
to be properly interpreted. Many tests make an assumption regarding the underlying distribution of the
observed data; in particular, that the original or transformed sample measurements follow a normal
distribution. Data transformations are discussed in Section 10.2 while considerations as to whether the
normal distribution should be used as a ‘default’ are explored in Section 10.3. Several techniques for
assessing normality are also examined, including:

++ The skewness coefficient (Section 10.4)

¢+ The Shapiro-Wilk test of normality and its close variant, the Shapiro-Francia test (Section 10.5)
«+ Filliben’s probability plot correlation coefficient test (Section 10.6)

+«+ The Shapiro-Wilk multiple group test of normality (Section 10.7)

10.1 IMPORTANCE OF DISTRIBUTIONAL MODELS

As introduced in Chapter 3, all statistical testing relies on the critical assumption that the sample
data are representative of the population from which they are selected. The statistical distribution of the
sample is assumed to be similar to the distribution of the mostly unobserved population of possible
measurements. Many parametric testing methods make a further assumption: that the form or type of the
underlying population is at least approximately known or can be identified through diagnostic testing.
Most of these parametric tests assume that the population is normal in distribution; the validity or
accuracy of the test results may be in question if that assumption is violated.

Consequently, an important facet of choosing among appropriate test methods is determining
whether a commonly-used statistical distribution such as the normal, adequately models the observed
sample data. A large variety of possible distributional models exist in the statistical literature; most are
not typically applied to groundwater measurements and often introduce additional statistical or
mathematical complexity in working with them. So groundwater statistical models are usually confined
to the gamma distribution, the Weibull distribution, or distributions that are normal or can be normalized
via a transformation (e.g., the logarithmic or square root).
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Although the Unified Guidance will occasionally reference procedures that assume an underlying
gamma or Weibull distribution, the presentation in this guidance will focus on distributions that can be
normalized and diagnostic tools for assessing normality. The principal reasons for limiting the
discussion in this manner are: 1) the same tools useful for testing normality can be utilized with any
distribution that can be normalized-- the only change needed is perform the normality test after first
making a data transformation; 2) if no transformation works to adequately normalize the sample data, a
non-parametric test can often be used as an alternative statistical approach; and 3) addressing more
complicated scenarios is outside the scope of the guidance and may require professional statistical
consultation.

Understanding the statistical behavior of groundwater measurements can be very challenging. The
constituents of interest may occur at relatively low concentrations and frequently be left-censored
because of current analytical method limitations. Sample data are often positively skewed and
asymmetrical in distributional pattern, perhaps due to the presence of outliers, inhomogeneous mixing of
contaminants in the subsurface, or spatially variable soils deposition affecting the local groundwater
geochemistry. For some constituents, the distribution in groundwater is not stationary over time (e.g.,
due to linear or seasonal trends) or not stationary across space (due to spatial variability in mean levels
from well to well). A set of these measurements pooled over time and/or space may appear highly non-
normal, even if the underlying population at any fixed point in time or space is normal.

Because of these complexities, fitting a distributional model to a set of sample data cannot be done
in isolation from checks of other key statistical assumptions. The data must also be evaluated for outliers
(Chapter 12), since the presence of even one extreme outlier may cause an otherwise recognizable
distribution from being correctly identified. For data grouped across wells, the possible presence of
spatial variability must be considered (Chapter 13). If identified, the Shapiro-Wilk multiple group test
of normality may be needed to account for differing means and/or variances at distinct wells. Data
pooled across sampling events (i.e., over time) must be examined for the presence of trends or seasonal
patterns (Chapter 14). A clearly identified pattern may need to be removed and the data residuals tested
for normality, instead of the raw measurements.

A frequently encountered problem involves testing normality on data sets containing non-detect
values. The best goodness-of-fit tests attempt to assess whether the sample data closely resemble the
tails of the candidate distributional model. Since non-detects represent left-censored observations where
the exact concentrations are unknown for the lower tail of the sample distribution, standard normality
tests cannot be run without some estimate or imputation of these unknown values. For a small fraction of
non-detects in a sample (10-15% or less) censored at a single reporting limit, it may be possible to apply
a normality test by simply replacing each non-detect with an imputed value of half the RL. However,
more complicated situations arise when there is a combination of multiple RLs (detected values
intermingled with different non-detect levels), or the proportion of non-detects is larger. The Unified
Guidance recommends different strategies in these circumstances.

Properly ordering the sample observations (i.e., from least to greatest) is critical to any
distributional goodness-of-fit test. Because the concentration of a non-detect measurement is only known
to be in the range from zero to the RL, it is generally impossible to construct a full ordering of the
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sample.! There are methods, however, to construct partial orderings of the data that allow the
assignment of relative rankings to each of the detected measurements and which account for the
presence of censored values. In turn, a partial ordering enables construction of an approximate normality
test. This subject is covered in Chapter 15.

10.2 TRANSFORMATIONS TO NORMALITY

Guidance users will often encounter data sets indicating significant evidence of non-normality.
Due to the presumption of most parametric tests that the underlying population is normal, a common
statistical strategy for apparently non-normal observations is to search for a normalizing mathematical
transformation. Because of the complexities associated with interpreting statistical results from data that
have been transformed to another scale, some care must be taken in applying statistical procedures to
transformed measurements. In questionable or disputable circumstances, it may be wise to analyze the
same data with an equivalent non-parametric version of the same test (if it exists) to see if the same
general conclusion is reached. If not, the data transformation and its interpretation may need further
scrutiny.

Particularly with prediction limits, control charts, and some of the confidence intervals described in
Chapters 18, 20, and 21, the parametric versions of these procedures are especially advantageous. Here,
a transformation may be warranted to approximately normalize the statistical sample. Transformations
are also often useful when combining or pooling intrawell background from several wells in order to
increase the degrees of freedom available for intrawell testing (Chapter 13). Slight differences in the
distributional pattern from well to well can skew the resulting pooled dataset, necessitating a
transformation to bring about approximate normality and to equalize the variances.

The interpretation of transformed data is straightforward in the case of prediction limits for
individual observations or when building a confidence interval around an upper percentile. An interval
with limits constructed from the transformed data and then re-transformed (or back-transformed) to the
original measurement domain will retain its original probabilistic interpretation. For instance, if the data
are approximately normal under a square root transformation and a 95% confidence prediction limit is
constructed on the square roots of the original measurements, squaring the resulting prediction limit
allows for a 95% confidence level when applied to the original data.

The same ease of interpretation does not apply to prediction limits for a future arithmetic mean
(Chapter 18) or to confidence intervals around an arithmetic mean compared to a fixed GWPS
(Chapter 21). A back-transformed confidence interval constructed around the mean of log-transformed
data (i.e., the log-mean) corresponds to a confidence interval around the geometric mean of the raw
(untransformed) data. For the lognormal distribution, the geometric mean is equal to the median, but it is
not the same as the arithmetic mean. Using this back-transformation to bracket the location of the true
arithmetic population mean will result in an incorrect interval.

For these particular applications, a similar problem of scale bias occurs with other potential
normality transformations. Care is needed when applying and interpreting transformations to a data set

! Even when all the non-detects represent the lowest values in the sample, there is still no way to determine how this subset is
internally ordered.
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for which either a confidence interval around the mean or a prediction limit for a future mean is desired.
The interpretation depends on which statistical parameter is being estimated or predicted. The geometric
mean or median in some situations may be a satisfactory alternative as a central tendency parameter,
although that decision must be weighed carefully when making comparisons against a GWPS.

Common normalizing transformations include the natural logarithm, the square root, the cube root,
the square, the cube, and the reciprocal functions, as well as a few others. More generally, one might
consider the “ladder of powers” (Helsel and Hirsch, 2002) technically known as the set of Box-Cox
transformations (Box and Cox, 1964). The heart of these transformations is a power transformation of
the original data, expressed by the equations:

x*—1)A forA=0
y,= ( )/ [10.1]
log x forA=0

The goal of a Box-Cox analysis is to find the value A that best transforms the data to approximate
normality, using a procedure such as maximum likelihood. Such algorithms are beyond the scope of this
guidance, although an excellent discussion can be found in Helsel and Hirsch (2002). In practice,
slightly different equation formulations can be used:

A
1:{ X for4A#0 [10.2]

logx forA=0

where the parameter A can generally be limited to the choices 0, -1, 1/4, 1/3, 1/2, 1, 2, 3, and 4, except
for unusual cases of more extreme powers.

As noted in Section 10.1, checking normality with transformed data does not require any
additional tools. Standard normality tests can be applied using the transformed scale measurements.
Only the interpretation of the test changes. A goodness-of-fit test can assess the normality of the raw
measurements. Under a transformation, the same test checks for normality on the transformed scale. The
data will still follow the non-normal distribution in the original concentration domain. So if a cube root
transformation is attempted and the transformed data are found to be approximately normal, the original
data are not normal but rather cube-root normal in distribution. If a log transformation is successfully
used, the original measurements are not normal but lognormal instead. In sum, a series of non-normal
distributions can be fitted to data with the goodness-of-fit tests described in this chapter without needing
specific tests for other potential distributions.

Finding a reasonable transformation in practice amounts to systematically ‘climbing’ the “ladder of
powers” described above. In other words, different choices of the power parameter A would be attempted
— beginning with A = 0 and working upward from -1 toward more extreme power transformations —
until a specific A normalizes the data or all choices have been attempted. If no transformation seems to
work, the user should instead consider a non-parametric test alternative.
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10.3 USING THE NORMAL DISTRIBUTION AS A DEFAULT

Normal and lognormal distributions are frequently applied models in groundwater data because of
their general utility. One or the other of these models might be chosen as a default distribution when
designing a statistical approach, particularly when relatively little data has been collected at a site. Since
the statistical behavior of these two models is very different and can lead to substantially different
conclusions, the choice is not arbitrary. The type of test involved, the monitoring program, and the
sample size can all affect the decision. For many data sets and situations, however, the normal
distribution can be assumed as a default unless and until a better model can be pinpointed through
specific goodness-of-fit testing provided in this chapter.

Assumptions of normality are most easily made with regard to naturally-occurring and measurable
inorganic parameters, particularly under background conditions. Many ionic and other inorganic water
quality analyte measurements exhibit decent symmetry and low variability within a given well data set,
making these data amenable to assumptions of normality. Less frequently detected analytes (e.g., certain
colloidal trace elements) may be better fit either by a site-wide lognormal or another distribution that can
be normalized, as well as evaluated with non-parametric methods.

Where contamination in groundwater is known to exist a priori (whether in background or
compliance wells), default distributional assumptions become more problematic. At a given well,
organic or inorganic contaminants may exhibit high or low variability, depending on local hydrogeologic
conditions, the pattern of release from the source, the degree of solid phase absorption, degradability of a
given constituent, and the variation in groundwater flow direction and depths. Non-steady state releases
may result in a historical, occasionally non-linear pattern of trend increases or decreases. Such data
might be fit by an apparent lognormal distribution, although removal of the trend may lead to normally-
distributed residuals.

Sample size is also a consideration. With fewer than 8 samples in a data set, formal goodness-of-fit
tests are often of limited value. Where larger sample sizes are available, goodness-of-fit tests should be
conducted. The Shapiro-Wilk multiple group well test (Section 10.7) — even with small sample sizes —
can sometimes be used to identify individual anomalous wells which might otherwise be presumed to
meet the criterion of normality. Under compliance/assessment or corrective action monitoring, one might
anticipate only four samples per well in the first year after instituting such monitoring. Under these
conditions, a default assumption of normality for testing of the mean against a fixed standard is probably
necessary. Aggregation of multi-year data when conducting compliance tests (see Chapter 7) may allow
large enough sample sizes to warrant formal goodness-of-fit testing. With 8 (or more) samples, it may be
possible to determine that a lognormal distribution is an appropriate fit for the data. Even in this latter
approach, caution may be needed in applying Land’s confidence interval for a lognormal mean (Chapter
21) if the sample variability is large and especially if the upper confidence limit is used in the
comparison (i.e., in corrective action monitoring).

The normal distribution may also serve as a reasonable default when it is not critical to ensure that
sample data closely follow a specific distribution. For example, statistical tests on the mean are generally
considered more robust with respect to departures from normality than procedures which involve upper
or lower limits of an assumed distribution. Even if the data are not quite normal, tests on the mean such
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as a Student’s t-test will often still provide a valid result. However, one might need to consider
transformations of the data for other reasons. Analysis of variance [ANOVA] can be run with small
individual well samples (e.g., n = 4), and as a comparison of means, it is fairly robust to departures from
normality. A logarithmic or other transformation may be needed to stabilize or equalize the well-to-well
variability (i.e., achieve homoscedasticity), a separate and more critical assumption of the test.

Given their importance in statistical testing and the risks that sometimes occur in trying to interpret
tests on other data transformation possibilities, it is useful to briefly consider the logarithmic
transformation in more detail. As noted in Section 10.1, groundwater data can frequently be normalized
using a logarithmic distribution model. Despite this, objections are sometimes raised that the log
transformation is merely used to “make large numbers look smaller.”

To better understand the log transformation, it should be recognized that logarithms are, in fact,

exponents to some unit base. Given a concentration-scale variable x, re-expressed as x =10"or x=¢”,
the logarithm y is the exponent of that base (10 or the natural base €). It is the behavior of the resultant y
values that is assessed when data are log-transformed. When data relationships are multiplicative in the

original arithmetic domain (x, x x,), the relationships between exponents (i.e., logarithms) are additive

(y, +V,). Since the logarithmic distribution by mathematical definition is normal in a log-transformed

domain, working with the logarithms instead of the original concentration measurements may offer a
sample distribution much closer to normal.

Similar to a unit scale transformation (ppm to ppb or Fahrenheit to Centigrade), the relative
ordering of log-transformed measurements does not change. When non-parametric tests based on ranks
(e.g., the Wilcoxon rank-sum test) are applied to data transformed either to a different unit scale or by
logarithms, the outcomes are identical. However, other relationships among the log-transformed data do
change, so that the log-scale numerical ‘spacing’ between lower values is more similar to the log-scale
spacing between higher values. While parametric tests like prediction limits, t-tests, etc., are not affected
by unit scale transformations, these tests may have different outcomes depending on whether raw
concentrations or log-transformed measurements are used. The justification for utilizing log-transformed
data is that the transformation helps to normalize the data so that these tests can be properly applied.

There is also a plausible physical explanation as to why pollutant concentrations often follow a
logarithmic pattern (Ott, 1990). In Ott’s model, pollutant sources are randomly dispersed through the
subsurface or atmosphere in a multiplicative fashion through repeated dilutions when mixing with
volumes of (uncontaminated) water or air, depending on the medium. Such random and repeated

dilutions can mathematically lead to a lognormal distribution. In particular, if a final concentration (c,)
is the product of several random dilutions (c,) as suggested by the following equation:

¢ =J]e =(c,xc,x...xc,) [10.3]
i=1

the logarithm of this concentration is equivalent to the sum of the logarithms of the individual dilutions:

log (co )= é log (ci ) [10.4]
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The Central Limit Theorem (Chapter 3) can be applied to conclude that the logged concentration
in equation [10.4] should be approximately normal, implying that the original concentration (c;) should

be approximately lognormal in distribution. Contaminant fate-and-transport models more or less follow
this same approach, using successive multiplicative dilutions (while accounting for absorption and
degradation effects) across grids in time and space.

Despite the mathematical elegance of the Ott model, experience with groundwater monitoring data
has shown that the lognormal model alone is not adequate to account for observed distribution patterns.
While contaminant modeling might predict a lognormal contaminant distribution in space (and often in
time at a fixed point during transient phases), individual well location points fixed in space and at rough
contaminant equilibrium are more likely to be subject to a variety of local hydrologic and other factors,
and the observed distributions can be almost limitless in form. Since most of the tests within the Unified
Guidance presume a stationary population over time at a given well location (subject to identification
and removal of trends), the resultant distributions may be other than lognormal in character. Individual
constituents may also exhibit varying aquifer-related distributional characteristics.

A practical issue in selecting a default transformation is ease of use. Distributions like the
lognormal usually entail more complicated statistical adjustments or calculations than the normal
distribution. A confidence interval around the arithmetic mean of a lognormal distribution utilizes
Land’s H-factor, which is a function of both log sample data variability and sample size, and is only
readily available for specific confidence levels. By contrast, a normal confidence interval around the
sample mean based on the t-statistic can easily be defined for virtually any confidence level. As noted
earlier, correct use of these confidence intervals depends on selecting the appropriate parameter and
statistical measure (arithmetic mean versus the geometric mean).

While a transformation does not always necessitate using a different statistical formula to ensure
unbiased results, use of a transformation does assume that the underlying population is non-normal.
Since the true population will almost never be known with certainty, it may not be advantageous to
simply default to a lognormal assumption for a variety of reasons. Under detection monitoring, the
presumption is made that a statistically significant increase above background concentrations will trigger
a monitoring exceedance. But the larger the prediction limit computed from background, the less
statistical power the test will have for detecting true increases. An important question to answer is what
the consequences are when incorrectly applying statistical techniques based on one distributional
assumption (normal or lognormal), when the underlying distribution is in fact the other. More
specifically, what is the impact on statistical power and accuracy of assuming the wrong underlying
distribution? The general effects of violating underlying test assumptions can be measured in terms of
false positive and negative error rates (and therefore power). These questions are particularly pertinent
for prediction limit and control chart tests in detection monitoring. Similar questions could be raised
regarding the application of confidence interval tests on the mean when compared against fixed
standards.

To answer these questions, a series of Monte Carlo simulations was generated for the Unified
Guidance to evaluate the impacts on prediction limit false positive error rates and statistical power of
using normal and lognormal distributions (correctly and incorrectly applied to the underlying
distributions). Detailed results of this study are provided in Appendix C, Section C.1.
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The conclusions of the Monte Carlo study are summarized as follows:

% If an underlying population is truly normal, treating the sample data as lognormal in
constructing a prediction limit can have significant consequences. With no retesting, the
lognormal prediction limits were in every case considerably larger and thus less powerful than
the normal prediction limits. Further, the lognormal limits consistently exhibited less than the
expected (nominal) false positive rate, while the normal prediction limits tended to have slightly
higher than nominal error rates.

s When retesting was added to the procedure, both types of prediction limits improved. While
power uniformly improved compared to no retest, the normal limits were still on average about
13% shorter than the lognormal limits, leading again to a measurable loss of statistical power in
the lognormal case.

% On balance, misapplication of logarithmic prediction limits to normally-distributed data
consistently resulted in (often considerably) lower power and false positive rates that were lower
than expected. The results argue against presuming the underlying data to be lognormal without
specific goodness-of-fit testing.

% The highest penalties from misapplying lognormal prediction limits occurred for smaller
background sizes. Since goodness-of-fit tests are least able to distinguish between normal and
lognormal data with small samples, small background samples should not be presumed to be
lognormal as a default unless other evidence from the site suggests otherwise. For larger
samples, goodness-of-fit tests have much better discriminatory power, enabling a better
indication of which model to use.

¢ If the underlying population is truly lognormal but the sample data are treated as normal, the
penalty in overall statistical performance is substantial only if no retesting is conducted. With no
retesting, the false positive rates of normal-based limits were often substantially higher than the
expected rate. Under conditions of no retesting, misapplying normal prediction limits to
lognormal data would result in an excessive site-wide false positive rate (SWFPR).

% If at least one retest was added, the achieved false positive rates for the misapplied normal limits
tended to be less than the expected rates, especially for moderate to larger sample sizes. Except
for highly skewed lognormal distributions, the power of the normal limits was comparable or
greater than the power of the lognormal limits.

Overall, the Monte Carlo study indicated that adding a retest to the testing procedure significantly
minimized the penalty of misapplying normal prediction limits to lognormal data, as long as the sample
size was at least 8 and the distribution was not too skewed. Consequently, there is less penalty associated
with making a default assumption of normality than in making a default assumption of lognormality
under most situations. With highly skewed data, goodness-of-fit tests tend to better discriminate between
the normal and lognormal models. The Unified Guidance therefore recommends that such diagnostic
testing be done explicitly rather than simply assuming the data to be normal or lognormal.

The most problematic cases in the study occurred for very small background sample sizes, where a
misapplication of prediction limits in either direction often resulted in poorer statistical performance,
even with retesting. In some situations, compliance testing may need to be conducted on an interim
basis until enough data has been collected to accurately identify a distributional model. The Unified
Guidance does not recommend an automatic default assumption of lognormality.
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In summary, during detection and compliance/assessment monitoring, data sets should be treated
initially as normal in distribution unless a better model can be pinpointed through specific testing. The
normal distribution is a fairly safe assumption for background distributions, particularly for naturally
occurring, measurable constituents and when sample sizes are small. Goodness-of-fit tests provided in
this chapter can be used to more closely identify the appropriate distributions for larger sample sizes. If
the initial assumption of normality is not rejected, further statistical analyses should be performed on the
raw observations. If the normal distribution is rejected by a goodness-of-fit test, one should generally test
the normality of the logged data, in order to check for lognormality of the original observations. If this
test also fails, one can either look for an alternate transformation to achieve approximate normality
(Section 10.2) or use a non-parametric technique.

Since tests of normality have low power for rejecting the null hypothesis when the data are really
lognormal but the sample size and degree of skewness are small, it is reassuring that a “wrong” default
assumption of normality will infrequently lead to an incorrect statistical conclusion. In fact, the statistical
power for detecting real concentration increases will generally be better than if the data were assumed to
be lognormal. If the data are truly lognormal, there is a risk of greater-than-expected site-wide false
positive error rates.

When the population is more skewed, normality tests in the Unified Guidance have much greater
power for correctly rejecting the normal model in favor of the lognormal distribution. Consequently, an
initial assumption of normality will not, in most cases, lead to an incorrect final conclusion, since the
presumed normal model will tend to be rejected before further testing is conducted.

These recommendations do not apply to corrective action monitoring or other programs where it
either known or reasonable to presume that groundwater is already impacted or has a non-normal
distribution. In such settings, a default presumption of lognormality could be made, or a series of
normalizing transformations could be attempted until a suitable fit is determined. Furthermore, even in
detection monitoring, there are situations that often require the use of alternate transformations, for
instance when pooling intrawell background across several wells to increase the degrees of freedom
available for intrawell testing (Chapter 13).

Whatever the circumstance, the Unified Guidance recommends whenever possible that site-
specific data be used to test the distributional presumption. If no data are initially available to do this,
“referencing” may be employed to justify the use of, say, a normal or lognormal assumption in
developing statistical tests at a particular site. Referencing involves the use of historical data or data
from sites in similar hydrologic settings to justify the assumptions applied to the proposed statistical
regimen. These initial assumptions should be checked when data from the site become available, using
the procedures described in the Unified Guidance. Subsequent changes to the initial assumptions should
be made if goodness-of-fit testing contradicts the initial hypothesis.

10.4 COEFFICIENT OF VARIATION AND COEFFICIENT OF SKEWNESS
PURPOSE AND BACKGROUND

Because the normal distribution has a symmetric ‘bell-shape,” the normal mean and median
coincide and random observations drawn from a normal population are just as likely to occur below the
mean as above it. More generally, in any symmetric distribution the distributional pattern below the
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mean is a mirror-image of the pattern above the mean. By definition, such distributions have no degree
of skewness or asymmetry.

Since the normal distribution has zero skewness, one way to look for non-normality is to estimate
the degree of skewness. Non-zero values of this measure imply that the population is asymmetric and
therefore something different from normal. Two exploratory screening tools useful for this task are the
coefficient of variation and the coefficient of skewness.

The coefficient of variation [CV] is extremely easy to compute, but only indirectly offers an
estimate of skewness and hence normality/non-normality. A more direct estimate can be determined via
the coefficient of skewness. Furthermore, better, formal tests can be used instead of either coefficient to
directly assess normality. Nevertheless, the CV provides a measure of intrinsic variability in positive-
valued data sets. Although approximate, CVs can indicate the relative variability of certain data,
especially with small sample sizes and in the absence of other formal tests (e.g., see Chapter 22, when
comparing confidence limits on the mean to a fixed standard in compliance monitoring).

The CV is also a valid measure of the multiplicative relationship between the population mean and

the standard deviation for positively-valued random variables. Using sample statistics for the mean (?)
and standard deviation (s), the true CV for non-negative normal populations can be reasonably estimated
as:

CV =s/X [10.5]

In lognormal populations, the CV is also used in evaluations of statistical power. In this latter

case, the population CV works out to be:
CV = Jexp ()1 [10.6]

where oy is the population log-standard deviation. Instead of a ratio between the original scale standard
deviation and the mean, the lognormal CV is estimated with the equation:

CV = Jexp(s? )1 [10.7]

where s, is the sample log-standard deviation. The estimate in equation [10.7] is usually more accurate

than the simple CV ratio of the arithmetic standard deviation-to-mean, especially when the underlying
population coefficient of variation is high. Similar to using the normal CV as a formal indicator of
normality, the lognormal coefficient of variation estimator in equation [10.7] will have little relevance as
a test of lognormality of the data. Using it for that purpose is not recommended in the Unified
Guidance. But it can provide a sense of how variable a data set is and whether a lognormal assumption
might need to be tested.

While others have reported a ratio CV on logged measurements as CV=s /y for the

transformation y = log x, the result is essentially meaningless. The actual logarithmic CV in equations
[10.6] and [10.7] is solely determined by the logarithmic variability of oy or s, Negative logarithmic
mean values are always possible, and the log ratio statistic is not invariant under a unit scale
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transformation (e.g., ppb to ppm or ppt). Similar problems in interpretation occur when CV estimators
are applied to any variable which can be negatively valued, such as following a z-transformation to a
standard normal distribution. This log ratio statistic is not recommended for any application in the
guidance.

The coefficient of skewness (y,) directly indicates to what degree a dataset is skewed or

asymmetric with respect to the mean. Sample data from a normal distribution will have a skewness
coefficient near zero, while data from an asymmetric distribution will have a positive or negative
skewness depending on whether the right- or left-hand tail of the distribution is longer and skinnier than
the opposite tail.

Since groundwater monitoring concentrations are inherently non-negative, such data often exhibit
skewness. A small degree of skewness is not likely to affect the results of statistical tests that assume
normality. However, if the skewness coefficient is larger than 1 (in absolute value) and the sample size is
small (e.g., n < 25), past research has shown that standard normal theory-based tests are much less
powerful than when the absolute skewness is less than 1 (Gayen, 1949).

Calculating the skewness coefficient is useful and only slightly more difficult than computing the
CV. It provides a quick indication of whether the skewness is minimal enough to assume that the data
are roughly symmetric and hopefully normal in distribution. If the original data exhibit a high skewness
coefficient, the normal distribution will provide a poor approximation to the dataset. In that case — and
unlike the CV — v, can be computed on the log-transformed data to test for symmetry of the logged

measurements, or similarly for other transformations.

PROCEDURE

The CV is calculated simply by taking the ratio of the sample standard deviation to the sample

mean, CV =s/X or its corresponding logarithmic version CV = Jexp(sj)»l.

The skewness coefficient may be computed using the following equation:

¥, = ig(xi - Y)s E.Zl“(x' - X)ZTZ = n”g(xi - Y)3/(n —1)3/2 s® [10.8]

where the numerator represents the average cubed residual after subtracting the sample mean.

» EXAMPLE 10-1

Using the following data, compute the CVs and the coefficient of skewness to test for approximate
symmetry.
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Nickel Concentration (ppb)
Month Year 1 Year 2 Year 3 Year 4
Jan 58.8 19 39 3.1
Mar 1.0 81.5 151 942
Jun 262 331 27 85.6
Aug 56 14 21.4 10
Oct 8.7 64.4 578 637
SOLUTION

Step1l. Compute the mean, standard deviation (s), and sum of the cubed residuals for the nickel
concentrations:

X = %(58.8 +1+...+637)=169.52 ppb

s :\/%[(58.8—169.52)2+ (1-169.52)* +... + (637—169.52)2] = 259.7175 ppb

3

(x,—%x) = [(58.8 —169.52)° +... + (637 — 169.52)3]= 5.97845791x10° ppb®
=1

Step 2. Compute the arithmetic normal coefficient of variation following equation [10.5]:
CV = 259.7175/169.52 =1.53

Step 3.  Calculate the coefficient of skewness using equation [10.8]:
7, = (20) " (5.97845791x 10° )/ (19)”* (259.7175 = 1.84

Both the CV and the coefficient of skewness are much larger than 1, so the data appear to be
significantly positively skewed. Do not assume that the underlying population is normal.

Step 4. Since the original data evidence a high degree of skewness, one can instead compute the
skewness coefficient and corresponding sample CV with equation [10.7] on the logged nickel
concentrations. The logarithmic CV equals 4.97, a much more variable data set than
suggested by the arithmetic CV. The skewness coefficient works out to be |y,|= 0.24 < 1,
indicating that the logged data values are slightly skewed but not enough to clearly reject an
assumption of normality in the logged data. In other words, the original nickel values may be
lognormally distributed. <
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10.5 SHAPIRO-WILK AND SHAPIRO-FRANCIA NORMALITY TESTS
10.5.1 SHAPIRO-WILK TEST (N < 50)
PURPOSE AND BACKGROUND

The Shapiro-Wilk test is based on the premise that if a data set is normally distributed, the ordered
values should be highly correlated with corresponding quantiles (z-scores) taken from a normal
distribution (Shapiro and Wilk, 1965). In particular, the Shapiro-Wilk test gives substantial weight to
evidence of non-normality in the tails of a distribution, where the robustness of statistical tests based on
the normality assumption is most severely affected. A variant of this test, the Shapiro-Francia test, is
useful for sample sizes greater than 50 (see Section 10.5.2).

The Shapiro-Wilk test statistic (SW) will tend to be large when a probability plot of the data
indicates a nearly straight line. Only when the plotted data show significant bends or curves will the test
statistic be small. The Shapiro-Wilk test is considered one of the best tests of normality available
(Miller, 1986; Madansky, 1988).

PROCEDURE

Step 1.  Order and rank the dataset from least to greatest, labeling the observations as x; for rank i =
1...n. Using the notation X, let the ith rank statistic from a data set represent the ith smallest
value.

Step 2. Compute differences [x( =X } for each i = 1...n. Then determine k as the greatest integer

n—|+1) (I)

less than or equal to (n/2).

Step 3. Use Table 10-2 in Appendix D to determine the Shapiro-Wilk coefficients, ap_j+1 , for i =
1...k. Note that while these coefficients depend only on the sample size (n), the order of the
coefficients must be preserved when used in Step 4. The coefficients can be determined for
any sample size from n = 3 up to n = 50.

Step 4. Compute the quantity b given by the following equation:

k k
b=zbi = Zan—i+1(x(n-i+1) - X(i)) [10.9]
i=1 i=1
Note that the values b; are simply intermediate quantities represented by the terms in the sum
of the right-hand expression in equation [10.9].

Step 5. Calculate the standard deviation (s) of the dataset. Then compute the Shapiro-Wilk test
statistic using the equation:

swz[ b } [10.10]
svn-1

10-13 March 2009



Chapter 10. Fitting Distributions Unified Guidance

Step 6.

Given the significance level (o) of the test, determine the critical point of the Shapiro-Wilk
test with n observations using Table 10-3 in Appendix D. To maximize the utility and power
of the test, choose o = .10 for very small data sets (n < 10), o = .05 for moderately sized data
sets (10 <n < 20), and o = .01 for larger sized data sets (n > 20). Compare the SW against the
critical point (swc). If the test statistic exceeds the critical point, accept normality as a
reasonable model for the underlying population. However, if SW < sw,, reject the null
hypothesis of normality at the a-level and decide that another distributional model might
provide a better fit.

» EXAMPLE 10-2

Use the nickel data of Example 10-1 to compute the Shapiro-Wilk test of normality.

SOLUTION

Step 1.

Step 2.

Step 3.

Order the data from smallest to largest, rank in ascending order and list, as shown in columns
1 and 2 of the table below. Next list the data in reverse order in a third column.

i X(i) X(n-i+1) X(n-i+1) — X(i) An-i+1 b;
1 1.0 942.0 941.0 4734 445.47
2 3.1 637.0 633.9 3211 203.55
3 8.7 578.0 569.3 .2565 146.03
4 10.0 331.0 321.0 .2085 66.93
5 14.0 262.0 248.0 .1686 41.81
6 19.0 151.0 132.0 .1334 17.61
7 21.4 85.6 64.2 .1013 6.50
8 27.0 81.5 54.5 .0711 3.87
9 39.0 64.4 25.4 .0422 1.07
10 56.0 58.8 2.8 .0140 0.04
11 58.8 56.0 -2.8 b =932.88
12 64.4 39.0 -25.4
13 81.5 27.0 -54.5
14 85.6 21.4 -64.2
15 151.0 19.0 -132.0
16 262.0 14.0 -248.0
17 331.0 10.0 -321.0
18 578.0 8.7 -569.3
19 637.0 3.1 -633.9
20 942.0 1.0 -941.0

Compute the differences [x(n__

)~ x(i)} in column 4 of the table by subtracting column 2 from

column 3. Since the total sample size is n = 20, the largest integer less than or equal to (n/2) is
k =10.

Look up the coefficients a,_i+; from Table 10-2 in Appendix D and list in column 4.
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Step 4. Multiply the differences in column 3 by the coefficients in column 4 and add the first k
products (b;) to get quantity b, using equation [10.9].

b =[.4734(941.0)+.3211(633.9) +...+.0140(2.8)| = 932.88

Step 5. Compute the standard deviation of the sample, s = 259.72. Then use equation [10.10] to
calculate the SW:

2
SW:[—932'88 } = 0.679
259.724/19

Step 6. Use Table 10-3 in Appendix D to determine the 0.01-level critical point for the Shapiro-Wilk
test when n = 20. This gives sw; = 0.868. Then compare the observed value of SW = 0.679 to
the 1% critical point. Since SW < 0.868, the sample shows significant evidence of non-
normality by the Shapiro-Wilk test. The data should be transformed using logarithms or
another transformation on the ladder of powers and re-checked using the Shapiro-Wilk test
before proceeding with further statistical analysis. <

10.5.2 SHAPIRO-FRANCIA TEST (N > 50)

The Shapiro-Wilk test of normality can be used for sample sizes up to 50. When n is larger than
50, a slight modification of the procedure called the Shapiro-Francia test (Shapiro and Francia, 1972)
can be used instead. Like the Shapiro-Wilk test, the Shapiro-Francia test statistic (SF) will tend to be
large when a probability plot of the data indicates a nearly straight line. Only when the plotted data show
significant bends or curves will the test statistic be small.

To calculate the test statistic SF, one can use the following equation:

SF = [ n mix(i)}z / [(n —l)szgmf} [10.11]

i=1

where X represents the ith ranked value of the sample and where m; denotes the approximate expected
value of the ith rank normal quantile (or z-score). The values for m; are approximately equal to

i)
m =@ nsi) [10.12]

where @®*denotes the inverse of the standard normal distribution with zero mean and unit variance.
These values can be computed by hand using the normal distribution in Table 10-1 of Appendix D or
via simple commands found in many statistical computer packages.

Normality of the data should be rejected if the Shapiro-Francia statistic is too low when compared
to the critical points provided in Table 10-4 of Appendix D. Otherwise one can assume the data are
approximately normal for purposes of further statistical analysis.
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10.6 PROBABILITY PLOT CORRELATION COEFFICIENT
BACKGROUND AND PURPOSE

Another test for normality that is essentially equivalent to the Shapiro-Wilk and Shapiro-Francia
tests is the probability plot correlation coefficient test described by Filliben (1975). This test meshes
perfectly with the use of probability plots, because the essence of the test is to compute the usual
correlation coefficient for points on a probability plot. Since the correlation coefficient is a measure of
the linearity of the points on a scatterplot, the probability plot correlation coefficient, like the SW test
statistic, will be high when the plotted points fall along a straight line and low when there are significant
bends and curves in the probability plot. Comparison of the Shapiro-Wilk and probability plot
correlation coefficient tests has indicated very similar statistical power for detecting non-normality
(Ryan and Joiner, 1990).

It should be noted that although some statistical software may not compute Filliben’s test directly,
the usual Pearson’s correlation coefficient computed on the data pairs used to construct a probability plot
will provide a very close approximation to the Filliben statistic. Some users may find this latter
correlation easier to compute or more accessible in their software.

PROCEDURE

Step 1.  List the observations in order from smallest to largest, denoting xg as the ith smallest rank
statistic in the data set. Then let n = sample size and compute the sample mean (X ) and the
standard deviation (s).

Step 2.  Consider a random sample drawn from a standard normal distribution. The ith rank statistic of
this sample is fixed once the sample is drawn, but beforehand it can be considered a random
variable, denoted as X. Likewise, by considering all possible datasets of size n that might be
drawn from the normal distribution, one can think of the sampling distribution of the statistic
Xq). This sampling distribution has its own mean and variance, and, of importance to the
probability plot correlation coefficient, its own median, which can be denoted M;.

To compute the median of the ith rank statistic, first compute intermediate probabilities m; for
i = 1...n using the equation:

1—(-5)Mn fori=1
m =1 (i-.3175)/(n+.365) forl<i<n [10.13]

(-5j/n fori=n

Then compute the medians M; as the standard normal quantiles or z-scores associated with the
intermediate probabilities m;. These can be determined from Table 10-1 in Appendix D or

computed according to the following equation, where @®'represents the inverse of the
standard normal distribution:

M, =& (m,) [10.14]
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Step 3. With the rank statistic medians in hand, calculate the arithmetic mean of the M;’s, denoted M,
and the intermediate quantity C,, given by the equation:

C,=,> M>—nM’ [10.15]

n
i=1

Note that when the dataset is “complete” (meaning it contains no non-detects, ties, or censored

values), the mean of the order statistic medians reduces to M =0. This in turn reduces the
calculation of C,, to:

C =2 M’ [10.16]

i=1 I
Step 4. Finally compute Filliben’s probability plot correlation coefficient:

ZXG)Mi—nXIVI
= — [10.17]

When the dataset is complete, the equation for the probability plot correlation coefficient also
has a simplified form:

r= Zn:x(i)Mi/[Cn -sn-1] [10.18]

Step 5.  Given the level of significance (or), determine the critical point (re,) for Filliben’s test with
sample size n from Table 10-5 in Appendix D. Compare the probability plot correlation
coefficient (r) against the critical point (rcp). If r > r¢p, conclude that normality is a reasonable
model for the underlying population at the o-level of significance. If, however, r < r¢,, reject
the null hypothesis and conclude that another distributional model would provide a better fit.

» EXAMPLE 10-3

Use the data of Example 10-1 to compute Filliben’s probability plot correlation coefficient test at
the o = .01 level of significance.

SOLUTION

Step 1.  Order and rank the nickel data from smallest to largest and list, as in the table below. The
sample size is n = 20, with sample mean X =169.52 and the standard deviation s = 259.72.

Step 2. Compute the intermediate probabilities m; from equation [10.13] for each i in column 3 and
the rank statistic medians, M;, in column 4 by applying the inverse normal transformation to
column 3 using equation [10.14] and Table 10-1 of Appendix D.
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Step 3.

Step 4.

Step 5.

Since this sample contains no non-detects or ties, the simplified equations for C, in equation
[10.16] and for r in equation [10.18] may be used. First compute C, using the squared order
statistic medians in column 5:

C,=4[3328+1.926 +...+3.328] = 4.138

Next compute the products Xy M.in column 6 and sum to get the numerator of the

correlation coefficient (equal to 3,836.81 in this case). Then compute the final correlation
coefficient:

r= 3,836.81/ [4.138 % 259.724/19 } —0.819

i X(i) m; M; (M;)? Xy X M;
1 1.0 .03406 -1.8242 3.328 -1.824
2 3.1 .08262 -1.3877 1.926 -4.302
3 8.7 13172 -1.1183 1.251 -9.729
4 10.0 .18082 -0.9122 0.832 -9.122
5 14.0 .22993 -0.7391 0.546 -10.347
6 19.0 .27903 -0.5857 0.343 -11.129
7 21.4 .32814 -0.4451 0.198 -9.524
8 27.0 37724 -0.3127 0.098 -8.444
9 39.0 42634 -0.1857 0.034 -7.242
10 56.0 47545 -0.0616 0.004 -3.448
11 58.8 .52455 0.0616 0.004 3.621
12 64.4 .57366 0.1857 0.034 11.959
13 81.5 .62276 0.3127 0.098 25.488
14 85.6 .67186 0.4451 0.198 38.097
15 151.0 .72097 0.5857 0.343 88.445
16 262.0 .77007 0.7391 0.546 193.638
17 331.0 .81918 0.9122 0.832 301.953
18 578.0 .86828 1.1183 1.251 646.376
19 637.0 91738 1.3877 1.926 883.941
20 942.0 .96594 1.8242 3.328 1718.408

Compare Filliben’s test statistic of r = 0.819 to the 1% critical point for a sample of size 20 in
Table 10-5 of Appendix D, namely rep, = 925. Since r < 0.925, the sample shows significant
evidence of non-normality by the probability plot correlation coefficient. The data should be
transformed and the correlation coefficient re-calculated before proceeding with further
statistical analysis. <

10.7 SHAPIRO-WILK MULTIPLE GROUP TEST OF NORMALITY

BACKGROUND AND PURPOSE

The main purpose for including the multiple group test normality (Wilk and Shapiro, 1968) in the
Unified Guidance is to serve as a check for normality when using a Student’s t-test (Chapter 16) or
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when assessing the joint normality of multiple intrawell data sets. The multiple group test is an extension
of the Shapiro-Wilk procedure for assessing the joint normality of several independent samples. Each
sample may have a different mean and/or variance, but as long as the underlying distribution of each
group is normal, the multiple group test statistic will tend to be non-significant. Conversely, the multiple
group test is designed to identify when at least one of the groups being tested is definitely non-normal.

This test extends the Shapiro-Wilk procedure for a single sample, using individual SW test
statistics computed separately for each group or sample. Then the individual SW statistics are
transformed and combined into an overall or “omnibus” statistic (G). Like the single sample procedure
— where non-normality is indicated when the test statistic SW is too low — non-normality in one or
more groups is indicated when G is too low. However, instead of a special table of critical points, G is
constructed to follow a standard normal distribution under the null hypothesis of normality. The value of
G can simply be compared to an a-level z-score or normal quantile to decide whether the null or
alternative hypothesis is better supported.

Since it may be unclear which one or more of the groups is actually non-normal when the G
statistic is significant, Wilk and Shapiro recommend that a probability plot (Chapter 9) be examined on
the intermediate quantities, G; (at least for the case where several groups are being simultaneously
tested). One of these statistics is computed for each separate sample/group and is designed to follow a
standard normal distribution under Hy. Because of this, the G; statistics for non-normal groups will tend
to look like outliers on a normal probability plot (see Chapter 12).

The multiple group test can also be used to check normality when performing Welch’s t-test, a
two-sample procedure in which the underlying data of both groups are assumed to be normal, but no
assumption is made that the means or variances are the same. This is different from either the pooled
variance t-test or the one-way analysis of variance [ANOVA], both of which assume homoscedasticity
(i.e., equal variances across groups). If the group variances can be shown to be equal, the single sample
Shapiro-Wilk test can be run on the combined residuals, where the residuals of each group are formed by
subtracting off the group mean from each of the individual measurements. However, if the group
variances are possibly different, testing the residuals as a single group using the SW statistic may give an
inaccurate or misleading result. Consequently, since a test of homoscedasticity is not required for
Welch’s t-test, it is suggested to first use the multiple group test to check normality.

Although the Shapiro-Wilk multiple group method is an attractive procedure for accommodating
several groups of data at once, the user is cautioned against indiscriminate use. While many of the
methods described in the Unified Guidance assume underlying normality, they also assume
homoscedasticity. Other parametric multi-sample methods recommended for detection monitoring —
prediction limits in Chapter 18 and control charts in Chapter 20 — all assume that each group has the
same variance. Even if normality of the joint data can be demonstrated using the Shapiro-Wilk multiple
group test, it says nothing about whether the assumption of equal variances is also satisfied. Generally
speaking, except for Welch’s t-test, a separate test of homoscedasticity may also be needed. Such tests
are described in Chapter 11.

PROCEDURE

Step 1. Assuming there are K groups to be tested, let the sample size of the ith group be denoted n;.
Then compute the SWi; test statistic for each of the K groups using equation [10.10].
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Step 2.

Step 3.

Step 4.

Transform the SW; statistics to the intermediate quantities (G;). If the sample size (n;) of the ith
group is at least 7, compute G; with the equation:

(SW —¢)
G =y+ 5InL1—ISW.J

[10.19]

where the quantities v, 9, and € can be found in Table 10-6 of Appendix D for 7 < n; <50. If
the sample size (n;) is less than 7, determine G; directly from Table 10-7 in Appendix D by
first computing the intermediate value

u = InL ' [10.20]

(obtaining € from the top of Table 10-7), and then using linear interpolation to find the closest
value G; associated with u;.

Once the G; statistics are derived, compute the Shapiro-Wilk multiple group statistic with the
equation:

1 K
G=—)> G 10.21
JEZ . [10.21]

Under the null hypothesis that all K groups are normally-distributed, G will follow a standard
normal distribution. Given the significance level (cr), determine an a-level critical point from
Table 10-1 of Appendix D as the lower o x 100th normal quantile (z,). Then compare G to
Zo. If G < z,, there is significant evidence of non-normality at the o level. Otherwise, the
hypothesis of normality cannot be rejected.

» EXAMPLE 10-4

The previous examples in this chapter pooled the data of Example 10-1 into a single group before
testing for normality. This time, treat each well separately and compute the Shapiro-Wilk multiple group
test of normality at the o = .05 level.

Step 1.

SOLUTION

The nickel data in Example 10-1 come from K = 4 wells with n; = 5 observations per well.
Using equation [10.10], the SW; individual well test statistics are calculated as:

Well 1: SW; = 0.6062
Well 2: SW; = 0.5917
Well 3: SWj3 = 0.5652
Well 4: SW, = 0.6519
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Step 2. Since n; = 5 for each well, use Table 10-7 of Appendix D to find € = .5521. First calculating
u; with equation [10.20]:

_ | 8062~ 5521)

u, nL =-1.985
1-.6062

The performing this step for each well group and using linear interpolation on u in Table 10-7,
the approximate G; statistics are:

Well 1: up=-1.985 G;=-3.238
Well 2: u;=-2.333 G,=-3.488
Well 3: uz=-3.502 G3z =-4.013 (taking the last and closest entry)
Well 4: Us=-1.249 G4 =-2.755

Step 3.  Compute the multiple group test statistic using equation [10.21]:

(-1.985)+ (~2.333)+ (~4.013)+ (—2.755) | = -5.543

G:%[

Step 4. Since a = 0.05, the lower oo x 100th critical point from the standard normal distribution in
Table 10-1 of Appendix D is zps = —1.645. Clearly, G < zs ; in fact G is smaller than just
about any a-level critical point that might be selected. Thus, there is significant evidence of
non-normality in at least one of these wells (and probably all of them). <«

» EXAMPLE 10-5

The data in Example 10-1 showed significant evidence of non-normality. In this example, use the
same nickel data applying the coefficient of skewness, Shapiro-Wilk and the Probability Plot Correlation
Coefficient tests to determine whether the combined well measurements better follow a lognormal
distribution by first log-transforming the measurements. Computing the natural logarithms of the data
gives the table below:

Logged Nickel Concentrations log(ppb)
Month Well 1 Well 2 Well 3 Well 4
1 4.07 2.94 3.66 1.13
2 0.00 4.40 5.02 6.85
3 5.57 5.80 3.30 4.45
4 4.03 2.64 3.06 2.30
5 2.16 4.17 6.36 6.46
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SOLUTION
METHOD 1. COEFFICIENT OF SKEWNESS

Step 1. Compute the log-mean (Y ), log-standard deviation (sy), and sum of the cubed residuals for the
logged nickel concentrations (y;):

V= 2—10(4.07 +0.00+...+6.46) = 3.918 log(ppb)

s, = \/% [(4.07 —3.918)° +(0.00 — 3.918)° +... + (6.46 — 3.918)2] = 1.8014 log(ppb)

3

(y.-y) = [@07-3918) +...+ (6.46 - 3.918)*|= — 26.528 log*(ppb)
i=1

Step 2.  Calculate the coefficient of skewness using equation [10.8] with Step 1 values as:

7, = (20)" (-26.528)/ (19) * (1.8014) = -0.245

Since the absolute value of the skewness is less than 1, the data do not show evidence of
significant skewness. Applying a normal distribution to the log-transformed data may
therefore be appropriate, but this model should be further checked. The logarithmic CV of
4.97 computed in Example 10-1 was also suggestive of a highly skewed distribution, but can
be difficult to interpret in determining if measurements, in fact, follow a logarithmic
distribution.

METHOD 2. SHAPIRO-WILK TEST

Step 1.  Order and rank the data from smallest to largest and list, as in the table below. List the data in
reverse order alongside the first column. Denote the ith logged observation by y; = log(x;).

Step 2. Compute differences [y(n_i+l)— y(i)J in column 4 of the table by subtracting column 2 from

column 3. Since n = 20, the largest integer less than or equal to (n/2) is k = 10.
Step 3. Look up the coefficients a,_j+; from Table 10-2 of Appendix D and list in column 5.

Step 4. Multiply the differences in column 4 by the coefficients in column 5 and add the first k
products (b;) to get quantity b, using equation [10.9].

b =[4734(6.85)+.3211(5.33) +...+.0140(.04)| = 7.77
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Step 5.

Step 6.

Step 1.

Step 2.

i Yi) Y(n-i+1) Y(n-i+1) =~ Y(i) An-is1 b;

1 0.00 6.85 6.85 4734 3.24
2 1.13 6.46 5.33 3211 1.71
3 2.16 6.36 4.20 .2565 1.08
4 2.30 5.80 3.50 .2085 0.73
5 2.64 5.57 2.93 .1686 0.49
6 2.94 5.02 2.08 .1334 0.28
7 3.06 4.45 1.39 .1013 0.14
8 3.30 4.40 1.10 .0711 0.08
9 3.66 4.17 0.51 .0422 0.02
10 4.03 4.07 0.04 .0140 0.00
11 4.07 4.03 -0.04 b=7.77
12 4.17 3.66 -0.51

13 4.40 3.30 -1.10

14 4.45 3.06 -1.39

15 5.02 2.94 -2.08

16 5.57 2.64 -2.93

17 5.80 2.30 -3.50

18 6.36 2.16 -4.20

19 6.46 1.13 -5.33

20 6.85 0.00 -6.85

Compute the log-standard deviation of the sample, sy = 1.8014. Then use [10.10] to calculate
the SW test statistic:

2
SW = [L} =0.979
1.8014+v19

Use Table 10-3 of Appendix D to determine the .01-level critical point for the Shapiro-Wilk
test when n = 20. This gives swcp, = 0.868. Then compare the observed value of SW = 0.979 to
the 1% critical point. Since SW > 0.868, the sample shows no significant evidence of non-
normality by the Shapiro-Wilk test. Proceed with further statistical analysis using the log-
transformed data or by assuming the underlying population is lognormal.

METHOD 3. PROBABILITY PLOT CORRELATION COEFFICIENT

Order and rank the logged nickel data from smallest to largest and list, as in the table below.
Again let the ith logged value be denoted by y; = log(xj). The sample size is n = 20, the log-
mean is y = 3.918, and the log-standard deviation is s, = 1.8014.

Compute the intermediate probabilities m; from equation [10.13] for each i in column 3 and
the rank statistic medians, M; , in column 4 by applying the inverse normal transformation to
column 3 using equation [10.14] and Table 10-1 of Appendix D.
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Step 3.

Step 4.

Step 5.

i Yi) m; M; (M;)? Yy X M;
1 0.00 .03406 -1.8242 3.328 0.000
2 1.13 .08262 -1.3877 1.926 -1.568
3 2.16 13172 -1.1183 1.251 -2.416
4 2.30 .18082 -0.9122 0.832 -2.098
5 2.64 .22993 -0.7391 0.546 -1.951
6 2.94 .27903 -0.5857 0.343 -1.722
7 3.06 .32814 -0.4451 0.198 -1.362
8 3.30 37724 -0.3127 0.098 -1.032
9 3.66 42634 -0.1857 0.034 -0.680
10 4.03 47545 -0.0616 0.004 -0.248
11 4.07 .52455 0.0616 0.004 0.251
12 4.17 .57366 0.1857 0.034 0.774
13 4.40 .62276 0.3127 0.098 1.376
14 4.45 .67186 0.4451 0.198 1.981
15 5.02 .72097 0.5857 0.343 2.940
16 5.57 .77007 0.7391 0.546 4.117
17 5.80 .81918 0.9122 0.832 5.291
18 6.36 .86828 1.1183 1.251 7.112
19 6.46 .91738 1.3877 1.926 8.965
20 6.85 .96594 1.8242 3.328 12.496

Since this sample contains no non-detects or ties, the simplified equations for C, in [10.16]
and for r in [10.18] may be used. First compute C, using the squared order statistic medians in
column 5:

C,=4[3328+1.926 +...+3.328] = 4.138

Next compute the products YiX M. in column 6 and sum to get the numerator of the

correlation coefficient (equal to 32.226 in this case). Then compute the final correlation
coefficient:

r= 32.226/ [4.138 %1.8014+/19 } —0.992

Compare the Filliben’s test statistic of r = 0.992 to the 1% critical point for a sample of size 20
in Table 10-5 in Appendix D, namely re, = 925. Since r > 0.925, the sample shows no
significant evidence of non-normality by the probability plot correlation coefficient test.
Therefore, lognormality of the original data can be assumed in subsequent statistical
procedures.

Note: the Shapiro-Wilk and Filliben’s Probability Plot Correlation Coefficient tests for
normality on a single data set perform quite comparably. Only one of these tests need be run in
routine applications. <
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CHAPTER 11. TESTING EQUALITY OF VARIANCE

111 BOX PLOTS i s 11-2
11,2 LEVENE S TEST otiitiitiiiti et ettt sttt ettt et b e b e R e e et e e e e e ae e e Rt e R e R e R e e ne e e e s e s e e sne e nneenn e e 11-4
11.3 MEAN-STANDARD DEVIATION SCATTER PLOT ...ttt ettt et 11-8

Many of the methods described in the Unified Guidance assume that the different groups under
comparison have the same variance (i.e., are homoscedastic). This chapter covers procedures for
assessing homoscedasticity and its counterpart, heteroscedasticity (i.e., unequal variances). Equality of
variance is assumed, for instance, when using prediction limits to make either upgradient-to-
downgradient or intrawell comparisons. In the former case, the method assumes that the upgradient
variance is equal to the variance in each downgradient well. In the latter case, the presumption is that the
well variance is stable over time (i.e, stationary) when comparing intrawell background versus more
recent measurements.

If a prediction limit is constructed on a single new measurement at each downgradient well, it isnT
feasible to test the variance equality assumption prior to each statistical evaluation. Homoscedasticity
can be tested after several new rounds of compliance sampling by pooling collected compliance
measurements within a well. The Unified Guidance recommends periodic testing of the presumption of
equal variances by comparing newer data to historical background (Chapter 6).

Equality of variance between different groups (e.g., different wells) is also an important
assumption for an analysis of variance [ANOVA]. If equality of variance does not hold, the power of the
F-test (its ability to detect differences among the group means) is reduced. Mild differences in variance
are generally acceptable. But the effect becomes noticeable when the largest and smallest group
variances differ by a ratio of about 4, and becomes quite severe when the ratio is 10 or more (Milliken
and Johnson, 1984).

Three procedures for assessing or testing homogeneity of variance are described in the Unified
Guidance, two of which that are more robust to departures from normality (i.e., less sensitive to non-
normality). These include:

1.  The box plot (Chapter 9), a graphical method useful not only for checking equality of variance
but also as an exploratory tool for visualizing the basic statistical characteristics of data sets. It
can also provide a rough indication of differences in mean or median concentration levels across
several wells;

2. Levene’s test (Section 11.2), a formal ANOVA-type procedure for testing variance inequality;
and

3. The mean-standard deviation scatter plot (Chapter 9 and Section 11.3), a visual tool for
assessing whether the degree of variability in a set of data groups or wells is correlated with the
mean levels for those groups. This could potentially indicate whether a variance stabilizing
transfor mation might be needed.
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11.1 BOX PLOTS
PURPOSE AND BACKGROUND

Box plots are described in Chapter 9. In the context of variance testing, one can construct a box
plot for each well group and compare the boxes to see if the assumption of equal variances is reasonable.
The comparison is not a formal test procedure, but is easier to perform and is often sufficient for
checking the group variance assumption.

Box plots for each data group simultaneously graphed side-by-side provide a direct visual
comparison of the dispersion in each group. As a rule of thumb, if the box length for each group is less
than 1.5-2 times the length of the shortest box, the sample variances may be close enough to assume
equal group variances. If the box length for any group is greater than 1.5-2 times the length of the box
for another group, the variances may be significantly different. A formal test such as Levene’s might be
needed to more accurately decide. Sample data sets with unequal variances may need a variance
stabilizing transformation, i.e., one in which the transformed measurements have approximately equal
variances.

Most statistical software packages will calculate the statistics needed to draw a box plot, and many
will construct side-by-side box plots directly. Usually a box plot will also be shown with two “whiskers”
extending from the edges of the box. These lines indicate either the positions of extreme minimum or
maximum values in the data set. In Tukey’s original formulation (Tukey, 1977), they indicate the most
extreme lower and upper data points outside the box but falling within a distance of 1.5 times the
interquartile range (that is, the length of the box) from either edge. The whiskers should generally not be
used to approximate the overall variance under either formulation.

A convenient tactic when using box plots to screen for heteroscedasticity is to plot the residuals of
each data group rather than the measurements themselves. This will line the boxes up at roughly a
common level (close to zero), so that a visual comparison of box lengths is easier.

REQUIREMENTS AND ASSUMPTIONS

The requirements and assumptions for box plots are discussed in Section 9.2.
PROCEDURE

Step 1.  For each of j wells or data groups, compute the sample mean of that group X;. Then compute

the residuals (rj) for each group by subtracting the group mean from each individual
measurement:r, = X, — X .

Step 2. Use the procedure outlined in Section 9.2 to create side-by-side box plots of the residuals
formed in Step 1. Then compare the box lengths to check for possibly unequal variances.
»EXAMPLE 11-1

Construct box plots on the residuals for each of the following well groups to check for
homoscedasticity.

11-2 March 2009



Chapter 11. Testing Equality of Variance

Unified Guidance

Arsenic Concentration (ppb)
Month Well 1 Well 2 Well 3 Well 4 Well 5 Well 6
1 22.9 2.0 2.0 7.8 24.9 0.3
2 3.1 1.2 109.4 9.3 1.3 4.8
3 35.7 7.8 4.5 25.9 0.8 2.8
4 4.2 52 2.5 2.0 27 1.2
SOLUTION
Step 1.  Form the residuals for each well by subtracting the sample well mean from each observation,
as shown in the table below.
Arsenic Residuals (ppb)
Month Well 1 Well 2 Well 3 Well 4 Well 5 Well 6
1 6.43 -13.75 -27.6 -3.45 11.4 -1.98
2 -13.38 -14.55 79.8 -1.95 -12.2 2.52
3 19.22 -7.95 -25.1 14.65 -12.7 0.52
4 -12.28 36.25 -27.1 -9.25 13.5 -1.08
Mean 16.48 15.75 29.6 11.25 13.5 2.28
Step 2. Follow the procedure in Section 9.2 to compute a box plot of the residuals for each well. Line
these up side by side on the same graph, as in Figure 11-1.
Step 3. Compare the box lengths. Since the box length for Well 3 is more than three times the box

lengths of Wells 4 and 6, there is informal evidence that the population group variances may
be different. These data should be further checked using a formal test and perhaps a variance
stabilizing transformation attempted. <«
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Figure 11-1. Side-by-Side Box Plots of Arsenic Residuals
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11.2 LEVENE’'S TEST
PURPOSE AND BACKGROUND

Levene’s test is a formal procedure for testing homogeneity of variance that is fairly robust (i.e.,
not overly sensitive) to non-normality in the data. It is based on computing the new variables:

z; =%, -X. [11.1]
where x;; represents the jth sample value from the ith group (e.g., well) and X;, is the ith group sample

mean. The symbol (=) in the notation for the group sample mean represents an averaging over subscript
j. The values z then represent the absolute values of the residuals. Levene’s test involves running a

standard one-way ANOVA (Chapter 17) on the variablesz ;. If the F-test is significant, reject the

hypothesis of equal group variances and perhaps seek a variance stabilizing transformation. Otherwise,
proceed with analysis of the original x;; ’s.

Levene’s test is based on a one-way ANOVA and contrasts the means of the groups being tested.
This implies a comparison between averages of the form:
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Z =nii\xij —% [11.2]

Such averages of the z; ’s are very similar to the standard deviations of the original data groups, given
by the formula:

S =J%i(>ﬁ,— -%.J [11.3]

In both cases, the statistics are akin to an average absolute residual. Therefore, the comparison of
means in Levene’s test is closely related to a direct comparison of the group standard deviations, the
underlying aim of any test of variance equality.

REQUIREMENTS AND ASSUMPTIONS

The requirements and assumptions for Levene’s test are essentially the same as the one-way
ANOVA in Section 17.1, but applied to the absolute residuals instead of the raw measurements.

PROCEDURE

Step 1.  Suppose there are p data groups to be compared. Because there may be different numbers of
observations per well, denote the sample size of the ith group by n; and the total number of
data points across all groups by N.

Denote the observations in the ith group by x;; fori=1...pand j = 1...n;. The first subscript

then designates the well, while the second denotes the jth value in the ith well. After
computing the sample mean (x ) for each group, calculate the absolute residuals (z ;) using

equation [11.1].

Step 2.  Utilizing the absolute residuals — and not the original data — compute the mean of each
group along with the overall (grand) mean of the combined data set using the formula:

il

1 p
— E zZ, [11.4]
N i=1j=1

Step 3. Compute the sum of squares of differences between the group means and the grand mean,
denoted SSyps:

$grps = ini (zn - Zo)z = 2'}2% - Nz.z. [115]

The formula on the far right is usually the most convenient for calculation. This sum of
squares has (p-1) degrees of freedom associated with it and is a measure of the variability
between groups. It constitutes the numerator of the F-statistic.
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Step 4.

Step 5.

Step 6.

Step 7.

Step 8.

Compute the corrected total sum of squares, denoted by SSqtai:

pn p
S =22 -2.) =222 - Nz [116]

i=1 j=1 i=1 j=1

Again, the formula on the far right is usually the most computationally convenient. This sum
of squares has (N-1) associated degrees of freedom.

Compute the sum of squares of differences between the absolute residuals and the group
means. This is known as the within-groups component of the total sum of squares or,
equivalently, as the sum of squares due to error. It is easiest to obtain by subtracting SSyps
from SSoia and is denoted SSyvor:

P pon
S5, = ZZ(Z.,- ~2.) =S8,y -S5,,=2.2,2 -2 .nZ: [11.7]
i 4 i 4 —~
SSiror IS associated with (N-p) degrees of freedom and is a measure of the variability within

groups. This quantity goes into the denominator of the F-statistic.

Compute the mean sum of squares for both the between-groups and within-groups
components of the total sum of squares, denoted by MS;ps and MS;or. These quantities are
obtained by dividing each sum of squares by its corresponding degrees of freedom:

Msgrps - $grps/(p_l) [11'8]
MSerror = $error/(N - p) [119]

Compute the F-statistic by forming the ratio between the mean sum of squares for wells and
the mean sum of squares due to error, as in Figure 11-2 below. This layout is known as the
one-way parametric ANOVA table and illustrates each sum of squares component of the total
variability, along with the corresponding degrees of freedom, the mean squares components,
and the final F-statistic calculated as F = MSyps/MSuror. Note that the first two rows of the
one-way table sum to the last row.

Figure 11-2 is a generalized ANOVA table for Levene’s test. To test the hypothesis of equal
variances across all p well groups, compare the F-statistic in Figure 11-2 to the a-level critical
point found from the F-distribution with (p-1) and (N-p) degrees of freedom in Appendix D
Table 17-1. When testing variance equality, only severe levels of difference typically impact
test performance in a substantial way. For this reason, the Unified Guidance recommends
setting a0 = .01 when screening multiple wells and/or constituents using Levene’s test. In that
case, the needed critical point equals the upper 99th percentage point of the F-distribution. If
the observed F-statistic exceeds the critical point (F g9 p-1,n-p), reject the hypothesis of equal
group population variances. Otherwise, conclude that there is insufficient evidence of a
significant difference between the variances.
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Figure 11-2. ANOVA Table for Levene’s Test

Source of Variation Sums Degrees of Mean Squares F-Statistic
of Squares Freedom

Between Wells SSgrps p-1 MSgrps =  SSgrps/ (p—-1) F = MSgps/MSerror
Error (within wells) SSerror N-p MSeiror = SSerror/ (N—-P)
Total SSiotal N-1

» EXAMPLE 11-2

Use the data from Example 11-1 to conduct Levene’s test of equal variances at the o = 0.01 level
of significance.

SOLUTION
Step 1. Calculate the group arsenic mean for each well (X, ):

Well 1 mean = 16.47 ppm Well 4 mean = 11.26 ppm
Well 2 mean = 15.76 ppm Well 5 mean = 13.49 ppm
Well 3 mean = 29.60 ppm Well 6 mean = 2.29 ppm
Then compute the absolute residuals z; in each well using equation [11.1] as in the table
below.
Absolute Arsenic Residuals (z;)
Month Well 1 Well 2 Well 3 Well 4 Well 5 Well 6
1 6.43 13.76 27.6 3.42 11.41 1.95
2 13.38 14.51 79.8 1.96 12.19 2.49
3 19.23 7.96 25.1 14.64 12.74 0.56
4 12.29 36.24 27.1 9.26 13.51 1.09
Well Mean (Z, ) 12.83 18.12 39.9 7.32 12.46 1.52
Overall Mean (Z,) 15.36

Step 2. Compute the mean absolute residual (Z,) in each well and then the overall grand mean using
equation [11.4]. These results are listed above.

Step 3.  Compute the between-groups sum of squares for the absolute residuals using equation [11.5]:
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SS, . = [4(12.83)2 +4(18.12)° +...+ 4(1.52)2]— 24.(15.36)° = 3,522.90

arps
Step 4. Compute the corrected total sum of squares using equation [11.6]:

S, = |(6.43)° + (13.38) + ...+ (L.09) |- 24-(15.36)° = 6,300.89
Step 5. Compute the within-groups or error sum of squares using equation [11.7]:

SS,  =6,300.89-3,522.90=2,777.99

error

Step 6.  Given that the number of groups is p = 6 and the total sample size is N = 24, calculate the
mean squares for the between-groups and error components using formulas [11.8] and [11.9]:

MS, =3522.90/(6-1)="70458

grps

error

MS, , =2,777.99/(24-6)=154.33

Step 7. Construct an ANOVA table following Figure 11-2 to calculate the F-statistic. The numerator
degrees of freedom [df] is computed as (p-1) = 5, while the denominator df is equal to (N-p) =

18.
Source of Variation Sums of Squares Degrees of Mean Squares F-Statistic
Freedom
Between Well Grps 3,522.90 5 704.58 4.56
Error (within grps) 2,777.99 18 154.33
Total 6,300.89 23

Step 8.  Determine the .01-level critical point for the F-test with 5 and 18 degrees of freedom from
Table 17-1. This gives Fg9515 = 4.25. Since the F-statistic of 4.56 exceeds the critical point,
the assumption of equal variances should be rejected. Since the original concentration data are
used in this example, a transformation such as the natural logarithm might be tried and the
transformed data retested. <

11.3 MEAN-STANDARD DEVIATION SCATTER PLOT
BACKGROUND AND PURPOSE

The mean-standard deviation scatter plot is described in Chapter 9. It is useful as an exploratory
tool for multiple groups of data (e.g., wells) to aid in identifying relationships between mean levels and
variability. It is also helpful in providing a visual assessment of variance homogeneity across data
groups. Like side-by-side box plots, the mean-standard deviation scatter plot graphs a measure of
variability for each well. In the latter, however, the standard deviation is plotted rather than the
interquartile range, so a more direct assessment of variance equality can be made. Since standard
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deviations (and consequently variances) are often positively correlated with sample mean levels in
skewed populations, the observed pattern on the mean-standard deviation scatter plot can offer valuable
clues as to what sort of variance stabilizing transformation if any might work.

REQUIREMENTS AND ASSUMPTIONS

The requirements for the mean-standard deviation scatter plot are listed in Section 9.4.
PROCEDURE

See Section 9.4.
» EXAMPLE 11-3

Use the data from Example 11-1 to construct a mean-standard deviation scatter plot.

SOLUTION
Step 1.  First compute the sample mean (X ) and standard deviation (s) of each well, as listed below.

Well Mean Std Dev
1 16.468 15.718
2 15.762 24.335
3 29.600 53.211
4 11.260 10.257
5 13.488 14.418
6 2.292 1.958

Step 2.  Plot the well means versus the standard deviations as in Figure 11-3 below. Note the roughly
linear relationship between the magnitude of the standard deviations and their corresponding
means. The data suggest unequal variances among the wells, as indicated by the large range in
the standard deviations.
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Step 3.

Figure 11-3. Arsenic Mean-Standard Deviation Plot
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Because lognormal data groups will tend to show a linear association between the sample
means and standard deviations, apply a log transformation to the original arsenic
measurements and reconstruct the mean-standard deviation scatter plot on the log scale.
Computing the log-means and log-standard deviations and then re-plotting gives Figure 11-4.
Now the apparent trend between the means and standard deviations is gone. Further, on the
log scale, the standard deviations are much more similar in magnitude, all with values between
1 and 2. The log transformation thus appears to roughly stabilize the arsenic variances. <«

Figure 11-4. Log(Arsenic) Mean-Standard Deviation Plot
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CHAPTER 12. IDENTIFYING OUTLIERS

12.1 SCREENING WITH PROBABILITY PLOTS ...tiutitiiiiteite sttt ettt sttt ettt sbe st ne bbbt nnenes 12-1
12.2  SCREENING WITH BOX PLOTS ...ttt ettt sb bbb nb bbbt nn e 12-5
12.3  DIXONS TEST utititittatieteetteste st stk eh sttt s bt ekt b e bt e se e s bbb b b £ e b e e e oAbt e E e e b £ ke bt e s e et e bt eb e bt e bt eb s e e e b e nnenne e 12-8
12,4 ROSNER’S TEST ..utitittittatieteste st st sttt ettt sb ekt h bbb btk e bt b e e e bt e bt e b e e b e e he e e e b e bt e bt et e e b e es e e e b e nbenne s 12-10

This chapter discusses screening tools and formal tests for identifying statistical outliers. Two
screening tools are first presented: probability plots (Section 12.1) and box plots (Section 12.2). These
are followed by two formal outlier tests:

++ Dixon’s test (Section 12.3) for a single outlier in smaller data sets, and
+ Rosner’s test (Section 12.4) for up to five separate outliers in larger data sets.

A statistical determination of one or more statistical outliers does not indicate why the
measurements are discrepant from the rest of the data set. The Unified Guidance does not recommend
that outliers be removed solely on a statistical basis. The outlier tests can provide supportive
information, but generally a reasonable rationale needs to be identified for removal of suspect outlier
values (usually limited to background data). At the same time there must be some level of confidence
that the data are representative of ground water quality. A number of factors and considerations in
removing outliers from potential background data are discussed in Section 5.2.3.

12.1 SCREENING WITH PROBABILITY PLOTS
BACKGROUND AND PURPOSE

Probability plots (Chapter 9) are helpful in identifying outliers in at least two ways. First, since the
straightness of the plot indicates how closely the data fit the pattern of a normal distribution, values that
appear “out of line” with the remaining data can be visually identified as possible outliers. Secondly, the
two formal outlier tests presented in the Unified Guidance assume that the underlying population minus
the suspected outlier(s) is normal. Probability plots can provide visual evidence for this assumption.
Data that appear non-normal after the suspected outliers have been removed from the probability plot
may need to be transformed (e.g., via the natural logarithm) and re-examined on the transformed scale to
see if potential outliers are still apparent.

As an aid to the interpretation of a given probability plot, the Unified Guidance recommends
computation of the probability plot correlation coefficient, using either Filliben’s procedure (Chapter
10) or the simple (Pearson) correlation (Chapter 3) between the numerical pairs plotted on the graph.
The higher the correlation, the more linear the pattern is on the probability plot and therefore a better fit
to normality. Note that while the Filliben correlation coefficient can be compared to critical points
derived for that test of normality (Chapter 10), a low correlation may be related to other causes of non-
normality besides the presence of outliers. The correlation coefficient is not a substitute for a formal
outlier test, but can be useful as a screening tool.
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REQUIREMENTS AND ASSUMPTIONS

Probability plots are primarily a tool to assess normality, and not to identify outliers per se. It is
critical that the remaining data without potential outliers is either normal in distribution or can be
normalized via a transformation. Otherwise, the probability plot may appear non-linear and non-normal
for reasons unrelated to the presence of outliers. Right-skewed lognormal distributions can appear to
have one or more outliers on a probability plot unless the original data are first log-transformed. As a
general rule, probability plots should be constructed on the original (or raw) measurements and one or
more transformed data sets (e.g., log or square root), in order to avoid mistaking inherent data skewness
for outliers.

If the raw and transformed-data probability plots both indicate one or more values inconsistent
with the pattern of the remaining values, continue with a second level of screening by temporarily
removing the suspected outlier(s) and re-constructing the probability plots. If the raw-scale plot is
reasonably linear, consider running a formal outlier test on the original measurements. On the other
hand, if the raw-scale plot is skewed but the transformed-scale plot is linear, consider conducting a
formal outlier test on the transformed measurements.

A related difficulty occurs when sample data includes censored or non-detect values. If simple
substitution is used to estimate a value for each non-detect prior to plotting, the resulting probability plot
may appear non-linear simply because the censored observations were not properly handled. In this case,
a censored probability plot (Chapter 15) should be constructed instead of an uncensored, complete
sample plot (Chapter 9). The same caveats apply to normalizing the sample data, perhaps by attempting
at least one transformation. The only difference is that each probability plot constructed must
appropriately account for the observed censoring in the sample.

PROCEDURE

Step 1.  After identifying one or more possible outliers (e.g., values much higher in concentration than
the remaining measurements), construct a probability plot on the entire sample using the
procedure described in Section 9.5. Construct a censored probability plot from Section 15.3
if the sample contains non-detects. If the data including the suspected outlier(s) follow a
reasonably linear pattern, a formal outlier test is probably unnecessary. However, if one or
more values are out of line compared to the pattern of the remaining data, construct a similar
probability plot after applying one or more transformations. If one or more suspected outliers
is still inconsistent, proceed to Step 2.

Step 2. Compute a probability plot correlation coefficient for each plot constructed in Step 1. Use
these correlations as an aid to interpreting the degree of linearity in each probability plot.

Step 3. Reconstruct the probability plots from Step 1 after removing the suspected outlier(s).
Recompute the correlation coefficients from Step 2 on this reduced sample.

Step 4.  If the *outlier-deleted” probability plot on the raw concentration scale indicates a linear pattern
with high correlation, consider running a formal outlier test on the original measurements.
When the pattern is distinctly non-linear but the corresponding probability plot on the
transformed-scale is fairly linear (and higher in correlation), conduct the outlier test on the
transformed values.
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» EXAMPLE 12-1

The table below contains data from five background wells measured over a four month period. The
value 7,066 is found in the second month at Well 3. Use probability plots on the combined sample to
determine whether or not a formal outlier test is warranted.

Carbon Tetrachloride Concentrations (ppb)

Well 1 Well 2 Well 3 Well 4 Well 5
1.7 302 16.2 199 275
3.2 35.1 7066 41.6 6.5
7.3 15.6 350 75.4 59.7
12.1 13.7 70.1 57.9 68.4

SOLUTION

Step 1. Examine the probability plots of the entire sample first using the raw measurements and then
log-transformed values (Figures 12-1 and 12-2). Both these plots indicate that the suspected
outlier does not follow the pattern of the remaining observations, but seems ‘out of line.” The
Pearson correlation coefficients for these probability plots are, respectively, r = 0.513 and
0.975, indicating that the fit to normality overall is much closer using log-transformed
measurements.

Figure 12-1. Probability Plot on Raw Concentrations (r = .513)
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Step 2. Next remove the suspected outlier and reconstruct the probability plots on both the original
and logged observations (Figures 12-3 and 12-4). The plot on the original scale indicates
heavy positive (or right-) skewness and a non-linear pattern, while the plot on the log-scale
exhibits a fairly linear pattern. The respective correlation coefficients now become r = 0.854
and 0.985, again favoring the log-transformed sample. On the basis of these plots, the
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underlying data should be modeled as lognormal and the observations logged prior to running
a formal outlier test. <

Figure 12-2. Probability Plot on Logged Observations (r = .975)
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Figure 12-3. Outlier-Deleted Probability Plot on Original Scale (r = .854)
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Figure 12-4. Outlier-Deleted Probability Plot on Logarithmic Scale (r = .985)
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12.2 SCREENING WITH BOX PLOTS
BACKGROUND AND PURPOSE

Probability plots as described in Section 12.1 require the remaining observations following
removal of one or more suspected outliers to be either approximately normal or normalized via
transformation. Box plots (Chapter 9) provide an alternate method to perform outlier screening, one
not dependent on normality of the underlying measurement population. Instead of looking for points
inconsistent with a linear pattern on a probability plot, the box plot flags as possible outliers values that
are located in either or both of the extreme tails of the sample.

To define the extreme tails, Tukey (1977) proposed the concept of ‘hinges’ that would *swing’ off
either end of a box plot, defining the range of concentrations consistent with the bulk of the data. Data
points outside this concentration range could then be identified as potential outliers. Tukey defined the
hinges, i.e., the lower and upper edges of the box plot, essentially as the lower and upper quartiles of the
data set. Then multiples of the interquartile range [IQR] (i.e., the range represented by the middle half of
the sample) were added to or subtracted from these hinges as potential outlier boundaries. Any
observation from 1.5 x IQR to 3 x IQR below the lower edge of the box plot was labeled a ‘mild” low
outlier; any value more than 3 x IQR below the lower edge of the box plot was labeled an ‘extreme’ low
outlier. Similarly, values greater than the upper edge of the box plot in the range of 1.5 to 3 times the
IQR were labeled ‘mild” higher outliers, and ‘extreme’ high outliers if more than 3 times the IQR
beyond the upper box plot edge.

REQUIREMENTS AND ASSUMPTIONS

By using hinges and multiples of the interquartile range, Tukey’s box plot method utilizes statistics
(i.e., the lower and upper quartiles) that are generally not or minimally affected by one or a few outliers
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in the sample. Consequently, it isnT necessary to first delete possible outliers before constructing the
box plot.

Screening for outliers with box plots is a very simple technique. Since no assumption of normality
is needed, Tukey’s procedure can be considered quasi-non-parametric. But note that rough symmetry of
the underlying distribution is implicitly assumed. Legitimate observations from highly skewed
distributions could be flagged as potential outliers on a box plot if no transformation of the data is first
attempted. It may be necessary to first conduct multiple data transformations in order to achieve
approximate symmetry before applying and evaluating potential outliers with box plots.

PROCEDURE

Step 1.  Construct a box plot on the sample using the method given in Section 9.2. Using the IQR from
that calculation, along with the lower and upper quartiles ( X,;and X.), compute the first pair

of lower and upper boundaries as:
LB, = X,,-15x IQR (12.1)
UB, = X, +15x IQR (12.2)

Step 2. Construct the second pair of lower and upper boundaries as:

LB, = X, - 3x IQR (12.3)

UB, = X, +3x IQR (12.4)

Step 3.  Label any sample measurement lower than the first lower boundary (LB;) but no less than the
second lower boundary (LB;) as a mild low outlier. Label any measurement greater than the
first upper boundary (UB;) but no greater than the second upper boundary (UB;) as a mild high
outlier.

Step 4. Label any sample measurement lower than the second lower boundary (LB,) as an extreme
low outlier. Label any value higher than the second upper boundary (UB,) as an extreme high
outlier.

» EXAMPLE 12-2

Use the carbon tetrachloride data from Example 12-1 to screen for possible outliers using Tukey’s
box plot.

SOLUTION
Step 1. Using the procedure described in Section 9.2, the upper and lower quartiles of carbon

tetrachloride sample are found to be X, = 12.9 and X, = 137.2, leading to an IQR =124.3.

Step 2. Compute the two pairs of lower and upper boundaries using equations (12.1), (12.2), (12.3),
and (12.4):
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LB =12.9-15x124.3=-173.55
UB, =137.2+1.5x124.3=323.65
LB, =12.9-3x124.3=-360

UB, =137.2+3x124.3=510.1

Step 3.  Scan the list of carbon tetrachloride measurements and compare against the boundaries of
Step 2. It can be seen that the value of 350 from Well 3 is greater than UB; but lower than
UB,, thus qualifying as a mild high outlier. Also, the measurement 7,066 from the same well
is higher than UB;, and so qualifies as an extreme high outlier.

Step 4. Because the box plot outlier screening method assumes roughly symmetric data, recompute
the box plot on the log-transformed measurements (as shown in Figure 12-5 alongside a
similar box plot of the raw concentrations). Transforming the sample to the log-scale does
result in much greater symmetry compared to the original measurement scale. This can be
seen in the close similarity between the mean and median on the log-scale box plot. With a
more symmetric data set, the mild high outlier from Step 3 disappears, but the extreme high
value is still classified as an outlier. <«

Figure 12-5. Comparative Carbon Tetrachloride Box Plots Indicating Outliers
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12.3 DIXON’'S TEST
BACKGROUND AND PURPOSE

Dixon’s test is helpful for documenting statistical outliers in smaller data sets (i.e., n < 25). The
test is particularly designed for cases where there is only a single high or low outlier, although it can also
be adapted to test for multiple outliers. The test falls in the general class of tests for discordancy (Barnett
and Lewis, 1994). The test statistic for such procedures is generally a ratio: the numerator is the
difference between the suspected outlier and some summary statistic of the data set, while the
denominator is always a measure of spread within the data. In this version of Dixon’s test, the summary
statistic in the numerator is an order statistic nearby to the potential outlier (e.g., the second or third most
extreme value). The measure of spread is essentially the observed sample range.

If there is more than one outlier in the data set, Dixon’s test can be vulnerable to masking, at least
for very small samples. Masking in the statistical literature refers to the problem of an extreme outlier
being missed because one or more additional extreme outliers are also present. For instance, if the data
consist of the values {2, 4, 10, 12, 15, 18, 19, 22, 200, 202}, identification of the maximum value (202)
as an outlier might fail since the maximum by itself is not extreme with respect to the next highest value
(200). However, both of these values are clearly much higher than the rest of the data set and might
jointly be considered outliers.

If more than one outlier is suspected, the user is encouraged to consider Rosner’s test (Section
12.4) as an alternative to Dixon’s test, at least if the sample size is 20 or more. If the data set is smaller,
Dixon’s test should be modified so that the least extreme of the suspected outliers is tested first. This
will help avoid the risk of masking. The same equations given below can be used, but the data set and
sample size should be temporarily reduced to exclude any suspected outliers that are more extreme than
the one being tested. If a less extreme value is found to be an outlier, then that observation and any more
extreme values can also be regarded as outliers. Otherwise, add back the next most extreme value and
test it in the same way.

REQUIREMENTS AND ASSUMPTIONS

Dixon’s test is only recommended for sample sizes n < 25. It assumes that the data set (minus the
suspected outlier) is normally-distributed. This assumption should be checked prior to running Dixon’s
test using a goodness-of-fit technique such as the probability plots described in Section 12.2.

PROCEDURE
Step 1.  Order the data set and label the ordered values, X).

Step 2. If a “low” outlier is suspected (i.e., X1)), compute the test statistic C using the appropriate
equation [12.5] depending on the sample size (n):
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(%0 ) by~ x0) for 3<n<7

(0 ) sy 4 ) for8<n<10
(%0 ) Gy ) Tr 12013
(9% ) G~ ) fr14<n<25

Step 3. If a “high” outlier is suspected (i.e., Xn)), and again depending on the sample size (n), compute
the test statistic C using the appropriate equation [12.6] as:

(0 X ) 6= %0) for 3<n<7

(0 X0 ) 6y~ ) fr8< <10
(0 %en) G ) for11<n<13
(0% ) by 0) for 18 <n<25

Step 4. In either case, given the significance level (o), determine a critical point for Dixon’s test with
n observations from Table 12-1 in Appendix D. If C exceeds this critical point, the suspected
value should be declared a statistical outlier and investigated further (see discussion in
Chapter 6).

[12.5]

[12.6]

» EXAMPLE 12-3

Use the data from Example 12-1 in Dixon’s test to determine if the anomalous high value is a
statistical outlier at an oo = 0.05 level of significance.

SOLUTION

Step 1. In Example 12-1, probability plots of the carbon tetrachloride data indicated that the highest
value might be an outlier, but that the distribution of the measurements was more nearly
lognormal than normal. Since the sample size n = 20, Dixon’s test can be used on the logged
observations. Logging the values and ordering them leads to the following table:
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Concentration Logged
Order (ppb) Concentration

1 1.7 0.531
2 3.2 1.163
3 6.5 1.872
4 7.3 1.988
5 12.1 2.493
6 13.7 2.617
7 15.6 2.747
8 16.2 2.785
9 35.1 3.558
10 41.6 3.728
11 57.9 4.059
12 59.7 4.089
13 68.4 4.225
14 70.1 4.250
15 75.4 4.323
16 199.0 5.293
17 275.0 5.617
18 302.0 5.710
19 350.0 5.878
20 7066.0 8.863

Step 2.  Because a high outlier is suspected and n = 20, use the last option of equation [12.6] to
calculate the test statistic C:

_ 8.863-5.710

=———————=0451
8.863—-1.872

Step 3.  With n= 20 and a = .05, the critical point from Table 12-1 in Appendix D is equal to 0.450.
Since the test statistic C exceeds this critical point, the extreme high value can be declared a
statistical outlier. Before excluding this value from further analysis, however, a valid
explanation for this unusually high value should be sought. Otherwise, the outlier may need to
be treated as an extreme but valid concentration measurement. <

12.4 ROSNER’S TEST
BACKGROUND AND PURPOSE

Rosner’s test (Rosner, 1975) is a useful method for identifying multiple outliers in moderate to
large-sized data sets. The approach developed in Rosner’s method is known as a block-style test. Instead
of testing for outliers one-by-one in a consecutive manner from most extreme to least extreme (i.e., most
to least suspicious), the data are examined first to identify the total number of possible outliers, k. Once k
is determined, the set of possible outliers is tested together as a block. If the test is significant, all k
measurements are regarded as statistical outliers. If not, the set of possible outliers is reduced by one and
the test repeated on the smaller block. This procedure is iterated until either a set of outliers is identified
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or none of the observations are labeled an outlier. By testing outliers in blocks instead of one-by-one,
Rosner’s test largely avoids the problem of masking of one outlier by another (as discussed in Section
12.3 regarding Dixon’s test).

Although Rosner’s test avoids the problem of masking when multiple outliers are present in the
same data set, it is not immune to the related problem of swamping. A good discussion is found in
Barnett and Lewis, 1994, Qutliers in Statistical Data (3rd Edition), p. 236. Swamping refers to a block
of measurements all being labeled as outliers even though only some of the observations are actually
outliers. This can occur with Rosner’s test especially if all the outliers tend to be at one end of the data
set (e.g., as upper extremes). The difficulty is in properly identifying the total number of possible outliers
(K), which can be low outliers, high outliers, or some combination of the two extremes. If k is made too
large, swamping may occur. Again, the user is reminded to always do a preliminary screening for
outliers via box plots (Section 12.2) and probability plots (Section 12.1).

REQUIREMENTS AND ASSUMPTIONS

Rosner’s test is recommended when the sample size (n) is 20 or larger. The critical points provided
in Table 12-2 in Appendix D can be used to identify from 2 to 5 outliers in a given data set. Like
Dixon’s test, Rosner’s method assumes the underlying data set (minus any outliers) is normally
distributed. If a probability plot of the data exhibits significant bends or curves, the data should first be
transformed (e.g., via a logarithm) and then re-plotted. The formal test for outliers should only be
performed on (outlier-deleted) data sets that have been approximately normalized.

A potential drawback of Rosner’s test is that the user must first identify the maximum number of
potential outliers (k) prior to running the test. Therefore, this requirement makes the test ill-advised as an
automatic outlier screening tool, and somewhat reliant on the user to identify candidate outliers.

PROCEDURE

Step 1. Order the data set and denote the ordered values X. Then by simple inspection, identify the
maximum number of possible outliers, r.

Step 2. Compute the sample mean and standard deviation of all the data; denote these values by x©
and <9, Then determine the measurement furthest from X® and denote it y©. Note that y©
could be either a potentially low or a high outlier.

Step3. Delete y© from the data set and compute the sample mean and standard deviation from the
remaining observations. Label these new values %% and s, Again find the value in this
reduced data set furthest from X% and label it y®.

Step4. Delete Y, recompute the mean and standard deviation, and continue this process until all ro

potential outliers have been removed. At this point, the following set of statistics will be
available:

[%©), 5@, y@] [z, 50, y@] ..., [x0D), g1 ylo-1)] [12.7]

Step 5. Now test for r outliers (where r <rg) by iteratively computing the test statistic:
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R = ‘y(r—l) _ X(r—1)

r-1

/ s [12.8]

First test for ro outliers. If the test statistic R _, in equation [12.8] exceeds the first critical

1

point from Table 12-2 in Appendix D based on sample size (n) and the Type | error (o),
conclude there are ro outliers. If not, test for rg—1 outliers in the same fashion using the next
critical point, continuing until a certain number of outliers have either been identified or
Rosner’s test finds no outliers at all.

» EXAMPLE 12-4

Consider the following series of 25 background napthalene measurements (in ppb). Use Rosner’s
test to determine whether any of the values should be deemed statistical outliers.

Step 1.

Step 2.

Step 3.

Naphthalene Concentrations (ppb)

Qtr BW-1 BW-2 BW-3 BW-4 BW-5
1 3.34 5.59 1.91 6.12 8.64
2 5.39 5.96 1.74 6.05 5.34
3 5.74 1.47 23.23 5.18 5.53
4 6.88 2.57 1.82 4.43 4.42
5 5.85 5.39 2.02 1.00 35.45

SOLUTION

Screening with probability plots of the combined data indicates a less than linear fit with both
the raw measurements and log-transformed data (see Figures 12-6 and 12-7); two points
appear rather discrepant from the rest. Correlation coefficients for these plots are 0.740 on the
concentration scale and 0.951 on the log-scale. Re-plotting after removing the two possible
outliers gives a substantially improved correlation on the concentration scale of 0.958 but
reduces the log-scale correlation to 0.929. Normality appears to be a slightly better default
distribution for the outlier-deleted data set. Run Rosner’s test on the original data with k = 2
possible outliers.

Compute the mean and standard deviation of the complete data set. Then identify the
observation farthest from the mean. These results are listed, along with the ordered data, in the
table below. After removing the farthest value (35.45), recompute the mean and standard
deviation on the remaining values and again identify the most discrepant observation (23.23).
Repeat this process one more time so that both suspected outliers have been removed (see
table below).

Now test for 2 joint outliers by computing Rosner’s statistic on subset SS.; = S5 using
equation [12.8]:

_ 23.23-523
 4.326

=4.16
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Figure 12-6. Napthalene Probability Plot
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Figure 12-7. Log Napthalene Probability Plot
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Successive Naphthalene Subsets (SS;)

SSq SS, SS,
1.00 1.00 1.00
1.47 1.47 1.47
1.74 1.74 1.74
1.82 1.82 1.82
1.91 1.91 1.91
2.02 2.02 2.02
2.57 2.57 2.57
3.34 3.34 3.34
4.42 4.42 4.42
4.43 4.43 4.43
5.18 5.18 5.18
5.34 5.34 5.34
5.39 5.39 5.39
5.39 5.39 5.39
5.53 5.53 5.53
5.59 5.59 5.59
5.74 5.74 5.74
5.85 5.85 5.85
5.96 5.96 5.96
6.05 6.05 6.05
6.12 6.12 6.12
6.88 6.88 6.88
8.64 8.64 8.64
23.23 23.23
35.45

X, = 6.44 X =5.23 X, = 4.45

So = 7.379 i =4.326 s2 = 2.050

Yo = 35.45 y; = 23.23 y, = 8.64

Step 4. Given o = 0.05, a sample size of n = 25, and k = 2, the first critical point in Table 12-2 in
Appendix D equals 2.83 for n = 20 and 3.05 for n = 30. The value Ry in Step 3 is larger than
either of these critical points, so both suspected values may be declared statistical outliers by
Rosner’s test at the 5% significance level. Before excluding these values from further analysis,
however, a valid explanation for them should be found. Otherwise, treat the outliers as

extreme but valid concentration measurements.

Note: had R; been less than these values, a test could still be run for a single outlier using the
second critical point for each sample size (or a critical point interpolated between them). <«

The guidance considers Dixon’s and Rosner’s outlier evaluation methods preferable for
groundwater monitoring data situations, when assumptions of normality are reasonable and data are
quantified. We did not include the older method found in the 1989 guidance based on ASTM paper
E178-75, which can still be used as an alternative. Where data do not appear to be fit by a normal or
transformably normal distribution, other robust outlier evaluation methods can be considered from the
wider statistical literature. The literature will also need to be consulted when data contains non-detect

values along with potential outliers.
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CHAPTER 13. SPATIAL VARIABILITY
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This chapter discusses a type of statistical dependence in groundwater monitoring data known as
gpatial variability. Spatial variability exists when the distribution or pattern of concentration
measurements changes from well location to well location (most typically in the form of differing mean
levels). Such variation may be natural or synthetic, depending on whether it is caused by natural or
anthropogenic factors. Methods for identifying spatial variation are detailed via the use of box plots
(Section 13.2.1) and analysis of variance [ANOVA] (Section 13.2.2). Once identified, ANOVA can
sometimes be employed to construct more powerful intrawell background limits. This topic is addressed
in Section 13.3.

13.1 INTRODUCTION TO SPATIAL VARIATION

Spatial dependence, spatial variation or variability, and spatial correlation are closely related
concepts. All refer to the notion of measurement levels that vary in a structured way as a function of the
location of sampling. Although spatial variation can apply to any statistical characteristic of the
underlying population (including the population variance or upper percentiles), the usual sense in
groundwater monitoring is that mean levels of a given constituent vary from one well to the next.

Standard geostatistical models posit that an area exhibits positive spatial correlation if any two
sampling locations share a greater similarity in concentration level the closer the distance between them,
and more dissimilarity the further apart they are. Such models have been applied to both groundwater
and soil sampling problems, but are not applicable in all geological configurations. It may be, for
instance, that mean concentration levels differ across wells but vary in a seemingly random way with no
apparent connection to the distance between the sampling points. In that case, the concentrations
between pairs of wells are not correlated with distance, yet the measurements within each well are
strongly associated with the mean level at that particular location, whether due to a change in soil
composition, hydrological characteristics or some other factor. In other words, spatial variation may
exist even when spatial correlation does not.

Spatial variation is important in the guidance context since substantial differences in mean
concentration levels between different wells can invalidate interwell, upgradient-to-downgradient
comparisons and point instead toward intrawell tests (Chapter 6). Not all spatial variability is natural.
Average concentration levels can vary from well to well for a variety of reasons.

In this guidance, a distinction is occasionally made between natural versus synthetic spatial
variation. Natural spatial variability refers to a pattern of changing mean levels in groundwater
associated with normal geochemical behavior unaffected by human activities. Natural spatial variability
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is not an indication of groundwater contamination, even if concentrations at one or more compliance
wells exceed (upgradient) background. In contrast, synthetic spatial variability is related to human
activity. Sources can include recent releases affecting compliance wells, migration of contaminants from
off-site sources, or historic contamination at certain wells due to past industrial activity or pre-RCRA
waste disposal. Whether natural or synthetic, techniques and test methods for dealing with spatial
variation will still be identical from a purely statistical standpoint. It is interpreting the testing outcomes
which will necessitate a consideration of why the spatial variation occurs.

The goal of groundwater analysis is not simply to identify significant concentration differences
among monitoring wells at compliance point locations. It is also to determine why those differences
exist. Especially with prior groundwater contamination, regulatory decisions outside the scope of this
guidance need to address the problem. In some cases, compliance/assessment monitoring or remedial
action may be warranted. In other cases, chronic contamination from offsite sources may simply have to
be considered as the current background condition at a given location. At least the ability to attribute
certain mean differences to natural spatial variation allows the range of potential concerns to be
somewhat narrowed. Of course, deciding that an observed pattern of spatial variation is natural and not
synthetic may not be easy. Ultimately, expert judgment and knowledge concerning site hydrology,
geology and geochemistry are important in providing more definitive answers.

One statistical approach to use when a site has multiple, non-impacted background wells is to
conduct a one-way ANOVA for inorganic constituents on those wells. Substantial differences among the
mean levels at a set of uncontaminated sampling locations are suggestive of natural spatial variability. At
a true ‘greenfield’ site, ANOVA can be run on all the wells — both background and compliance — after
a few preliminary sampling rounds have been collected.

The Unified Guidance offers two basic tools to explore and test for spatial correlation. The first,
side-by-side box plots (Section 13.2.1), provides a quick screen for possible spatial variation. When
multiple well data are plotted on the same concentration axis, noticeably staggered boxes are often an
indication of significantly different mean levels.

A more formal test of spatial variation is the one-way ANOVA (Section 13.3.2). When significant
spatial variation exists and an intrawell test strategy is pursued, one-way ANOVA can also be used to
adjust the standard deviation estimate used in forming intrawell prediction and control chart limits, and
to increase the effective sample size of the test, via the degrees of freedom. This is discussed in Section
13.3.

13.2 IDENTIFYING SPATIAL VARIABILITY
13.2.1 SIDE-BY-SIDE BOX PLOTS
BACKGROUND AND PURPOSE

Box plots for graphing side-by-side statistical summaries of multiple wells were introduced in
Chapter 9. They are also discussed in Chapter 11 as an initial screen for differences in population
variances and as a tool to check the assumption of equal variances in ANOVA. They can further be
employed to screen for possible spatial variation in mean levels. While variability in a sample from a
given well is roughly indicated by the length of the box, the average concentration level is indicated by
the position of the box relative to the concentration axis. Many standard box plot software routines
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display both the sample median value and the sample mean on each box, so these values may be
compared from well to well. A high degree of staggering in the box positions is then indicative of
potentially significant spatial variation.

Since side-by-side box plots provide a picture of the variability at each well, the extent to which
apparent differences in mean levels seem to be real rather than chance fluctuations can be examined. If
the boxes are staggered but there is substantial overlap between them, the degree of spatial variability
may not be significant. A more formal ANOVA might still be warranted as a follow-up test, but side-by-
side box plots will offer a initial sense of how spatially variable the groundwater data appear.

REQUIREMENTS, ASSUMPTIONS AND PROCEDURE

Requirements, assumptions and the procedure for box plots are outlined in Chapter 9, Section 9.2.

» EXAMPLE 13-1

Quarterly dissolved iron concentrations measured at each of six upgradient wells are listed below.
Construct side-by-side box plots to initially screen for the presence of spatial variability.

Iron Concentrations (ppm)

Date Well 1 Well 2 Well 3 Well 4 Well 5 Well 6
Jan 1997 57.97 46.06 100.48 34.12 60.95 83.10
Apr 1997 54.05 76.71 170.72 93.69 72.97 183.09
Jul 1997 29.96 32.14 39.25 70.81 244.69 198.34
Oct 1997 46.06 68.03 52.98 83.10 202.35 160.77

Mean 47.01 55.71 90.86 70.43 145.24 156.32

Median 55.06 57.04 76.73 76.96 137.66 171.93
SOLUTION

Step 1.  Determine the median, mean, lower and upper quartiles of each well. Then plot these against a
concentration axis to form side-by-by side box plots (Figure 13-1) using the procedure in
Section 9.2. .

Step 2.  From this plot, the means and medians at the last two wells (Wells 5 and 6) appear elevated
above the rest. This is a possible indication of spatial variation. However, the variances as
represented by the box lengths also appear to differ, with the highest means associated with
the largest boxes. A transformation of the data should be attempted and the data re-plotted.
Spatial variability is only a significant problem if it is apparent on the scale of the data actually
used for statistical analysis.

Step 3.  Take the logarithm of each measurement as in the table below. Recompute the mean, median,
lower and upper quartiles, and then re-construct the box plot as in Figure 13-2.
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Log Iron Concentrations log(ppm)

Date Well 1 Well 2 Well 3 Well 4 Well 5 Well 6
Jan 1997 4.06 3.83 4.61 3.53 4.11 4.42
Apr 1997 3.99 4.34 5.14 4.54 4.29 5.21
Jul 1997 3.40 3.47 3.67 4.26 5.50 5.29
Oct 1997 3.83 4.22 3.97 4.42 5.31 5.08

Mean 3.82 3.96 4.35 4.19 4.80 5.00

Median 3.70 4.02 4.29 4.34 4.80 5.14
Figure 13-1. Side-by-Side Iron Box Plots
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Figure 13-2. Side-by-Side Log(Iron) Box Plots
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Step 4.  While more nearly similar on the log-scale, the means and medians are still elevated in Wells
5 and 6. Since the differences in box lengths are much less on the log-scale, the log
transformation has worked to somewhat stabilize the variances. These data should be tested
formally for significant spatial variation using an ANOVA, probably on the log-scale. <«

13.2.2 ONE-WAY ANALYSIS OF VARIANCE FOR SPATIAL VARIABILITY
PURPOSE AND BACKGROUND

Chapter 17 presents Analysis of Variance [ANOVA] in greater detail. When using ANOVA to
check for spatial variability, the observations from each well are taken as a single group. Significant
differences between data groups represent monitoring wells with different mean concentration levels.
The lack of significant well mean differences may afford an opportunity to pool the data for larger
background sizes and conduct interwell detection monitoring tests.

ANOVA used for this purpose should be performed either on a set of multiple non-impacted
upgradient wells, or on historically uncontaminated compliance and upgradient background wells. If
significant mean differences exist among naturally occurring constituent data at upgradient wells, natural
spatial variability is the likely reason. Synthetic consitituents in upgradient wells might also exhibit
spatial differences if affected by an offsite- plume. Presumably, if the flow gradient has been correctly
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assessed and no migration of contaminants from off-site has occurred, differences in mean levels across
upgradient wells ought to signal the influence of factors not attributable to a monitored release. A
similar, but potentially weaker, argument can be made if spatial differences exist between
uncontaminated historical data at compliance wells. The lack of spatial differences between
uncontaminated compliance and upgradient background well data, may again allow for even larger
background sample sizes.

REQUIREMENTS AND ASSUMPTIONS

The basic assumptions and data requirements for one-way ANOVA are presented in Section 17.1.
If the assumption that the observations are statistically independent over time is not met, both identifying
spatial variability using ANOVA as well as improving intrawell prediction limits and control charts can
be impacted. It is usually difficult to verify that the measurements are temporally independent with only
a limited number of observations per well. This potential problem can be somewhat minimized by
collecting samples far enough apart in time to guard against autocorrelation. Another option is to
construct a parallel time series plot (Chapter 14) to look for time-related effects or dependencies
occurring simultaneously across the set of wells.

If a significant temporal dependence or autocorrelation exists, the one-way ANOVA can still
identify well-to-well mean level differences. But the power of the test to do so is lessened. If a parallel
time series plot indicates a potentially strong time-related effect, a two-way ANOVA including temporal
effects can be performed to test and correct for a significant temporal factor. This slightly more
complicated procedure is discussed in Davis (1994).

Another key assumption of parametric ANOVA is that the residuals are normal or can be
normalized. If a normalizing transformation cannot be found, a test for spatial variability can be made
using the Kruskal-Wallis non-parametric ANOVA (Chapter 17). As long as the measurements can be
ranked, average ranks that differ significantly across wells provide evidence of spatial variation.

PROCEDURE

Step 1.  Assuming there are p distinct wells to test, designate the measurements from each well as a
separate group for purposes of computing the ANOVA. Then follow Steps 1 through 7 of the
procedure in Section 17.1.1 to compute the overall F-statistic and the quantities of the
ANOVA table in Figure 13-3 below.

Figure 13-3. One-Way Parametric ANOVA Table

Source of Variation Sums of Degrees of Mean Squares F-Statistic
Squares Freedom
Between Wells SSuels p-1 MSeiis = SSweis/ (P—1) F = MSyeis/MSerror
Error (within wells) SSerror n-p MSeiror = SSerror/(N—P)
Total SSiotal n-1
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Step 2.

To test the hypothesis of equal means for all p wells, compare the F-statistic from Step 1 to the
o-level critical point found from the F-distribution with (p-1) and (n—p) degrees of freedom in
Table 17-1 of Appendix D. Usually o is taken to be 5%, so that the needed comparison value
equals the upper 95th percentage point of the F-distribution. If the observed F-statistic exceeds
the critical point (Fgsp-10-p), reject the hypothesis of equal well population means and
conclude there is significant spatial variability. Otherwise, the evidence is insufficient to
conclude there are significant differences between the means at the p wells.

» EXAMPLE 13-2

The iron concentrations in Example 13-1 show evidence of spatial variability in side-by-side box
plots. Tested for equal variances and normality, these same data are best fit by a lognormal distribution.
The statistics for natural logarithms of the iron measurements are shown below; individual log data are

provided

in the Example 13-1 second table. Compute a one-way parametric ANOVA to determine

whether there is significant spatial variation at the o = .05 significance level.

Log Iron Concentration Statistics log(ppm)

Date Well 1 Well 2 Well 3 Well 4 Well 5 Well 6

N 4 4 4 4 4 4
Mean 3.820 3.965 4,348 4,188 4.802 5.000
SD 0.296 0.395 0.658 0.453 0.704 0.396

Grand Mean = 4.354
SOLUTION
Step 1.  With 6 wells and 4 observations per well, n; = 4 for all the wells. The total sample size isn =

Step 2.

Step 3.

Step 4.

24 and p = 6. Compute the (overall) grand mean and the sample mean concentrations in each
of the well groups using equations [17.1] and [17.2]. These values are listed (along with each
group’s standard deviation) in the above table.

Compute the sum of squares due to well-to-well differences using equation [17.3]:
SS,u. = |4(3.820)° +4(3.965)° + ... +4(5.000)?|-24(4.3547 =4.294
This quantity has (6 — 1) = 5 degrees of freedom.
Compute the corrected total sum of squares using equation [17.4] with (n—1) = 23 df:
S, = |408)7+ ... +(5.08)°]|-24(4.354)° =8.934
Obtain the within-well or error sum of squares by subtraction using equation [17.5]:

SS =8.934-4.294 =4.640

error

This quantity has (n— p) = 24-6 = 18 degrees of freedom.
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Step 5.  Compute the well and error mean sum of squares using equations [17.6] and [17.7]:

MS,,. = 4.294/5=0.859

MS_  =4.640/18=0.258

error

Step 6.  Construct the F-statistic and the one-way ANOVA table, using Figure 13-3 as a guide:

Source of Variation Sums of Squares Degrees of Mean Squares F-Statistic
Freedom

Between Wells 4.294 5 0.859 F =0.859/0.258=3.33

Error (within wells) 4.640 18 0.258

Total 8.934 23

Step 7. Compare the observed F-statistic of 3.33 against the critical point taken as the upper 95th
percentage point from the F-distribution with 5 and 18 degrees of freedom. Using Table 17-1
of Appendix D, this gives a value of Fgs515 = 2.77. Since the F-statistic exceeds the critical
point, the null hypothesis of equal well means can be rejected, suggesting the presence of
significant spatial variation. <

13.3 USING ANOVA TO IMPROVE PARAMETRIC INTRAWELL TESTS
BACKGROUND AND PURPOSE

Constituents that exhibit significant spatial variability usually should be formally tested with
intrawell procedures such as a prediction limit or control chart. Historical data from each compliance
well are used as background for these tests instead of from upgradient wells. At an early stage of
intrawell testing, there may only be a few measurements per well which can be designated as
background. Depending on the number of statistical tests that need to be performed across the
monitoring network, available intrawell background at individual compliance wells may not provide
sufficient statistical power or meet the false positive rate criteria (Chapter 19).

One remedy first suggested by Davis (1998) can increase the degrees of freedom of the test by
using one-way ANOVA results (Section 13.2) from a number of wells to provide an alternate estimate
of the average intrawell variance. In constructing a parametric intrawell prediction limit for a single
compliance well, the intrawell background of sample size n is used to compute a well-specific sample
mean (X ). The intrawell standard deviation (s) is replaced by the root mean squared error [RMSE]
component from an ANOVA of the intrawell background associated with a series of compliance and/or
background wells.* This raises the degrees of freedom from (n-1) to (N-p), where N is the total sample
size across the group of wells input to the ANOVA and p is the number of distinct wells.

! RMSE is another name for the square root of the mean error sum of squares (MS.) in the ANOVA table of Figure 13-3.
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As an example of the difference this adjustment can make, consider a site with 6 upgradient wells
and 15 compliance wells. Assuming n = 6 observations per well that have been collected over the last
year, a total of 36 potential background measurements are available to construct an interwell test. If there
is significant natural spatial variation in the mean levels from well to well, an interwell test is probably
not appropriate. Switching to an intrawell method is the next best solution, but with only six
observations per compliance well, either the power of an intrawell test to identify contaminated
groundwater is likely to be quite low (even with retesting) or the site-wide false positive rate [SWFPR]
will exceed the recommended target.

If the six upgradient wells were tested for spatial variability using a one-way ANOVA (presuming
that the equal variance assumption is met), the degrees of freedom [df] associated with the mean error
sum of squares term is (6 wells x 5 df per well) = 30 df (see Section 13.2). Thus by substituting the
RMSE in place of each compliance well’s intrawell standard deviation (s), the degrees of freedom for
the modified intrawell prediction or control chart limit is 30 instead of 5.

ANOVA can be usefully employed in this manner since the RMSE is very close to being a
weighted average of the individual well sample standard deviations. As such, it can be considered a
measure of average within-well variability across the wells input to the ANOVA. Substituting the RMSE
for s at an individual well consequently provides a better estimate of the typical within-well variation,
since the RMSE is based on levels of fluctuation averaged across several wells. In addition, the number
of observations used to construct the RMSE is much greater than the n values used to compute the
intrawell sample standard deviation (s). Since both statistical measures are estimates of within-well
variation, the RMSE with its larger degrees of freedom is generally a superior estimate if certain
assumptions are met.

REQUIREMENTS AND ASSUMPTIONS

Using ANOVA to bolster parametric intrawell prediction or control chart limits will not work at
every site or for every constituent. Replacement of the well-specific, intrawell sample standard deviation
(s) by the RMSE from ANOVA assumes that the true within-well variability is approximately the same
at all the wells for which an intrawell background limit (i.e., prediction or control chart) will be
constructed, and not just those wells tested in the ANOVA procedure. This last assumption can be
difficult to verify if the ANOVA includes only background or upgradient wells. But to the extent that
uncontaminated intrawell background measurements from compliance point wells can be included, the
ANOVA should be run on all or a substantial fraction of the site’s wells (excluding those which might
already be contaminated). Whatever mix of upgradient and downgradient wells are included in the
ANOVA, the purpose of the procedure is not to identify groundwater contamination, but rather to
compute a better and more powerful estimate of the average intrawell standard deviation.

For the ANOVA to be valid and the RMSE to be a reasonable estimate of average within-well
variability, a formal check of the equal variance assumption should be conducted using Chapter 11
methods. A spatially variable constituent will often exhibit well-specific standard deviations that
increase with the well-specific mean concentration. Equalizing the variances in these cases will require a
data transformation, with an ANOVA conducted on the transformed data. Ultimately, any transformation
applied to the wells in the ANOVA also need to be applied to intrawell background before computing
intrawell prediction or control chart limits. The same transformation has to be appropriate for both sets
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of data (i.e., wells included in ANOVA and intrawell background at wells for which background limits
are desired).

Even when the ANOVA procedure described in this section is utilized, the resulting intrawell
limits should also be designed to incorporate retesting. When intrawell background is employed to
estimate both a well-specific background mean (X) and well-specific standard deviation (s), the
Appendix D tables associated with Chapters 19 and 20 can be used to look up the intrawell sample size
(n) and number of wells (w) in the network in order to find a prediction or control chart multiplier that
meets the targeted SWFPR and has acceptable statistical power. However, these tables implicitly assume
that the degrees of freedom [df] associated with the test is equal to (n-1). The ANOVA method of this
section results in a much larger df, and more importantly, in a df that does not ‘match’ the intrawell
sample size (n).

Consequently, the parametric multipliers in the Appendix D tables cannot be directly used when
constructing prediction or control chart limits with retesting. Instead, a multiplier must be computed for
the specific combination of n and df computed as a result of the ANOVA. Tabulating all such
possibilities would be prohibitive. For prediction limits, the Unified Guidance recommends the free-of-
charge, open source R statistical computing environment. A pre-scripted program is included in
Appendix C that can be run in R to calculate appropriate prediction limit multipliers, once the user has
supplied an intrawell sample size (n), network size (w), and type of retesting scheme.

If guidance users are unable to utilize the R-script approach, the following approximation for the
well-specific prediction limit k-factors is suggested based on EPA Region 8 Monte Carlo evaluations.
Given a per- test confidence level of 1- a , r total tests of w -c well-constituents, an individual well size
n; a pooled variance sample size of ng = df + 1, and #ngr1-, Obtained from annual intrawell Unified
Guidance tables, the individual well xy; 1., factor can be estimated using the following equation:

b

m*= i

(ni "‘ﬂ)’ N a
N, '(ndf "‘ﬂ)

K =

n,l-o Ng , 1-or )

where u =1 for future 1:m observations or u is the size of a future mean. The value of m* is
specific to each of the nine parametric prediction limit tests and is a function of the three coefficients A,
b and c, individual well sample size n; and r tests. For a 1:1 test of future means or observations, the
equation is exact; for higher order 1:m tests, the results are approximate.?> The equation is also useful in

2 For each of the nine prediction limit tests, the following coefficients (A, b & c) are recommended: a 1:2 future
values test (1.01, .0524 & .0158); a 1:3 test (1.63, .108 & .0407); a 1:4 test (2.41, .157 & .0668); the modified California
plan (1.36, .103 & .0182); a 1:1 mean size 2 test (.5, 0 & 0); a 1:2 mean size 2 test (.898, .0856 & .0172); a 1:3 mean size 2
test (1.27, .168 & .0363); a 1:1 mean size 3 test (.5, 0 & 0); and a 1:2 mean size 3 test (.817, .108 & .0158). %. The
coefficients were obtained from regression analysis; approximation values were compared with R-script values for k-factors.
In 1260 comparisons of the seven tests using repeat values (m> 1), 86% of the approximations lay within or equal to + 1% of
the true value and 96% within or equal to + 2%. The 1:4 test had the greatest variability, but all values lay within + 4%. 81%
of the values lay within or equal to + .01 x-units and 93% less than or equal to + .02 units.
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gauging R-script method results. Another virtue of this equation is that it can be readily applied to
different individual well sample sizes based on the common «qs1-, fOr pooled variance data.

A less elegant solution is available for intrawell control charts. Currently, an appropriate multiplier
needs to be simulated via Monte Carlo methods. The approach is to simulate separate normally-
distributed data sets for the background mean based on n measurements, and the background standard
deviation based on df + 1 measurements. Statistical independence of the sample mean (X ) and standard
deviation (s) for normal populations allows this to work. With the background mean and standard
deviation available, a series of possible multipliers (h) can be investigated in simulations of control chart
performance. The multiplier which meets the targeted SWFPR and provides acceptable power should be
selected. Further detail is presented in Chapter 20. R can also be used to conduct these simulations.

» EXAMPLE 13-3

The logged iron concentrations from Example 13-2 showed significant evidence of spatial
variability. Use the results of the one-way ANOVA to compute adjusted intrawell prediction limits
(without retesting) for each of the wells in that example and compare them to the unadjusted prediction
limits.

SOLUTION

Step 1. Summary statistics by well for the logged iron measurements are listed in the table below.
With n = 4 measurements per well, use equation [13.1] and t;_,n-1 = tgg3 = 4.541 from Table
16-1 in Appendix D to compute at each well an unadjusted 99% intrawell prediction limit for
the next single measurement, based on lognormal data:

_ 1
PL_ = exp{y +St_, 1t E} [13.1]
Unadjusted 99% Prediction Limits for Iron (ppm)
Well 1 Well 2 Well 3 Well 4 Well 5 Well 6
Log-mean 3.820 3.965 4.348 4.188 4.802 5.000
Log-SD 0.296 0.395 0.658 0.453 0.704 0.396
n 4 4 4 4 4 4
t o9 3 4.541 4.541 4.541 4.541 4.541 4.541
99% PL 204.9 391.6 2183.0 657.0 4341.5 1108.1

Step 2. Use the RMSE (i.e., square root of the mean error sum of squares [MSr] component) of the
ANOVA in Example 13-2 as an estimate of the adjusted, pooled standard deviation, giving

\/ MS, , = V258 = 5079.. The degrees of freedom (df) associated with this pooled standard
deviation is p(n— 1): 6(3): 18, the same as listed in the ANOVA table of Example 13-2.
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Step 3. Use equation [13.2], along with the adjusted pooled standard deviation and its associated df, to
compute an adjusted 99% prediction limit for each well, as given in the table below. Note that
the adjusted t-value based on the larger df is t1_q g = tg9,18 = 2.552.

_ (, 1)
PLl—a = exp{y + tl—a,df\/MSerror L1+ _J [132]
n
Adjusted 99% Prediction Limits for Iron (ppm)
Well 1 Well 2 Well 3 Well 4 Well 5 Well 6
Log-mean 3.820 3.965 4.348 4.188 4.802 5.000
RMSE 0.5079 0.5079 0.5079 0.5079 0.5079 0.5079
df 18 18 18 18 18 18
too,18 2.552 2.552 2.552 2.552 2.552 2.552
99% PL 194.3 224.6 329.4 280.7 518.7 632.3

Step4. Compare the adjusted and unadjusted lognormal prediction limits. By estimating the average
intrawell standard deviation using ANOVA, the adjusted prediction limits are significantly
lower and thus more powerful than the unadjusted limits, especially at Wells 3, 5, and 6.

In this example, use of the R-script approach was unnecessary, since the corresponding x-
multiple used in 1-of-1 prediction limit tests can be directly derived analytically. <«
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This chapter discusses the importance of statistical independence in groundwater monitoring data
with respect to temporal variability. Temporal variability exists when the distribution of measurements
varies with the times at which sampling or analytical measurement occurs. This variation can be caused
by seasonal fluctuations in the groundwater itself, changes in the analytical method used, the re-
calibration of instruments, anomalies in sampling method, etc.

Methods to identify temporal variability are discussed for both groups of wells (parallel time series
plots; one-way analysis of variance [ANOVA] for temporal effects) and single data series (sample
autocorrelation function; rank von Neumann ratio). Procedures are also presented for correcting or
accommodating temporal effects. These include guidance on adjusting the sampling frequency to avoid
temporal correlation, choosing a sampling interval using the Darcy equation, removing seasonality or
other temporal dependence, and finally testing for trends with seasonal data.

14.1 TEMPORAL DEPENDENCE

A key assumption underlying most statistical tests is that the sample data are independent and
identically distributed [i.i.d.] (Chapter 3). In part, this means that measurements collected over a period
of time should not exhibit a clear time dependence or significant autocorrelation. Time dependence
refers to the presence of trends or cyclical patterns when the observations are graphed on a time series
plot. The closely related concept of autocorrelation is essentially the degree to which measurements
collected later in a series can be predicted from previous measurements. Strongly autocorrelated data are
highly predictable from one value to the next. Statistically independent values vary in a random,
unpredictable fashion.

While temporal independence is a complex topic, there are several common types of temporal
dependence. Some of these include: 1) correlation across wells over time in the concentration pattern of
a single constituent (i.e., concentrations tending to jointly rise or fall at each of the wells on common
sampling events); 2) correlation across multiple constituents over time in their concentration patterns
(i.e., a parallel rise or fall in concentration across several parameters on common sampling events); 3)
seasonal cycles; 4) trends, linear or otherwise; and 5) serial dependence or autocorrelation (i.e., greater
correlation between sampling events more closely spaced in time).
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Any of these patterns can invalidate or weaken the results of statistical testing. In some cases, a
statistical method can be chosen that specifically accounts for temporal dependence (e.g., seasonal
Mann-Kendall trend test). In other instances, the sample data need to be adjusted for the dependence.
Future data might also need to be collected in a manner that avoids temporal correlation. The goal of this
chapter is to present straightforward tools that can be used to first identify temporal dependence and then
to adjust for this correlation.

To better understand why most statistical tests depend on the assumption of statistical
independence, consider a hypothetical series of groundwater measurements exhibiting an obvious pattern
of seasonal fluctuation (Figure 14-1). These data demonstrate regular and repeated cycles of higher and
lower values. Even though fluctuating predictably and highly dependent, the characteristics of the entire
groundwater population will be observed over a long period of monitoring. This provides an estimate of
the full range of concentrations and an accurate gauge of total variability.

The same is not true for data collected from the same population over a much shorter span, say in
five to six months. A much narrower range of sample concentrations would be observed due to the
cyclical pattern. Depending on when the sampling was conducted, the average concentration level would
either be much higher or much lower than the overall average; no single sampling period is likely to
accurately estimate either the true population mean or its variance.

From this example, an important lesson can be drawn about temporally dependent data. VVariance
estimates in a sample of dependent, positively autocorrelated data are likely to be biased low. This is
important because the guidance methods require and assume that an accurate and unbiased estimate of
the sample standard deviation be available. A case in point was the practice of using aliquot replicates of
a single physical sample for comparison with other combined replicate aliquot samples from a number of
individual physical water quality samples (e.g., in a Student-t test). Aliquot replicate values are much
more similar to each other than to measurements made on physically discrete groundwater samples.
Consequently, the estimate of variance was too low and the t-test frequently registered false positives.

Using physically discrete samples is not always sufficient. If the sampling interval ensures that
discrete volumes of groundwater are being sampled on consecutive sampling events, the observations
can be described as physically independent. However, they are not necessarily statistically independent.
Statistical independence is based not on the physical characteristics of the sample data, but rather on the
statistical pattern of measurements.

Temporally dependent and autocorrelated data generally contain both a truly random and non-
random component. The relative strength of the latter effect is a measured by one or more correlation
techniques. The degree of correlation among dependent sample measurements lies on a continuum.
Sample pairs can be mildly correlated or strongly correlated. Only strong correlations are likely to
substantially impact the results of further statistical testing.
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Figure 14-1. Seasonal Fluctuations
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14.2 IDENTIFYING TEMPORAL EFFECTS AND CORRELATION
14.2.1 PARALLEL TIME SERIES PLOTS
BACKGROUND AND PURPOSE

Time series plots were introduced in Chapter 9. A time series plot such as Figure 14-1 is a simple
graph of concentration versus time of sample collection. Such plots are useful for identifying a variety of
temporal patterns. These include identifying a trend over time, one or more sampling events that may
signal contaminant releases, measurement outliers resulting in anomalous 'spikes’ due to field handling
or analytical problems, cyclical and seasonal fluctuations, as well as the presence of other time-related
dependencies.

Time series plots can be used in two basic ways to identify temporal dependence. By graphing
single constituent data from multiple wells together on a time series plot, potentially significant temporal
components of variability can be identified. For example, seasonal fluctuations can cause the mean
concentration levels at a number of wells to vary with the time of sampling events. This dependency will
show up in the time series plot as a pattern of parallel traces, in which the individual wells will tend to
rise and fall together across the sequence of sampling dates. The parallel pattern may be the result of the
measurement process such as mid-stream changes in field handling or sample collection procedures,
periodic re-calibration of analytical instrumentation, and changes in laboratory or analytical methods. It
could also be the result from significant autocorrelation present in the groundwater population itself.
Hydrologic factors such as drought, recharge patterns or regular (e.g., seasonal) water table fluctuations
may be responsible. In these cases, it may be useful to test for the presence of a significant temporal
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effect by first constructing a parallel time series plot and then running a formal one-way ANOVA for
temporal effects (Section 14.2.2).

The second way time series plots can be helpful is by plotting multiple constituents over time for
the same well, or averaging values for each constituent across wells on each sampling event and then
plotting the averages over time. In either case, the plot can signify whether the general concentration
pattern over time is simultaneously observed for different constituents. If so, it may indicate that a group
of constituents is highly correlated in groundwater or that the same artifacts of sampling and/or lab
analysis impacted the results of several monitoring parameters.

REQUIREMENTS AND ASSUMPTIONS

The requirements for time series plots were discussed in Chapter 9. Two very useful
recommendations follow from that discussion. First, a different plot symbol should be used to display
any non-detect measurements (e.g., solid symbols for detected values, hollow symbols for non-detects).
This can help prevent mistaking a change over time in reporting limits as a trend, since detected and
non-detected data are clearly distinguished on the plot. It also allows one to determine whether non-
detects are more prevalent during certain portions of the sample record and less prevalent at other times.
Secondly, when multiple constituents are plotted on the same graph, it may be necessary to standardize
each constituent prior to plotting to avoid trying to simultaneously visualize high-valued and low-valued
traces on the same y-axis (i.e., concentration axis). The goal of such a plot is to identify parallel
concentration patterns over time. This can be done most readily by subtracting each constituent’s sample
mean (X ) from the measurements for that constituent and dividing by the standard deviation (s), so that
every constituent is plotted on roughly the same scale.

PROCEDURE FOR MULTIPLE WELLS, ONE CONSTITUENT

Step 1.  For each well to be plotted, form data pairs by matching each concentration value with its
sampling date.

Step 2.  Graph the data pairs for each well on the same set of axes, the horizontal axis representing
time and the vertical axis representing concentration. Connect the points for each individual
well to form a ‘trace’ for that well.

Step 3.  Look for parallel movement in the traces across the wells. Even if all the well concentrations
tend to rise on a given sampling event, but not to the same magnitude or degree, this is
evidence of a possible temporal effect.

PROCEDURE FOR MULTIPLE CONSTITUENTS, ONE OR MANY WELLS

Step 1. For each constituent to be plotted, compute the constituent-specific sample mean (X ) and
standard deviation (s). Form standardized measurements (z;) by subtracting the mean from
each concentration (x;) and dividing by the standard deviation, using the equation:

z = [14.1]

Form data pairs by matching each standardized concentration with its sampling event.
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Step 2.  If correlation is suspected in a group of wells, average the standardized concentrations for each
given constituent across wells for each specific sampling event. Otherwise, form a multi-

constituent time series plot separately for each well.

Step 3. Graph the data pairs for each constituent on the same set of axes, the horizontal axis
representing time and the vertical axis representing standardized concentrations. Connect the
points for each constituent to form a trace for that parameter.

Step4. Look for parallel movement in the traces across the constituents. A strong degree of

parallelism indicates a high degree of correlation among the monitoring parameters.

» EXAMPLE 14-1

The following well sets of manganese measurements were collected over a two-year period.
Construct a time series plot of these data to check for possible temporal effects.

Manganese Concentrations (ppm)

Qtr BW-1 BW-2 BW-3 BW-4
1 28.14 31.41 27.15 30.46
2 29.33 30.27 30.24 30.60
3 30.45 32.57 29.14 30.96
4 32.42 32.77 30.59 30.70
5 34.37 33.03 34.88 32.71
6 33.25 32.18 30.53 31.76
7 31.02 28.85 30.33 31.85
8 28.50 32.88 30.42 29.58

SOLUTION

Step 1.  Graph each well’s concentrations versus sampling event on the same set of axes to construct
the following time series plot (Figure 14-2).

40

30 —

Manganese {ppm)

25 T I T I

Sampling Event
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Figure 14-2. Manganese Parallel Time Series Plot
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Step 2. Examining the traces on the plot, there is some degree of parallelism in the pattern over time.
Particularly for the fifth quarter, there is an across-the-board increase in the manganese level,
followed by a general decline the next two quarterly events. Note, however, that there is little
evidence of differences in mean levels by well location. <

14.2.2 ONE-WAY ANALYSIS OF VARIANCE FOR TEMPORAL EFFECTS
PURPOSE AND BACKGROUND

Parametric ANOVA is a comparison of means among a set of populations. The one-way ANOVA
for temporal effects is no exception. A one-way ANOVA for spatial variation (Chapter 13) uses well
data sets to represent locations as the statistical factor of interest. In contrast, a one-way ANOVA for
temporal effects considers multiple well data sets for individual sampling events or seasons as the
relevant statistical factor. A significant temporal factor implies that the average concentration depends to
some degree on when sampling takes place.

Three common examples of temporal factors include: 1) an irregular, but consistent shift of
average concentrations over time perhaps due to changes in laboratories or analytical method
interferences; 2) cyclical seasonal patterns; or 3) parallel upward or downward trends. These can occur
in both upgradient and downgradient well data.

If event-specific analytical differences or seasonality appear to be an important temporal factor, the
one-way ANOVA for temporal effects can be used to formally identify seasonality, parallel trends, or
changes in lab performance that affect other temporal effects. Results of the ANOVA can also be used to
create temporally stationary residuals, where the temporal effect has been ‘subtracted from’ the original
measurements. These stationary residuals may be used to replace the original data in subsequent
statistical testing.

The one-way ANOVA for a temporal factor described below can be used for an additional purpose
when interwell testing is appropriate. For this situation, there can be no significant spatial variability. If
a group of upgradient or other background wells indicates a significant temporal effect, an interwell
prediction limit can be designed which properly accounts for this temporal dependence. A more
powerful interwell test of upgradient-to-downgradient differences can be developed than otherwise
would be possible. This can occur because the ANOVA separates or ‘decomposes’ the overall data
variation into two sources: a) temporal effects and b) random variation or statistical error. It also
estimates how the background mean is changing from one sampling event to the next. The final
prediction limit is formed by computing the background mean, using the separate structural and random
variation components of the ANOVA to better estimate the standard deviation, and then adjusting the
effective sample size (via the degrees of freedom) to account for these factors.

REQUIREMENTS AND ASSUMPTIONS

Like the one-way ANOVA for spatial variation (Chapter 13), the one-way ANOVA for temporal
effects assumes that the data groups are normally-distributed with constant variance. This requirement
means that the group residuals should be tested for normality (Chapter 10) and also for equality of
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variance (Chapter 11). It is also assumed that for each of a series of background wells, measurements
are collected at each well on sampling events or dates common to all the wells.

Two variations in the basic procedure are described below. For cases of temporal effects excluding
seasonality, each sampling event is treated as a separate population. The ANOVA residuals are grouped
and tested by sampling event to test for equality of variance. In cases of apparent seasonality, each
season is treated as a distinct population. The difference is that seasons contain multiple sampling events
across a span of multiple years, with sampling events collected at the same time of year assigned to one
of the seasons (e.g., all January or first quarter measurements). Here, the ANOVA residuals are grouped
by season to test for homoscedasticity.

If the assumption of equal variances or normal residuals is violated, a data transformation should
be considered. This should be followed by testing of the assumptions on the transformed scale. The one-
way ANOVA for a non-seasonal effect should include a minimum of four wells and at least 4
observations (i.e., distinct sampling dates) per well. In the seasonal case, there should be a minimum of
3-4 sampling events per distinct season, with the events thus spanning at least three years (i.e., one per
year per season). Larger numbers of both wells and observations are preferable. Sampling dates should
also be approximately the same for each well if a temporal effect is to be tested.

If the data cannot be normalized, a similar test for a temporal or seasonal effect can be performed
using the Kruskal-Wallis test (Chapter 17). The only difference from the procedure outlined in Section
17.1.2 is that the roles of wells/groups and sampling events have to be reversed. That is, each sampling
event should be treated as a separate ‘well,” while each well is treated as a separate ‘sampling event.’
Then the same equations can be applied to the reversed data set to test for a significant temporal
dependence. If testing for a seasonal effect, the wells in the notation of Section 17.1.2 become the
groups of common sampling events from different years, while the sampling events are again the distinct
wells.

Even when a temporal effect exists and is apparent on a time series plot, the variation between well
locations (i.e., spatial variability) may overshadow the temporal variability. This could result in a non-
significant one-way ANOVA finding for the temporal factor. In these cases, a two-way ANOVA can be
considered where both well location and sampling event/season are treated as statistical factors. This
procedure is described in Davis (1994). Evidence for a temporal effect can be documented using this
last technique, although the two-way ANOVA isn't necessary if the goal is simply to construct
temporally stationary residuals. That can be accomplished with a one-way ANOVA even when
significant spatial variability exists.

PROCEDURE

Step 1. Given aset of W wells and measurements from each of T sampling events at each well on each
of K years, label the observations as xjj, fori =1to W, j=1to T, and k = 1 to K. Then Xijk
represents the measurement from the ith well on the jth sampling event during the kth year.

Step 2. When testing for a non-seasonal temporal effect, form the set of event means (x.jk) and the

grand mean (x_,, ) using equations [14.2] and [14.3] respectively:
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o jk

W
iz Xy for j=1toTandk=1toK [14.2]
W =

X,., = iiixijk/WTK [14.3]

Step 2a. If testing for a seasonal effect common to all wells, form the seasonal means (X, ,, ) instead of
the event means of Step 2, using the equation:

1 ¥ .
Xejo = W;X“k forj=1toT [14.4]

Step 3. Compute the set of residuals for each sampling event or season using either equation [14.5] or
equation [14.6] respectively:

fie = Xy — X fori=1toW [14.5]

= Xy — X fori=1toWandk=1toK [14.6]

Step 4.  Test the residuals for normality (Chapter 10). If significant non-normality is evident, consider
transforming the data and re-doing the computations in Steps 1 through 4 on the transformed
scale.

Step 5. Test the sets of residuals grouped either by sampling event or season for equal variance
(Chapter 11). If the variances are significantly different, consider transforming the data and
re-doing the computations in Steps 1 through 5 on the transformed data.

Step 6. If testing for a non-seasonal temporal effect, compute the mean error sum of squares term
(MSg) using equation:

W

=2

i=1j

M—c

D /TK (w-1) [14.7]

k=1

1
-

This term is associated with TK(W-1) degrees of freedom. Also compute the mean sum of
squares for the temporal effect (MSt) with degrees of freedom (TK-1), using equation:

.
MS, =W Y (k. - x...) / (TK 1) [14.8]
Step 6a. If testing for a seasonal effect, compute the mean error sum of squares (MSg) using equation:

MS, = iiirﬁ/T (wk -1) [14.9]
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Step 7.

Step 8.

Step 8a.

Step 9.

This term is associated with T(WK-1) degrees of freedom. Also compute the mean sum of
squares for the seasonal effect (MSt) with degrees of freedom (T-1), using equation:

MS, =WKi(x.j. -x..) /(T ~1) [14.10]

Test for a significant event-to-event or seasonal effect by computing the ratio of the mean sum
of squares for time and the mean error sum of squares:

F. = MS,/MS, [14.11]

If testing for a non-seasonal temporal effect, the test statistic Fr under the null hypothesis (i.e.,
of no significant time-related variability among the sampling events) will follow an F-
distribution with (TK-1) and TK(W-1) degrees of freedom. Therefore, using a significance
level of a = 0.05, compare Fr against the critical point F s tk-11kw-1) taken from the F-
distribution in Table 17-1 in Appendix D. If the critical point is exceeded, conclude there is a
significant temporal effect.

If testing for a seasonal effect, the test statistic Fr under the null hypothesis (i.e., of no
seasonal pattern) will follow an F-distribution with (T-1) and T(WK-1) degrees of freedom.
Therefore, using a significance level of a = 0.05, compare Ft against the critical point F s, 1—
17(wk-1) taken from the F-distribution in Table 17-1 of Appendix D. If the critical point is
exceeded, conclude there is a significant seasonal pattern.

If there is no spatial variability but a significant temporal effect exists among a set of
background wells, compute an appropriate interwell prediction or control chart limit as
follows. First replace the background sample standard deviation (s) with the following
estimate built from the one-way ANOVA table:

6= \/%[ MS, + (W - ) MS, | [14.12]

Then calculate the effective sample size for the prediction limit as:

n*=1+{T-(T-1)- (F, + W -2 /[T - F2+(T -1)- W -1)]} [14.13]

» EXAMPLE 14-2

Some parallelism was found in the time series plot of Example 14-1. Test those same manganese
data for a significant, non-seasonal temporal effect using a one-way ANOVA at the 5% significance

level.
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Manganese Concentrations (ppm)
Qtr Event BW-1 BW-2 BW-3 BW-4
Mean
1 29.290 28.14 31.41 27.15 30.46
2 30.110 29.33 30.27 30.24 30.60
3 30.780 30.45 32.57 29.14 30.96
4 31.620 32.42 32.77 30.59 30.70
5 33.747 34.37 33.03 34.88 32.71
6 31.930 33.25 32.18 30.53 31.76
7 30.513 31.02 28.85 30.33 31.85
8 30.345 28.50 32.88 30.42 29.58
Grand mean = 31.042

SOLUTION

Step 1.  First compute the means for each sampling event and the grand mean of all the data. These
values are listed in the table above. With four wells and eight quarterly events per well, W = 4,
T=4,andK=2.

Step 2. Determine the residuals for each sampling event by subtracting off the event mean. These
values are listed in the table below.

Manganese Event Residuals (ppm)

Qtr BW-1 BW-2 BW-3 BW-4
1 -1.150 2.120 -2.140 1.170
2 -0.780 0.160 0.130 0.490
3 -0.330 1.790 -1.640 0.180
4 0.800 1.150 -1.030 -0.920
5 0.622 -0.718 1.132 -1.038
6 1.320 0.250 -1.400 -0.170
7 0.508 -1.662 -0.182 1.338
8 -1.845 2.535 0.075 -0.765

Step 3.  Test the residuals for normality. A probability plot of these residuals is given in Figure 14-3.
An adequate fit to normality is suggested by Filliben’s probability plot correlation coefficient
test.
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Figure 14-3. Probability Plot of Manganese Sampling Event Residuals
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Step 4.  Next, test the groups of residuals for equal variance across sampling events. Levene’s test
(Chapter 11) gives an F-statistic of 1.30, well below the 5% critical point with 7 and 24
degrees of freedom of F g5724 = 2.42. Therefore, the group variances test out as adequately
homogeneous.

Step 5. Compute the mean error sum of squares term using equation [14.7]:
MS, = |(~1.150) + (~.780)° +...+ (1.338) + (-.765) J/(4-2)(7) = 1.87
Step 6. Compute the mean sum of squares term for the time effect using equation [14.8]:
MS, = 4[(29.290—31.042)2 +(30.11-31.042)° + ...+ (30.345 — 31.042)’ ]/7 = 755
Step 7. Test for a significant temporal effect, computing the F-statistic in equation [14.11]:
F, =7.55/1.87 =4.04

The degrees of freedom associated with the numerator and denominator respectively are (T-1)
=7 and T(W-1) = 24. Just as with Levene’s test run earlier, the 5% level critical point for the
test is Fgs724 = 2.42. Since F1 exceeds this value, there is evidence of a significant temporal
effect in the manganese background data.

Step 8.  Assuming a lack of spatial variation, the presence of a temporal effect can be used to compute
a standard deviation estimate and effective background sample size appropriate for an
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interwell prediction limit test, using equations [14.12] and [14.13] respectively. The adjusted
standard deviation becomes:

6= \/%[7.55+ 7(187)]

while the effective sample size is:
n*=1+{8-7-(4.04+4-1)?|/[8- (4.04) +7-3]=19.31~19

If the background data had simply been pooled together and the sample standard deviation
computed, s = 1.776 ppm with a sample size of n = 32. So the adjustments based on the
temporal effect alter the final prediction limit by enlarging it to account for the additional
component of variation. <

14.2.3 SAMPLE AUTOCORRELATION FUNCTION
BACKGROUND AND PURPOSE

The sample autocorrelation function enables a test of temporal autocorrelation in a single data
series (e.g., from a single well over time). When a time-related dependency affects several wells
simultaneously, parallel time series plots (Section 14.2.1) and one-way ANOVA for temporal effects
(Section 14.2.2) should be considered. But when a longer data series is to be used for an intrawell test
such as a prediction limit or control chart, the autocorrelation function does an excellent job of
identifying temporal dependence.

Given a sequence of consecutively-collected measurements, Xi, Xp,..., X, form the set of
overlapping pairs (xi, xji+1) for i = 1,..., n=1. The approximate first-order sample autocorrelation
coefficient is then computed from these pairs as (Chatfield, 2004):

~ :]Z_ll(xi - )_()(Xi+1 - Y)
iZl:(Xi _Y)2

n [14.14]

Equation [14.14] estimates the first-order autocorrelation, that is, the correlation between pairs of
sample measurements collected one event apart (i.e., consecutive events). The number of sampling
events separating each pair is called the lag, representing the temporal distance between the pair
measurements.

Autocorrelation can also be computed at other lags. The general approximate equation for the kth
lag is given by:
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S )
Z(xi _xY

which estimates the kth-order autocorrelation for pairs of measurements separated in time by k sampling
events. Note that the number of pairs used to compute ry decreases with increasing k due to the fact that
fewer and fewer sample pairs can be formed which are separated by that many lags.

e

[14.15]

By computing the first few sample autocorrelation coefficients and defining ro = 1, the sample
autocorrelation function can be formed by plotting ry against k. Since the autocorrelation coefficients are
approximately normal in distribution with zero mean and variance equal to 1/n, a test of significant
autocorrelation at the 95% significance level can be made by examining the sample autocorrelation

function to see if any coefficients exceed 2/ \/H in absolute value (J_rZ/ x/ﬁ represent approximate upper
and lower confidence limits).

The sample autocorrelation function is a valuable visual tool for assessing different types of
autocorrelation (Chatfield, 2004). For instance, a stationary (i.e., stable, non-trending) but non-random
series of measurements will often exhibit a large value of r; followed by perhaps one or two other
significantly non-zero coefficients. The remaining coefficients will be progressively smaller and smaller,
tending towards zero. A series with a clear seasonal pattern will exhibit a seasonal (i.e., approximately
sinusoidal) autocorrelation function. If the series tends to alternate between high and low values, the
autocorrelation function will also alternate, with r; being negative to reflect that consecutive
measurements tend to be on ‘opposite sides’ of the sample mean. Finally, if the series contains a trend,
the sample autocorrelation function will not drop to zero as the lag k increases. Rather, there will a
persistent autocorrelation even at very large lags.

REQUIREMENTS AND ASSUMPTIONS

The approximate distribution of the sample autocorrelation coefficients is predicated on the sample
measurements following a normal distribution. A test for significant autocorrelation may therefore be
inaccurate unless the sample measurements are roughly normal. Non-normal data series should be tested
for temporal autocorrelation using the non-parametric rank Von Neumann ratio (Section 14.2.4).

Outliers can drastically affect the sample autocorrelation function (Chatfield, 2004). Before
assessing autocorrelation, check the sample for possible outliers, removing those that are identified. A
series of at least 10-12 measurements is minimally recommended to construct the autocorrelation
function. Otherwise, the number of lagged data pairs will be too small to reliably estimate the
correlation, especially for larger lags. Sampling events should be regularly spaced so that pairs lagged by
the same number of events (k) represent the same approximate time interval.

PROCEDURE

Step 1.  Given a series of n measurements, X,..., X,, form sets of lagged data pairs (Xi, Xi+), 1 = 1,...,
n—k, for k < [n/3], where the notation [c] represents the largest integer no greater than c. For
longer series, computing lags to a maximum of k = 15 is generally sufficient.
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Step 2.

Step 3.

Step 4.

For each set of lagged pairs from Step 1, compute the sample autocorrelation coefficient, ry,
using equation [14.15]. Also define ro = 1.

Graph the sample autocorrelation function by plotting ry versus k for k = 0,..., [n/3], generally

up to a maximum lag of 15. Also plot horizontal lines at levels equal to: J_r2/x/ﬁ .

Examine the sample autocorrelation function. If any coefficient ry exceeds 2/ \/ﬁ in absolute
value, conclude that the sample has significant autocorrelation.

» EXAMPLE 14-3

The following series of monthly total alkalinity measurements were collected from leachate at a
solid waste landfill during a four and a half year period. Use the sample autocorrelation function to test
for significant temporal dependence in this series.

Total Total Total
Date Alkalinity Date Alkalinity Date Alkalinity

(mg/L) (mg/L) (mg/L)
01/26/96 1400 07/01/97 2400 01/15/99 1350
02/20/96 1700 08/15/97 3500 02/02/99 1560
03/19/96 1900 09/15/97 3100 03/02/99 1220
04/22/96 1800 10/15/97 3300 04/15/99 1390
05/22/96 1300 11/15/97 2100 05/04/99 1940
06/24/96 2000 12/15/97 2100 06/02/99 2160
07/15/96 2300 01/15/98 1500 07/07/99 1990
08/21/96 2500 02/15/98 710 08/03/99 2540
09/15/96 1700 03/15/98 1100 09/02/99 2250
10/15/96 1600 04/15/98 1900 10/07/99 1630
11/11/96 1400 05/08/98 2100 11/02/99 1710
12/10/96 1600 06/15/98 2000 12/07/99 1210
01/22/97 1800 07/15/98 2500 01/06/00 1170
02/11/97 1000 08/15/98 2700 02/02/00 1330
03/04/97 720 09/02/98 2400 03/02/00 1540
04/07/97 1400 10/06/98 3000 04/04/00 1670
05/01/97 1600 11/03/98 2700 05/02/00 1520
06/09/97 990 12/15/98 2680 06/06/00 2080

Step 1.

Step 2.

Step 3.

1

SOLUTION

Create a time series plot of the n = 54 alkalinity measurements, as in Figure 14-4. The series
indicates an apparent seasonal fluctuation.

Form lagged data pairs from the alkalinity series for each lag k = 1,..., [n/3] = 18. The first
two pairs for k = 1 (i.e., first order lag) are (1400, 1700) and (1700, 1900). For k = 2, the first
two pairs are (1400, 1900) and (1700, 1800), etc.

At each lag (k), compute the sample autocorrelation coefficient using equation [14.15]. Note
that the denominator of this equation equals (n-1)s°. For the alkalinity data, the sample mean
and variance are X =1865.93and s* = 392349.1 respectively. The lag-1 autocorrelation is thus:

(1400 - 1865.93)- (1700 — 1865.93) + ... + (1520 — 1865.93)- (2080 — 1865.93) 64
(54 —1)-392349.1 '
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Other lags are computed similarly.

Step 4. Plot the sample autocorrelation function as in Figure 14-5. Overlay the plot with 95%
confidence limits (dotted lines) shown at i2/\/_= i2/x/5_4 =0.27.

Step 5. The autocorrelation function indicates coefficients at several lags that lie outside the 95%
confidence limits, confirming the presence of temporal dependence. Further, the shape of
autocorrelation function is sinusoidal, suggesting a strong seasonal fluctuation in the alkalinity
levels. <

Figure 14-4. Time Series Plot of Total Alkalinity (mg/L)
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Figure 14-5. Sample Autocorrelation Function for Total Alkalinity
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14.2.4 RANK VON NEUMANN RATIO TEST
BACKGROUND AND PURPOSE

The rank von Neumann ratio is a non-parametric test of first-order temporal autocorrelation in a
single data series (e.g., from a single well over time). It can be used as an alternative to the sample
autocorrelation function (Section 14.2.3) for non-normal data, and is both easily computed and effective.

The rank von Neumann ratio is based on the idea that a truly independent series of data will vary in
an unpredictable fashion as the list is examined sequentially. The first order or lag-1 autocorrelation will
be approximately zero. By contrast, the first-order autocorrelation in dependent data will tend to be
positive (or negative), implying that lag-1 data pairs in the series will tend to be more similar (or
dissimilar) in magnitude than would expected by chance.

Not only will the concentrations of lag-1 data pairs tend to be similar (or dissimilar) when the
series is autocorrelated, but the ranks of lag-1 data pairs will share that similarity or dissimilarity.
Although the test is non-parametric and rank-based, the ranks of non-independent data still follow a
discernible pattern. Therefore, the rank von Neumann ratio is constructed from the sum of differences
between the ranks of lag-1 data pairs. When these differences are small, the ranks of consecutive data
measurements need to be fairly similar, implying that the pattern of observations is somewhat
predictable. Given the relative position and magnitude of one observation, the approximate relative
position and magnitude of the next sample measurement can be predicted. Low values of the rank von
Neumann ratio are therefore indicative of temporally dependent data series.
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Compared to other tests of statistical independence, the rank von Neumann ratio has been shown to
be more powerful than non-parametric methods such as the Runs up-and-down test (Madansky, 1988). It
is also a reasonable test when the data follow a normal distribution. In that case, the efficiency of the test
is always close to 90 percent when compared to the von Neumann ratio computed on concentrations
instead of the ranks. Thus, very little effectiveness is lost by using the ranks in place of the original
measurements. The rank von Neumann ratio will correctly detect dependent data and do so over a variety
of underlying data distributions. The rank von Neumann ratio is also fairly robust to departures from
normality, such as when the data derive from a skewed distribution like the lognormal.

REQUIREMENTS AND ASSUMPTIONS

An unresolved problem with the rank von Neumann ratio test is the presence of a substantial
fraction of tied observations. Like the Wilcoxon rank-sum test (Chapter 16), Bartels (1982)
recommends replacing each tied value by its mid-rank (i.e., the average of all the ranks that would have
been assigned to that set of ties). However, no explicit adjustment of the ratio for ties has been
developed. The rank von Neumann critical points may not be appropriate (or at best very approximate)
when a large portion of the data consists of non-detects or other tied values. Especially in the case of
frequent non-detects, too much information is lost regarding the pattern of variability to use the rank von
Neumann ratio as an accurate indication of autocorrelation. In fact, no test is likely to provide a good
estimate of temporal correlation, whether non-parametric or parametric.

While the rank von Neumann ratio test is recommended in the Unified Guidance for its ease of use
and robustness when applied to either normal or non-normal distributions, the literature on time series
analysis and temporal correlation is extensive with respect to other potential tests. Many other tests of
autocorrelation are available, especially when either the original measurements or the residuals of the
data are normally distributed after a trend has been removed. Chatfield (2004) and (Madansky, 1988) are
two good references for some of these alternate tests.

PROCEDURE

Step 1.  Order the sample from least to greatest and assign a unique rank to each measurement. If some
data values are tied, replace tied values with their mid-ranks as in the Wilcoxon rank-sum test
(Chapter 16). Then list the observations and their corresponding ranks in the order that they
were collected (i.e., by sampling event or time order).

Step 2. Using the list of ranks, R;, for the sampling events i = 1...n, compute the rank von Neumann
ratio with the equation:

v= g(Ri -R.) / [n(r*-1)12] [14.16]

Step 3.  Given sample size (n) and desired significance level (o), find the lower critical point of the
rank von Neumann ratio in Table 14-1 of Appendix D. In most cases, a choice of o = .01
should be sufficient, since only substantial non-independence is likely to affect subsequent
statistical testing. If the computed ratio, v, is smaller than this critical point, conclude that the
data series is strongly autocorrelated. If not, there is insufficient evidence to reject the
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hypothesis of independence; treat the data as temporally independent in subsequent statistical
testing.

» EXAMPLE 14-4

Use the rank von Neumann ratio test on the following series of 16 quarterly measurements of
arsenic (ppb) to determine whether or not the data set should be treated as temporally independent in
subsequent tests. Compute the test at the oo = .01 level of significance.

Step 1.

Step 2.

Step 3.

Sample Date Arsenic (ppb) Rank (R;)
Jan 1990 4.0 5
Apr 1990 7.2 15
Jul 1990 3.1 2
Oct 1990 3.5 3
Jan 1991 4.4 8
Apr 1991 5.1 9
Jul 1991 2.2 1
Oct 1991 6.3 13
Jan 1992 6.5 14
Apr 1992 7.5 16
Jul 1992 5.8 11
Oct 1992 5.9 12
Jan 1993 5.7 10
Apr 1993 4.1 6
Jul 1993 3.8 4
Oct 1993 4.3 7

SOLUTION

Assign ranks to the data values as in the table above. Then list the data in chronological order
so that each rank value occurs in the order sampled.

Compute the von Neumann ratio using the set of ranks in column 3 using equation [14.16],
being sure to take squared differences of successive, overlapping pairs of rank values:

|25-5)° +(2-15) + ...+ (7-4)]
V= . =1.67
16-(16% —1)/12
Look up the lower critical point (vep) for the rank von Neumann ratio in Table 14-1 of
Appendix D. For n = 16 and o = .01, the lower critical point is equal to 0.93. Since the test
statistic v is larger than vep, there is insufficient evidence of autocorrelation at the o = .01 level
of significance. Therefore, treat these data as statistically independent in subsequent testing. <
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14.3 CORRECTING FOR TEMPORAL EFFECTS AND CORRELATION
14.3.1 ADJUSTING THE SAMPLING FREQUENCY AND/OR TEST METHOD

If a data series is temporally correlated, a simple remedy (if allowable under program rules) is to
change the sampling frequency and/or statistical method used to analyze the data. In some cases,
increasing the sampling interval will effectively eliminate the statistical dependence exhibited by the
series. This may happen because the longer time between sampling events allows more groundwater to
flow through the well screen, further differentiating measurements of consecutive volumes of
groundwater and lessening the impact of seasonal fluctuations or other time-dependent patterns in the
underlying concentration distribution.

Many authors including Gibbons (1994a) and ASTM (1994) have recommended that sampling be
conducted no more often than quarterly to avoid temporal dependence. If the sampling frequency is
reduced, there are obviously fewer measurements available for statistical analysis during any given
evaluation period. A t-test or ANOVA cannot realistically be run with fewer than four measurements per
well. A prediction limit for a future mean requires at least two new observations, and a prediction limit
for a future median requires at least three measurements, not counting any resamples. Depending on the
length of the evaluation period (i.e., quarterly, semi-annual, annual), a change of statistical method may
also be necessary when groundwater measurements are autocorrelated.

When sufficient background data have been collected over a longer period of time, a prediction
limit test for future values can be run with as few as one or two new measurements per compliance well.
The same is true for control charts. Therefore, if a low groundwater flow velocity and/or evidence of
statistical dependence suggest a reduction in sampling frequency, certain prediction limits and control
charts should be strongly considered as alternate statistical procedures.

RUNNING A PILOT STUDY

An optional approach to adjusting the sampling frequency is to run a site-specific pilot study of
autocorrelation. Such a study can be conducted in several ways, but perhaps the easiest is to pick two or
three wells from the network (perhaps one background well and one or two compliance wells) and then
conduct weekly sampling at these wells over a one year period. For each well in the study, construct the
sample autocorrelation function (Section 14.2.3) for a variety of constituents, and determine from these
graphs the smallest lagged interval at which the autocorrelation coefficient becomes insignificantly
different from zero for most of the study constituents.

Since an autocorrelation of zero is equivalent to temporal independence for practical purposes,
finding the smallest lag between sampling events with no correlation indicates the minimum sampling
frequency needed to approximately ensure statistical independence. If the sample autocorrelation
function does not drop down to zero with increasing lag (k), there may be a strong seasonal component
or a trend involved. In these circumstances, lengthening the sampling frequency may do little to lessen
the temporal dependence. A seasonal pattern may need to be estimated instead and regularly removed
from the data prior to statistical testing. Likewise, any apparent trends should be investigated to
determine if there is evidence of increasing concentration levels indicative of a possible release.
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14.3.2 CHOOSING A SAMPLING INTERVAL VIA DARCY’S EQUATION

Another strategy for determining an appropriate sampling interval is to use Darcy’s equation. The
goal of this approach is to calculate groundwater flow velocity and the time needed to ensure that
physically independent or distinct volumes of groundwater are collected on each sampling trip. As noted
in Chapter 6, physical independence does not guarantee statistical independence. However, statistical
independence may be more likely if the same general volume of groundwater is not re-sampled on
multiple occasions.

This section discusses the important hydrological parameters to consider when choosing a
sampling interval. The Darcy equation is used to determine the horizontal component of the average
linear velocity of ground water for confined, semi-confined, and unconfined aquifers. This value
provides a good estimate of travel time for most soluble constituents in groundwater, and can be used to
determine a minimal sampling interval. Example calculations are provided to further assist the reader.
Alternative methods should be employed to determine a sampling interval in groundwater environments
where Darcy’s law is invalid. Karst, cavernous basalt, fractured rocks, and other ‘pseudo-karst’ terranes
usually require specialized monitoring approaches.

Section 264.97(g) of 40 CFR Part 264 Subpart F allows the owner or operator of a RCRA facility
to choose a sampling procedure that will reflect site-specific concerns. It specifies that the owner or
operator shall obtain a sequence of at least four samples from each well collected at least semi-annually.
The interval is determined after evaluating the uppermost aquifer’s effective porosity, hydraulic
conductivity, and hydraulic gradient, and the fate and transport characteristics of potential contaminants.
The intent of this provision is to set a sampling frequency that allows sufficient time between sampling
events to ensure, to the greatest extent technically feasible, that independent groundwater observations
are taken from each well.

The sampling frequency required in Part 264 Subpart F can be based on estimates using the
average linear velocity of ground water. Two forms of the Darcy equation stated below relate
groundwater velocity (V) to effective porosity (Ne), hydraulic gradient (i), and hydraulic conductivity

(K):

V, = (K, -i)/Ne [14.17]
V,=(K,-i)/Ne [14.18]

where V, and V, are the horizontal and vertical components of the average linear velocity of
groundwater, respectively; Kn and K, are the horizontal and vertical components of hydraulic
conductivity, respectively; i is the head gradient; and Ne is the effective porosity.

In applying these equations to ground-water monitoring, the horizontal component of the average
linear velocity (Vy) can be used to determine an appropriate sampling interval. Usually, field
investigations will yield bulk values for hydraulic conductivity. In most cases, the bulk hydraulic
conductivity determined by a pump test, tracer test, or a slug test will be sufficient for these calculations.
The vertical component (V,), however, should be considered in estimating flow velocities in areas with
significant components of vertical velocity such as recharge and discharge zones.
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To apply the Darcy equation to groundwater monitoring, the parameters K, i, and Ne need to be
determined. The hydraulic conductivity, K, is the volume of water at the existing kinematic viscosity that
will move in unit time under a unit hydraulic gradient through a unit area measured at right angles to the
direction of flow. “[E]xisting kinematic viscosity” refers to the fact that hydraulic conductivity is not
only determined by the media (aquifer), but also by fluid properties (groundwater or potential
contaminants). Thus, it is possible to have several hydraulic conductivity values for different chemical
substances present in the same aquifer. The lowest velocity value calculated using the Darcy equation
should be used to determine sampling intervals, ensuring physical independence of consecutive sample
measurements.

Figure 14-6. Hydraulic Conductivity of Selected Rocks

IGNEOUS AND METAMORPHIC ROCKS
Unfractured Fractured
BASALT
Unfractured Froctured Lava flow
SANDSTONE
Fractured Semiconsolidoted
SHALE
Unfractured Fractured
CARBONATE ROCKS
Fractured Cavernous
CLAY SILT, LOESS
SILTY SAND
CLEAN SAND
Fine Coarse
GLACIAL TiLL GRAVEL
L 1 1 I 1 1 ] 1 1 ] 1 1
"% 107 107 107 107* 07* 1072 107! [ o 102 10 0t
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ftd’
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10-7 107® 0% 107* 1073 10°% 107! [ 0 102% 10% 0% 10°
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Source: Heath, R.C. 1987. Basic Ground-Water Hydrology. U.S. Geological Survey Water Supply Paper, 2220, 13 pp.
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A range of hydraulic conductivities (the transmitted fluid is water) for various aquifer materials is
given in Figures 14-6 and 14-7. The conductivities are given in several units. Figure 14-8 lists
conversion factors to change between various permeability and hydraulic conductivity units.

The hydraulic gradient, i, is the change in hydraulic head per unit of distance in a given direction. It
can be determined by dividing the difference in head between two points on a potentiometric surface
map by the orthogonal distance between those two points (see calculation in Example 14-5). Water level
measurements are normally used to determine the natural hydraulic gradient at a facility. However, the
effects of mounding in the event of a release may produce a steeper local hydraulic gradient in the

vicinity of the monitoring well. These local changes in hydraulic gradient should be accounted for in the
velocity calculations.

Figure 14-7. Range of Values of Hydraulic Conductivity and Permeability
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Source: Freeze, R.A., and J.A. Cherry. 1979. Ground Water.
Prentice Hall, Inc., Englewood Cliffs, New Jersey. p. 29.
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Figure 14-8. Conversion Factors for Permeability and Hydraulic Conductivity Units

Permeability, k*

Hydraulic conductivity, K

cm? ft2 darcy m/s ft/s gal/day/ft?
cm? 1 1.08x1073 1.01x108 9.80x10? 3.22x10°3 1.85x10°
ft? 9.29x102 1 9.42x101° |9.11x10° 2.99x10° 1.71x10%?
darcy 9.87x107° 1.06x107!? 1 9.66x107®  3.17x10™>  1.82x10!
m/s 1.02x1073 1.10x10°° 1.04x10° 1 3.28 2.12x10°
ft/s 3.11x107* 3.35x1077 3.15x10* 3.05x107! 1 6.46x10°
gal/day/ft? 5.42x107°  5.83x107**  5.49x107% [4.72x1077  1.55x10°% 1

*To obtain k in ft?, multiply k in cm? by 1.08x1073

Source: Freeze, R.A., and J.A. Cherry (1979). Ground Water. Prentice Hall, Inc., Englewood Cliffs,
New Jersey, p. 29.

The effective porosity, Ne, is the ratio, usually expressed as a percentage, of the total volume of
voids available for fluid transmission to the total volume of the porous medium de-watered. It can be
estimated during a pump test by dividing the volume of water removed from an aquifer by the total
volume of aquifer dewatered (see calculation in Example 14-5). Figure 14-9 presents approximate
effective porosity values for a variety of aquifer materials. In cases where the effective porosity is
unknown, specific yield may be substituted into the equation. Specific yields of selected rock units are
given in Figure 14-10. In the absence of measured values, drainable porosity is often used to
approximate effective porosity. Figure 14-11 illustrates representative values of drainable porosity and
total porosity as a function of aquifer particle size. If available, field measurements of effective porosity

are preferred.
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Figure 14-9. Default Values of Effective Porosity (Ne) For Travel Time Analyses

Effective porosity of
Soil textural classes saturation®

Unified soil classification system

GS, GP, GM, GC, SW, SP, SM, SC 0.20 (20%)

ML, MH 0.15 (15%)

CL, OL, CH, OH, PT 0.01 (1%)°
USDA soil textural classes

Clays, silty clays, sandy clays 0.01 (1%)b

Silts, silt loams, silty clay loams 0.10 (10%)

All others 0.20 (20%)
Rock units (all)

Porous media (non-fractured rocks such as sandstone 0.15 (15%)

and some carbonates)
Fractured rocks (most carbonates, shales, granites, etc.)  0.0001 (0.01%)

Source: Barari, A., and L. S. Hedges (1985). Movement of Water in Glacial Till. Proceedings of
the 17th International Congress of the International Association of Hydrogeologists, pp. 129-
134.

#These values are estimates and there may be differences between similar units. For example,
recent studies indicate that weathered and unweathered glacial till may have markedly
different effective porosities (Barari and Hedges, 1985; Bradbury et al., 1985).

PAssumes de minimus secondary porosity. If fractures or soil structure are present, effective
porosity should be 0.001 (0.1%).

Figure 14-10. Specific Yield Values for Selected Rock Types

Rock Type Specific Yield (%)
Clay 2
Sand 22
Gravel 19
Limestone 18
Sandstone (semi-consolidated) 6
Granite 0.09
Basalt (young) 8

Source: Heath, R.C. (1983). Basic Ground-Water Hydrology. U.S. Geological Survey, Water Supply Paper
2220, 84 pp.
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Once the values for K, i, and Ne are determined, the horizontal component of average linear
groundwater velocity can be calculated. Using the Darcy equation [14.17], the time required for
groundwater to pass through the complete monitoring well diameter can be determined by dividing the
well diameter by the horizontal component of the average linear groundwater velocity. If considerable
exchange of water occurs during well purging, the diameter of the filter pack may be used rather than the
well diameter. This value represents the minimum time interval required between sampling events
yielding a physically independent (i.e., distinct) ground-water sample. Note that three-dimensional
mixing of groundwater in the vicinity of the monitoring well is likely to occur when the well is purged
before sampling. Partly for that reason, this method can only provide an estimated travel time.

Figure 14-11. Total Porosity and Drainable Porosity for Typical Geologic Materials
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(The grain size in which the cumulative total, beginning with the coarsest material, reaches
10% of the total sample.)

Source: Todd, D.K. 1980. Ground Water Hydrology. John Wiley and Sons, New York, 534 pp.

In determining these sampling intervals, many chemical compounds do not travel at the same
velocity as groundwater. Chemical characteristics such as adsorptive potential, specific gravity, and
molecular size influence the way chemicals travel in the subsurface. Large molecules, for example, tend
to travel slower than the average linear groundwater velocity because of matrix interactions. Compounds
that exhibit a strong adsorptive potential undergo a similar fate that dramatically changes time of travel
predictions using the Darcy equation. In some cases chemical interaction with the matrix material alters
the matrix structure and its associated hydraulic conductivity and may result in an increase in
contaminant mobility. This effect has been observed with certain organic solvents in clay units (see
Brown and Andersen, 1981). Contaminant fate and transport models may be useful in determining the
influence of these effects on movement in the subsurface.
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» EXAMPLE 14-5

Compute the effective porosity, Ne, expressed as a percent (%), using results obtained during a
pump test.

SOLUTION
Step 1. Compute the effective porosity using the following equation:

Ne = 100% x volume of water removed/volume of aquifer dewatered [14.19]

Step 2. Based on a pumping rate of 50 gal/min and a pumping duration of 30 min, compute the
volume of water removed as:

volume of water removed =50 gal/min x 30 min = 1,500 gal

Step 3.  To calculate the volume of aquifer de-watered, use the equation:
1 2
V= éﬂhr [14.20]

where r is the radius (in ft) of the area affected by pumping and h (ft) is the drop in the water
level. If, for example, h = 3 ft and r = 18 ft, then:

V =1(3.14><3><182)= 1,018 ft®
3

Next, converting cubic feet of water to gallons of water,
V =1,018 ft® x 7.48 gal/ft® = 7,615 gal

Step 4.  Finally, substitute the two volumes from Step 3 into equation [14.19] to obtain the effective
porosity:

Ne =100% x (1,500 gal/7,615 gal)=19.7% <«

» EXAMPLE 14-6

Determine the hydraulic gradient, i, from a potentiometric surface map.

SOLUTION

Step 1. Consider the potentiometric surface map in Figure 14-12. The hydraulic gradient can be
constructed as i = Ah/l, where Ah is the difference measured in the gradient at piezometers Pz;
and Pzp,and | is the orthogonal distance between the two piezometers.
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Figure 14-12. Potentiometric Surface Map for Computation of Hydraulic Gradient

2

Step 2.

Step 3.

Using the values given in Figure 14-12, the hydraulic gradient is computed as:

i = Ah/I = (29.2 ft— 29.1 ft)/100 ft = 0.001 ft/ft

Note that this method provides only a very general estimate of the natural hydraulic gradient
existing in the vicinity of the two piezometers. Chemical gradients are known to exist and may
override the effects of the hydraulic gradient. A detailed study of the effects of multiple
chemical contaminants may be necessary to determine the actual average linear groundwater
velocity (horizontal component) in the vicinity of the monitoring wells. <«

» EXAMPLE 14-7

Determine the horizontal component of the average linear groundwater velocity (Vy) at a land
disposal facility which has monitoring wells screened in an unconfined silty sand aquifer.

Step 1.

Step 2.

Step 3.

SOLUTION

Slug tests, pump tests, and tracer tests conducted during a hydrologic site investigation have
revealed that the aquifer has a horizontal hydraulic conductivity (Ky) of 15 ft/day and an

effective porosity (Ne) of 15%. Using a potentiometric map (as in Example 14-6), the regional
hydraulic gradient (i) has been determined to be 0.003 ft/ft.

To estimate the minimum time interval between sampling events enabling the collection of
physically independent samples of ground water, calculate the horizontal component of the
average linear groundwater velocity (V) using Darcy’s equation [14.17]. With K, = 15 ft/day,

Ne = 15%, and i = 0.003 ft/ft, the velocity becomes:

V, = (15 ft/day x 0.003 ft/ft)/15% = 0.3 ft/day or 3.6 in/day

Based on these calculations, the horizontal component of the average linear groundwater
velocity, Vy, is equal to 3.6 in/day. Since monitoring well diameters at this particular facility

are 4 inches, the minimum time interval between sampling events enabling a physically
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independent groundwater sample can be computed by dividing the horizontal component into
the monitoring well diameter:

Minimum time interval = (4 in)/(3.6 in/day)z 1.1 days

As a result, the facility could theoretically sample every other day. However, this may be
unwise because velocity can seasonally vary with recharge rates. It is also emphasized that
physical independence does not guarantee statistical independence. Figure 14-13 gives results
for common situations. The overriding point is that it may not be necessary to set the
minimum sampling frequency to quarterly at every site. Some hydrologic environments may
allow for more frequent sampling, some less. <

Figure 14-13. Typical Darcy Equation Results in Determining a Sampling Interval

Unit Ky (ft/day)  Ne (%) Vj (in/mo) Sampling Interval
Gravel 10* 19 9.6x10* Daily

Sand 10? 22 8.3x107 Daily

Silty Sand 10 14 1.3x102 Weekly

Till 1073 2 9.1x107? Monthly

Silty Sand (semi-consolidated) 1 6 30 Weekly

Basalt 107! 8 2.28 Monthly

14.3.3 CREATING ADJUSTED, STATIONARY MEASUREMENTS

When an existing data set exhibits temporal correlation or other variability, it is sometimes
possible to remove the temporal pattern and thereby create a set of adjusted data which are uncorrelated
and stationary over time in mean level. As long as the same temporal pattern seems to affect both
background and the compliance point data to be tested, the effect (e.g., regular seasonal fluctuation) can
be estimated and removed from both data sets prior to statistical testing. Testing the adjusted data
instead of the raw measurements in this way results in a more powerful and accurate test. An extraneous
source of variation not related to identifying a contaminant release has been removed from the sample
data.

The general topic of stationary, adjusted data is complex, contained within the extensive literature
on time series. The Unified Guidance discusses two simple cases below: removing a seasonal pattern
from a single well and creating adjusted data from a one-way ANOVA for temporal effects across
several wells. More complicated situations may need professional consultation.

14.3.3.1 CORRECTING FOR SEASONAL PATTERN IN A SINGLE WELL

BACKGROUND AND PURPOSE

Sometimes an obvious cyclical seasonal pattern can be seen in a time series plot. Such data are not
statistically independent. They do not fluctuate randomly but rather in a predictable way from one
sampling event to the next. Data from such patterns can be adjusted to correct for or remove the seasonal
fluctuation, but only if a longer series of data is available. This is also known as deseasonalizing the
data. Seasonal correction should be done both to minimize the chance of mistaking a seasonal effect for
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evidence of contaminated groundwater, and also to build more powerful background-to-compliance
point tests.

Problems can arise, for instance, from measurement variations associated with changing recharge
rates during different seasons. Compliance point concentrations can exceed a groundwater protection
standard [GWPS] for a portion of the year, but on average lie below. If the long-term average is of
regulatory concern, the data should first be de-seasonalized before comparing it against a GWPS.

If point-in-time, interwell comparisons are being made between simultaneously collected
background and downgradient data, a correction may not be necessary even when seasonal fluctuations
exist. A temporal cycle may cover a period of several years so that both the background and
downgradient values are observed on essentially the same parts of the overall cycle. In this case, the
short-term averages in both data sets will be fairly stable and the seasonal or cyclical effect may
equivalently impact both sets of data.

For intrawell tests, the data need to be collected sequentially at each well, with background formed
from the earliest measurements in the series. The point-in-time argument would not apply and the
presence of seasonality should be checked and accounted for.

Even with interwell testing, it is sometimes difficult to verify whether or not a seasonal pattern is
impacting upgradient and compliance point wells similarly. If the groundwater velocity is low, the lag
between the time groundwater passes through a background well screen and then travels downgradient
may create a noticeable shift as to when corresponding portions of the seasonal cycle are observed in
compliance point locations. It also may be the case that differences in geochemistry from well to well
may cause the same seasonal pattern to differentially impact concentration levels at distinct wells
(Figure 14-14).
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Figure 14-14. Differential Seasonal Effects: Background vs. Compliance Wells
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If the timing of the cycle and the relative magnitude of the concentration swings are essentially the
same in upgradient and downgradient wells, both data sets should be deseasonalized prior to statistical
analysis. If the seasonal effects are ignored, real differences in mean levels between upgradient and
downgradient well data may not be observed, simply because the short-term seasonal fluctuations add
variability that can mask the difference being tested. In this case, the non-independent nature of the
seasonal pattern adds unwanted noise to the observations, obscuring statistical evidence of groundwater
contamination.

REQUIREMENTS AND ASSUMPTIONS

Seasonal correction is only appropriate for wells where a cyclical pattern is clearly present and very
regular over time. Many approaches to deseasonalizing data exist. If the seasonal pattern is highly
regular, it may be modeled with a sine or cosine function. Often, moving averages and/or lag-based
differences (of order 12 for monthly data, for example) are used. General time series models may include
these and other more complicated methods for deseasonalizing the data.

The simple method described in the Unified Guidance has the advantage of being easy to
understand and apply, and of providing natural estimates of the monthly or quarterly seasonal effects via
the monthly or quarterly means. The method can be applied to any seasonal or recurring cycle-- perhaps
an annual cycle for monthly or quarterly data or a longer cycle for certain kinds of geologic
environments. In some cases, recharge rates are linked to drought cycles that may be on the order of
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several years long. For these situations, the ‘seasonal’ cycle may not correspond to typical fluctuations
over the course of a single year.

Corrections for seasonality should be used cautiously, as they represent extrapolation into the
future. There should be a good physical explanation for the seasonal fluctuation as well as good
empirical evidence for seasonality before corrections are made. Higher than average rainfall for two or
three Augusts in a row does not justify the belief that there will never be a drought in August, and this
idea extends directly to groundwater quality. At least three complete cycles of the seasonal pattern
should be observed on a time series plot before attempting the adjustment below. If seasonality is
suspected but the pattern is complicated, the user should seek the help of a professional statistician.

PROCEDURE

Step 1. If a time series plot clearly shows at least 3 full cycles of the seasonal pattern, determine the
length of time to complete one full cycle. Since the correction presumes a regular sampling
schedule, determine the number of observations (k) in each full cycle (this number should be
the same for each cycle). Then, assuming that N complete cycles of data are available, let x;;
denote the raw, unadjusted measurement for the ith sampling event during the jth complete
cycle. Note that this could represent monthly data over an annual cycle, quarterly data over a
biennial cycle, semi-annual data over a 10-year cycle, etc.

Step 2. Compute the mean concentration for sampling event i over the N-cycle period:

X = (x;+x, +...+%x,)/N [14.21]
This is the average of all observations taken in different cycles, but during the same sampling
event. For instance, with monthly data over an annual cycle, one would calculate the mean
concentrations for all Januarys, the mean for all Februarys, and so on for each of the 12
months.

Step 3.  Calculate the grand mean, X , of all N x k observations:

k
Y& [14.22]
xk Tk

N Xij

X:ZZN

k
i=1 j=1

Step 4. Compute seasonally-corrected, adjusted concentrations using the equation:

Z. =X —X +X [14.23]

ij ij i

Computing X; — X, removes the average seasonal effect of sampling event i from the data

series. Adding back the overall mean, X, gives the adjusted z;; values the same mean as the
raw, unadjusted data. Thus, the overall mean of the corrected values, 7, equals the overall
mean value, X .
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EXAMPLE 14-8

Consider the monthly unadjusted concentrations of an analyte over a 3-year period graphed in
Figure 14-15 and listed in the table below. Given the clear and regular seasonal pattern, use the above
method to produce a deseasonalized data set.

Unadjusted Concentrations Adjusted Concentrations
1983 1984 1985 Monthly 1983 1984 1985
Average
January 1.99 2.01 2.15 2.05 2.11 2.13 2.27
February 2.10 2.10 2.17 2.12 2.14 2.14 2.21
March 2.12 2.17 2.27 2.19 2.10 2.15 2.25
April 2.12 2.13 2.23 2.16 2.13 2.14 2.24
May 2.11 2.13 2.24 2.16 2.12 2.14 2.25
June 2.15 2.18 2.26 2.20 2.12 2.15 2.23
July 2.19 2.25 2.31 2.25 2.11 2.17 2.23
August 2.18 2.24 2.32 2.25 2.10 2.16 2.24
September 2.16 2.22 2.28 2.22 2.11 2.17 2.23
October 2.08 2.13 2.22 2.14 2.10 2.15 2.24
November 2.05 2.08 2.19 2.11 2.11 2.14 2.25
December 2.08 2.16 2.22 2.16 2.09 2.17 2.23
Overall 3-year average = 2.17
SOLUTION
Step 1. From Figure 14-15, there are N = 3 full cycles represented, each lasting approximately a year.

Step 2.

Step 3.

Step 4.

With monthly data, the number of sampling events per cycle is k = 12.

Compute the monthly averages across the 3 years for each of the 12 months using equation
[14.21]. These values are shown in the fifth column of the table above.

Calculate the grand mean over the 3-year period using equation [14.22]:

X = §115(199+2.01+2.15+2.10 +...+222) = 217

Within each month and year, subtract the average monthly concentration for that month and
add-in the grand mean, using equation [14.23]. As an example, for January 1983, the adjusted
concentration becomes:

z,=199-205+217=211
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Figure 14-15. Seasonal Time Series Over a Three-Year Period
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The adjusted concentrations are shown in the last three columns of the table above. The
average of all 36 adjusted concentrations equals 2.17, the same as the mean unadjusted
concentration. Figure 14-15 shows the adjusted data superimposed on the unadjusted data.
The raw data exhibit seasonality, as well as an upward trend. The adjusted data, on the other
hand, no longer exhibit a seasonal pattern, although the upward trend still remains. From a
statistical standpoint, the trend is much more easily identified by a trend test on the adjusted
data than with the raw data. <

14.3.3.2 CORRECTING FOR A TEMPORAL EFFECT ACROSS SEVERAL WELLS

BACKGROUND AND PURPOSE

When a significant temporal dependence or correlation is identified across a group of wells using
one-way ANOVA for temporal effects (Section 14.2.2), results of the ANOVA can be used to create
stationary adjusted data similar to the seasonal correction described in Section 14.3.3.1. The difference
is that the adjustment is not applied to a data series at a single well, but rather simultaneously to several
well sets.
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The adjustment works in the same way as a correction for seasonality. First, the mean for each
sampling event or season (averaged across wells) is computed along with the grand mean. Then each
individual measurement is adjusted by subtracting off the event/seasonal mean and adding the overall or
grand mean. In practice, this process is identical to adding the one-way ANOVA residual to the grand
mean, so the already-computed results of the ANOVA can be used. By removing or correcting for a
significant temporal effect, the adjusted data will have a temporally stationary mean and less overall
variation. This allows for more powerful and accurate detection monitoring tests.

Temporal dependence (e.g., seasonality) is sometimes observed as parallel traces on a time series
plot across multiple wells (Section 14.2.1), although the one-way ANOVA for temporal effects is non-
significant. This can occur due to the simultaneous presence of strong spatial variability (Chapter 13).
Differences in mean levels from well to well can be large enough to ‘swamp’ the added variation due to
the temporal dependence. The one-way ANOVA for temporal effects will not identify the dependence
because the mean error sum of squares will then include the spatial variation component and not just
random error.

Two remedies are possible when the ANOVA for temporal effects is non-significant. First, if a
strong parallelism is evident on time series plots, the residuals from the ANOVA can still be used to
create a set of adjusted, temporally-stationary measurements. The adjustment will not eliminate or
remove any existing spatial variation, but it may not matter. Intrawell tests are needed anyway when
such spatial variability is evident, and those tests assume temporal independence of the measurements
collected at each well.

A second remedy is to perform a two-way ANOVA, testing for both spatial variation and temporal
effects. This procedure is discussed in Davis (1994). Not only will a two-way ANOVA more readily
identify a significant temporal effect even when there is simultaneous spatial variability, but the F-
statistic used to test for the temporal dependence can be utilized to further adjust the appropriate degrees
of freedom in intrawell background limits, such as prediction limits and control charts.

REQUIREMENTS AND ASSUMPTIONS

The key requirement to correct for a temporal effect using ANOVA is that the same effect must be
present in all wells to which the adjustment is applied. Otherwise, the adjustment will tend to skew or
bias measurements at wells with no observable temporal dependence. Parallel time series plots (Section
14.2.1) should be examined to determine whether all the wells under consideration exhibit a similar
temporal pattern.

The parametric one-way ANOVA assumes the data are normal or can be normalized. If the data
cannot be normalized, a Kruskal-Wallis non-parametric ANOVA can be conducted to test for the
presence of a temporal dependence. In this case, no residuals can be computed since the Kruskal-Wallis
test employs ranks of the data rather than the measurements themselves. So the adjustment presented
below is only applicable for data sets that can be normalized.

PROCEDURE

Step 1. Given a set of W wells and measurements from each of T sampling events at each well on each
of K years, label the observations as xjj, fori =1toW,j=1to T, and k = 1 to K. Then Xijk
represents the measurement from the ith well on the jth sampling event during the kth year.
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Step 2. Using the one-way ANOVA for temporal effects (Section 14.2.2), compute the sampling
event or seasonal means (whichever is appropriate), along with the grand (overall) mean. Also
construct the ANOVA residuals using either equation [14.5] or [14.6].

Step3. Add each residual to the grand mean to form adjusted values z, =X, +r, . Use these

adjusted values in subsequent statistical testing instead of the original measurements.
» EXAMPLE 14-9

The manganese data of Examples 14-1 and 14-2 were found to have a significant temporal
dependence using ANOVA for temporal effects. Adjust these data to remove the temporal pattern.

Manganese Residuals (ppm)
Qtr Event BW-1 BW-2 BW-3 BW-4
Mean
1 29.290 -1.15 2.12 -2.14 1.17
2 30.110 -0.78 0.16 0.13 0.49
3 30.780 -0.33 1.79 -1.64 0.18
4 31.620 0.80 1.15 -1.03 -0.92
5 33.747 0.6225 -0.7175 1.1325 -1.0375
6 31.930 1.32 0.25 -1.40 -0.17
7 30.513 0.5075 -1.6625 -0.1825 1.3375
8 30.345 -1.845 2.535 0.075 -0.765
Grand mean = 31.042

SOLUTION

Step 1. The mean of each sampling event taken across the four background wells was computed in
Example 14-2, along with the grand mean. These results are listed in the table above, along
with the individual residuals which were also computed in that example.

Step 2.  Add the grand mean to each residual to form the adjusted manganese concentrations, as in the

table below.
Adjusted Manganese (ppm)
Qtr Event BW-1 BW-2 BW-3 BW-4
Mean
1 29.290 29.89 33.16 28.90 32.21
2 30.110 30.26 31.20 31.17 31.53
3 30.780 30.71 32.83 29.40 31.22
4 31.620 31.84 32.19 30.01 30.12
5 33.747 31.66 30.32 32.17 30.00
6 31.930 32.36 31.29 29.64 30.87
7 30.513 31.55 29.38 30.86 32.38
8 30.345 29.20 33.58 31.12 30.28
Grand mean = 31.042
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Step 3.  Plot a time series of the adjusted manganese values, as in Figure 14-16. The ‘hump-like’
temporal pattern evident in Figure 14-2 is no longer apparent. Instead, the overall mean is
stationary across the 8 quarters. <«

Figure 14-16. Parallel Time Series Plot of Adjusted Manganese Concentrations

Adjusted Manganese (ppm)
30
|
1
II|I
-0
L

28

Quarter

14.3.3.3 CORRECTING FOR LINEAR TRENDS

If a data series exhibits a linear trend, the sample will exhibit temporal dependence when tested via
the sample autocorrelation function (Section 14.2.3), the rank von Neumann ratio (Section 14.2.4), or
similar procedure. These data can be de-trended, much like the data in the previous example were
deseasonalized. Probably the easiest way to de-trend observations with a linear trend is to compute a
linear regression on the data (Section 17.3.1) and then use the regression residuals instead of the original
measurements in subsequent statistical analysis.

But no matter how tempting it may be to automatically de-trend data of this sort, the user is
strongly cautioned to consider what a linear trend may represent. Often, an upward trend is indicative of
changing groundwater conditions at a site, perhaps due to the increasing presence of contaminants
during a gradual waste release. The trend in this case may itself be statistically significant evidence of
groundwater contamination, particularly if it occurs at compliance wells but not at upgradient
background wells. The trend tests of Chapter 17 are useful for such determinations. Trends in
background may signal other important factors, including migration of contaminants from off-site
sources, changes in the regional aquifer, or possible groundwater mounding.

14-36 March 2009



Chapter 14. Temporal Variability Unified Guidance

The overriding point is that data should be deseasonalized when a cyclical pattern might obscure
the random deviations around an otherwise stable average concentration level, or to more clearly identify
an existing trend. However, a linear trend is inherently indicative of a changing mean level. Such data
should not be de-trended before it is determined what the trend likely represents, and whether or not it is
itself prima facie evidence of possible groundwater contamination.

A similar trend both in direction and slope may be exhibited by background wells and compliance
wells, perhaps suggestive of sitewide changes in natural groundwater conditions. Residuals from a one-
way ANOVA for temporal effects (Section 14.2.2) can be used to simultaneously create adjusted values
across the well network (Section 14.3.3.2). Linear trends are just as easily identified and adjusted in this
way as are parallel seasonal fluctuations or other temporal effects.

14.3.4 IDENTIFYING LINEAR TRENDS AMIDST SEASONALITY: SEASONAL
MANN-KENDALL TEST

BACKGROUND AND PURPOSE

Corrections for seasonality or other cyclical patterns over time in a single well are discussed in
Section 14.3.3.1. These adjustments work best when the long-term mean at the well is stationary. In
cases where a test for trend is desired and there are also seasonal fluctuations, Chapter 17 tests may not
be sensitive enough to detect a real trend due to the added seasonal variation.

One possible remedy is to use the seasonal correction in Section 14.3.3.1 and illustrated in
Example 14-8. The seasonal component of the trend is removed prior to conducting a formal trend test.
A second option is the seasonal Mann-Kendall test (Gilbert, 1987).

The seasonal Mann-Kendall is a simple modification to the Mann-Kendall test for trend (Section
17.3.2) that accounts for apparent seasonal fluctuations. The basic idea is to divide a longer multi-year
data series into subsets, each subset representing the measurements collected on a common sampling
event (e.g., all January events or all fourth quarter events). These subsets then represent different points
along the regular seasonal cycle, some associated with peaks and others with troughs. The usual Mann-
Kendall test is performed on each subset separately and a Mann-Kendall test statistic S; formed for each.
Then the separate S; statistics are summed to get an overall Mann-Kendall statistic S.

Assuming that the same basic trend impacts each subset, the combined statistic S will be powerful
enough to identify a trend despite the seasonal fluctuations.

REQUIREMENTS AND ASSUMPTIONS

The basic requirements of the Mann-Kendall trend test are discussed in Section 17.3.2. The only
differences with the seasonal Mann-Kendall test are that 1) the sample should be a multi-year series with
an observable seasonal pattern each year; 2) each ‘season’ or subset of the overall series should include
at least three measurements in order to compute the Mann-Kendall statistic; and 3) a normal
approximation to the overall Mann-Kendall test statistic must be tenable. This will generally be the case
if the series has at least 10-12 measurements.
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Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

PROCEDURE

Given a series of measurements from each of T sampling events on each of K years, label the
observations as xij, fori =1to T, and j = 1 to K. Then x;; represents the measurement from the
ith sampling event during the jth year.

For each distinct sampling event (i), form a seasonal subset by grouping together observations
Xi1, Xi2,--.y Xik. THis results in T separate seasons.

For each seasonal subset, use the procedure in Section 17.3.2 to compute the Mann-Kendall
statistic Sj and its standard deviation SD[S;]. Form the overall seasonal Mann-Kendall statistic
(S) and its standard deviation with the equations:

s=>'S [14.24]

sD[s]= /iSDZ[Si] [14.25]

Compute the normal approximation to the seasonal Mann-Kendall statistic using the equation:
z=(s| —1)/5D[S] [14.26]

Given significance level, o, determine the critical point zc, from the standard normal
distribution in Table 10-1 of Appendix D. Compare Z against this critical point. If Z > zg,
conclude there is statistically significant evidence at the a-level of an increasing trend. If Z <—
Zep, conclude there is statistically significant evidence of a decreasing trend. If neither,
conclude that the sample evidence is insufficient to identify a trend.

» EXAMPLE 14-10

The data set in Example 14-8 replicated below indicated both clear seasonality and an apparent
increasing trend. Use the seasonal Mann-Kendall procedure to test for a significant trend with o = 0.01
significance.
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Step 1.

Step 2.

Step 3.

Analyte Concentrations

1983 1984 1985 S SD[Si]
January 1.99 2.01 2.15 3 1.915
February 2.10 2.10 2.17 2 1.633
March 2.12 2.17 2.27 3 1.915
April 2.12 2.13 2.23 3 1.915
May 2.11 2.13 2.24 3 1.915
June 2.15 2.18 2.26 3 1.915
July 2.19 2.25 2.31 3 1.915
August 2.18 2.24 2.32 3 1.915
September 2.16 2.22 2.28 3 1.915
October 2.08 2.13 2.22 3 1.915
November 2.05 2.08 2.19 3 1.915
December 2.08 2.16 2.22 3 1.915
S=35 SD[S]= 6.558
SOLUTION

Form a seasonal subset for each month by grouping all the January measurements, all the
February measurements, and so on, across the 3 years of sampling. This gives 12 seasonal
subsets with n = 3 measurements per season. Note there are no tied values in any of the
seasons except for February.

Use equations [17.30] and [17.31] in Section 17.3.2 to compute the Mann-Kendall statistic
(Si) for each subset. These values are listed in the table above. Also compute their sum to form
the overall seasonal Mann-Kendall statistic, giving S = 35.

Use equation [17.28] from Section 17.3.2 for all months but February to compute the standard
deviation of S;. Since n = 3 for each of these subsets, this gives

SD[SJz\/%n(n—l)(2n+5)=\/%3-2-11=1.915

For the month of February, one pair of tied values exists. Use equation [17.27] to compute the
standard deviation for this subset:

sD[s,]= \/%[n(n ~1)(2n+5)- éti ¢ 1), +5)} = \/%[3- 2-11-2-1.9]=1.633

List all the subset standard deviations in the table above. Then use equation [14.25] to
compute the overall standard deviation:

sp[s]= /isoz [5,] =11 (1915) + (L.633) —6.558
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Step 4. Compute a normal approximation to S with equation [17.29]:
Z=(35-1)/6.558=5.18

Step 5. Compare Z against the 1% critical point from the standard normal distribution in Table 10-1
of Appendix D, z; = 2.33. Since Z is clearly larger than z;, the increasing trend evidence in
Figure 14-15 is highly significant. <«
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15.1 GENERAL CONSIDERATIONS FOR NON-DETECT DATA ..oviiiiittiieeitiieeeeteeeesiteeeeasateeesssaeesssnseessssssessenssessssanenas 15-1
15.2 IMPUTING NON-DETECT VALUES BY SIMPLE SUBSTITUTION ....cciiiiutiiiiieeeisiiiiiiie e e e e s ssibbrtes s e e s s ssssssnenseesseeans 15-3
15.3  ESTIMATION BY KAPLAN-IMEIER .....cccctttiiiiiiii ittt e ettt e e s st a b e e e e e e s s bbb b e e e s e e s s e bbb b b e e e e e s s s sabbbbaeeeeeeaas 15-7
15.4 ROBUST REGRESSION ON ORDER STATISTICS ..uuttiiiieiiiiiitiiiiieeeesiiitbttiessesssssssssssssesssssssssssssesssssssssssssessssins 15-13
15,5 OTHER METHODS FOR A SINGLE CENSORING LIMIT....cciiiittiiiieeiiiiiititeiieeeesssiirriessesssssssstresssesssssasssssssessssins 15-21

S T R 00T o= NS |V, 1 = (0] o TR 15-21

15.5.2 PARAMETRIC REGRESSION ON ORDER STATISTICS ...uvviiiiiteieeiietiee e ettt e e eertee e s steeeessiaee s s snveeesseraeee s 15-23
15.6 USE OF THE 15%/50% NON-DETECTS RULE .......cocoiiiiiiici ettt 15.24

This chapter considers strategies for accommodating non-detect measurements in groundwater
data analysis. Five particular methods are described for incorporating non-detects into parametric
statistical procedures. These include:

+« Simple substitution (Section 15.2);

% Kaplan-Meier (Section 15.3);

++ Robust Regression on Order Statistics (Section 15.4);

% Cohen's Method (Section 15.5.1); and

«+ Parametric Regression on Order Statistics (Section 15.5.2).

15.1 GENERAL CONSIDERATIONS FOR NON-DETECT DATA

Non-detects commonly reported in groundwater monitoring are statistically known as "left-
censored” measurements, because the concentration of any non-detect either cannot be estimated or is
not reported directly. Rather, it is known or assumed only to fall within a certain range of concentration
values (e.g., between zero and the quantitation limit [QL]). The direct estimate has been censored by
the limitations of the measurement process or analytical technique, and is deemed too uncertain to be
considered reliable. Groundwater non-detect data are censored on the low or left end of a sample
concentration range. Other kinds of threshold data, particularly survival rates in the medical literature,
are often reported as right-censored values.

Historically, there has been inconsistent treatment of non-detects in groundwater analysis. Often,
easily applied techniques have been favored over more sophisticated methods of handling non-detects.
This may primarily be due to the lack of familiarity and difficulties with software that can incorporate
such methods. Even at present, most statistical packages include analysis routines for right-censored
values but not left-censored ones (Helsel, 2005). Left-censored data needs to be converted to right-
censored data for analysis and then back again. Despite these limitations, the more sophisticated
methods are almost always superior to the methods of simple substitution.

The past twenty years has seen considerable research on statistical aspects of non-detect data
analysis. Helsel (2005) provides a detailed summary of available methods for non-detects, and
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concludes that simple substitution usually leads to greater statistical bias and inaccuracy than with better
technical methods. Gibbons (1994b) and Gibbons & Coleman (2001) offer a broad review of some of
the same research, not all of it directly relating to groundwater data. Both Gibbons and McNichols &
Davis (1988) note that most of the existing studies focus on an estimation of parameters such as the
mean and variance of an underlying population from which the censored and detected data originate.
For these tasks, simple substitution methods tend to perform poorly, especially when the non-detect
percentages are high (Gilliom & Helsel, 1986).

Much less attention has been given to how left-censored data impact the results of statistical tests,
the actual data-based conclusions that are drawn when using detection, compliance, or corrective action
monitoring tests. Closely estimating the true mean and variance of the underlying background
population may be important, but does not directly answer how well a given test performs (in achieving
the nominal false positive error rate and correctly identifying true significant differences). McNichols &
Davis (1988) performed a limited study to address these concerns. They found that simple substitution
methods were among the best performers in simulated prediction limit tests even with fairly high rates of
censoring, so long as the prediction limit procedure incorporated a verification resample.

Gibbons (1994b; also Gibbons and Coleman, 2001) conducted a similar limited simulation of
prediction limit testing performance incorporating a verification resample. They, too, found that a type
of simple substitution was one of the best performers when either an average of 20% or 50% of the data
was non-detect. The Gibbons study concluded that substituting zero for each non-detect worked better to
keep the false positive rate low than by substituting half the method detection limit [MDL].

Both studies primarily focused on the achievable false positive rate when censored data are
present, rather than the statistical power of these tests to identify contaminated groundwater. In addition,
both only considered parametric prediction limits. For data sets with fairly low detection frequencies
(e.g., <60%), parametric prediction limits may not accurately accommodate left-censored measurements,
with or without retesting. The McNichols & Davis study in particular found that none of the simpler
methods for handling non-detects did well when the underlying data came from a skewed distribution
and the non-detect percentage was over 50%.

On balance, there are four general strategies for handling non-detects: 1) employing a test
specifically designed to accommodate non-detects, such as the Tarone-Ware two-sample alternative to
the t-test (Section 16.3); 2) using a rank-based, non-parametric test such as the Kruskal-Wallis
alternative to analysis of variance [ANOVA] (Section 17.1.2) when the non-detects and detects can be
jointly sorted and ordered (except for tied values); 3) estimating the mean and standard deviation of
samples containing non-detects by means of a censored estimation technique; and 4) imputing an
estimated value for each non-detect prior to further statistical manipulation.

The first two strategies mentioned above are discussed in Chapters 16 and 17 of the Unified
Guidance as alternative testing procedures for evaluating left-censored data when parametric distribution
assumptions cannot be made. Tests that can accommodate non-detects are typically non-parametric and
thus carry both the advantages and disadvantages of non-parametric methods. The third and fourth
strategies — presented in this chapter — are often employed as an intermediate step in parametric
analyses. Estimates of the background mean and standard deviation are needed to construct parametric
prediction and control chart limits, as well as confidence intervals. Imputed values for individual non-
detects can be used as an alternate way to construct mean and standard deviation estimates, which are
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needed to update the cumulative sum [CUSUM)] portion of control charts or to compute the means of
order p that get compared against prediction limits.

The guidance generally favors the use of the more sophisticated Kaplan-Meier or Robust ROS
methods which can address the problem of multiple detection limits. Two older techniques-- Cohen's
method and parametric ROS-- are also included as somewhat easier methods which can work in some
circumstances. Applying any of the four estimation techniques as well as simple substitution does rely
on a fundamental underlying assumption. Both the detectable and non-detect portions of a data set are
assumed to arise from a single distribution, and in particular this underlying population is expected to be
stable or stationary during the period of the sampling record.

However, if an underlying distribution is subject to a trend over time, applying any of these
techniques including simple substitution is more problematic. If data indicating a decreasing trend also
happen to contain multiple detection limit data (perhaps the result of improved analytical methods), it
may be very difficult to determine whether there is truly a trend or analytical problems are the apparent
cause of the observed decreases. None of the techniques provided in this chapter can directly address
this issue. As discussed in Chapter 5, careful exploratory review of the historical data sets, particularly
those which might serve as background, need to consider which data including non-detects are most
representative of present or near-term future conditions. In some cases, removal of the older, less
reliable data may also resolve multiple detection limit problems. If non-detect values higher than other
quantified data at reasonable detection limits are included in a data set (especially if dictated by
reporting policy rather than analytical considerations), these will almost invariably need to be removed.
Even sophisticated multiple detection limit techniques cannot realistically address these particular
information-limited data values. But presuming valid and reliable data are selected, the four estimation
techniques are provided to address the management of non-detects.

A data set may also not be defined by a single distribution. If observed data are the result of two
or more different generative processes and indicate one or more separate peaks, it is referred to as a
mixture distribution. One example might be trace organics data in a release subject to changes in the
flow direction of the aquifer, which can result in very high to absent values. The subject is a complex
one and generally beyond the scope of this guidance. Aitchison's method can be used in limited
situations where detectable data form one discrete distribution, and the remainder are non-detect. The
following discussion also addresses when Aitchison's method might be appropriate. The non-detect
data are simply considered as some single value, another form of simple substitution.

15.2 IMPUTING NON-DETECT VALUES BY SIMPLE SUBSTITUTION

The simplest approach in managing non-detects is to substitute an imputed value for each prior to
subsequent statistical analysis. The imputation is intended to be a ‘reasonable estimate’ of the true, but
unknown concentration, usually a fraction (e.g., 0, %2, 1) of the reporting limit [RL]. If non-detects
represent an absence of the contaminant being measured, replacing a reported ‘less than’ value by zero
may make sense. If the true concentration is completely unknown, but believed to be between zero and
the RL, half the RL, or RL/2, may be a reasonable substitution, since this choice is the maximum
likelihood estimate [MLE] of the mean or median for a population of measurement values uniformly
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distributed along the interval [0, RL].! In other cases, a conservative choice might be made to maximize
the possible concentration levels present in non-detects by selecting the RL itself as the imputation.

Any of these substitution choices is imperfect since they ignore two realities about left-censored
measurements. First, non-detects are a product of both the underlying distribution of actual
concentrations and the measurement process used to estimate these concentrations. In particular, the
measurement technique may impart random or not so random bias to the ‘true’ concentration levels,
causing the reported values to be ‘shifted away from’ the true values. As an example, simple substitution
of zero for each non-detect ignores the fact that only the measurements can be observed and analyzed,
not the actual concentration levels. Physical groundwater samples that are completely devoid of a given
chemical may not receive measurements of zero, even if the actual amount is zero. Simple substitution
by zero thereby ignores the measurement distribution in favor of an a priori assumption about what non-
detects might represent.

A second reality is that non-detects must be considered with respect to other, detected
measurements, as well as the physical process that generated the data. In many cases, the entire sample
is drawn from a single statistical distribution (representing a common physical process) but some portion
of the lower tail has been censored during measurement, as illustrated in Figure 15-1. In this situation,
the overall distribution (and especially the shape of the lower tail) dictates how likely it is that a given
non-detect would have an uncensored measurement close to zero or close to the RL. Substitution by half
the RL or by the RL itself ignores the larger distributional pattern, especially since this distribution will
rarely be uniform in the interval [0, RL].

Figure 15-1. Single Distributional Model For Detects and Non-Detects
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! The uniform distribution places equal probability along every point of a finite concentration or measurement range. This
model implies that a true value close to zero is just as likely as a true value close to RL or any other point along the
interval.
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These realities can lead to severe biases in statistical parameter estimates made from censored data
when simple substitution methods are used (Helsel, 2005). Even if only 20% of the data are censored,
Gibbons (1994b) found that the false positive rate of a prediction limit test was far above the nominal
(i.e., expected or targeted) rate of oo = .05 when a simple imputation strategy was employed. For that
reason, the Unified Guidance recommends imputation by simple substitution only in select
circumstances described below:

s When the sample size istoo small to do anything else.

With only a handful of measurements (e.g., 5 or less), it will be almost impossible to accurately
apply a censored estimation technique, such as those described in Sections 15-3 to 15-5. Instead, simple
substitution of half the RL is recommended, perhaps until enough data has been collected to allow a
more sophisticated analysis. Three situations where simple substitution might commonly be needed
include:

1. Plotting cumulative sums [CUSUM] on control charts (Chapter 20). While there should be
enough background data to allow for a more sophisticated estimate of the control limit, the
CUSUM must be updated with each single new compliance observation (n = 1). If the new
measurement is a non-detect, the value must be imputed for the CUSUM to be calculated.

2. Constructing future means for prediction limits (Chapter 19). Again, if censored data exist in
background, the prediction limit for a future mean can be computed with the help of a censored
estimation technique. But with only 2 or 3 new measurements per compliance well (p = 2, 3),
the same strategy will not work for computing a mean of order p.

3. Construction of confidence intervals in compliance monitoring or corrective action. Especially
in the early months or years after the onset of compliance monitoring or a corrective action
plan, there may be too few compliance point measurements to allow for a statistically refined
treatment of non-detects. Until more data has been collected that is representative of the
conditions under which these phases of monitoring have been triggered, simple substitution of
non-detects will probably be needed. Furthermore, if groundwater conditions are in a state of
flux, it may be impossible — even with a larger sample size — to postulate a single, stationary
distributional model (similar to Figure 15-1) on which to base a censored estimation
technique.

% When non-detects comprise no more than 10-15% of the total sample.

If the percentage of non-detects is small enough, results of parametric t-tests and ANOVA are
usually not significantly affected if non-detects are first replaced by half their reporting limits [RLs]. A
similar statement can be made for parametric prediction limits, tolerance limits, control charts, and
confidence intervals. However, because t-tests and ANOVA involve a comparison of means utilizing
multiple data points per mean estimate,? while prediction limits for individual observations, tolerance
limits, and control charts focus on single measurements, it is important that retesting be included in the
statistical procedure whenever simple substitution is utilized with these latter methods.

2 Parametric confidence intervals around the mean also involve an estimate of the population average using multiple data
points.
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s When non-detects are generated by a different physical process than the detected values, and
thusrepresent a distinct statistical distribution.

One non-detect treatment recommended in past EPA guidance — Aitchison’s method (1955), as
applied to groundwater®* — assumed that non-detects were actually free of the contaminant being
measured, so that all non-detects could be regarded as zero concentrations. In some cases, if an analyte
has been detected infrequently or not at all in background measurements, and/or all non-detects are
qualified as “U” (i.e., undetected) values, this assumption may be practical, even if it cannot be directly
verified. Another example might be seasonal changes in groundwater elevation at wells located on the
edges of a contaminant plume. Parameters detectable at certain times of the year may be non-detect
during other seasons, even within the same well. Such non-detects may result from a different data-
generating mechanism, due to seasonal changes in groundwater chemistry, and so may not follow the
same distribution as detects.

Figure 15-2. Modified Delta Model For Mixture Distribution of Detects/Non-Detects
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More generally, Aitchison’s original model posited a ‘spike’ of zero-valued measurements,
combined with a lognormal distribution governing the detected values. A modification to Aitchison’s
model known as the modified delta method® (USEPA, 1993) has been found to be more practical and
realistic in many circumstances (Figure 15-2). Instead of assuming that all non-detects represent zero

® Aitchison’s model was not originally applied to concentration data. More typical applications were in the fields of
economics and demographics.

* The original Aitchison model was termed the delta-lognormal, so called because it presumed that the data consisted of a
mixture of two distinct populations: 1) a lognormal distribution representing the observed continuous measurements, and
2) a ‘spike’ of values, known as a delta function, located at zero.
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concentrations, the modified delta method assumes that non-detects constitute a separate, discrete
distribution. When combined with the detected values, a mixture distribution is formed consisting of a
continuous detected portion (usually the normal or lognormal distribution) and a discrete non-detect
portion. Rather than assuming that all non-detects are zeros, the modified delta model assigns all non-
detects at half the reporting limit [RL]. (Note: this might be a method detection limit [MDL], a
quantitation limit [QL], or a contract RL). This method can accommodate multiple reporting limits
since each non-detect is assigned half of its possibly sample-specific RL. It can also accommodate low-
valued detects intermingled with the non-detects, since the non-detects and detects are modeled by
distinct distributions.

15.3 ESTIMATION BY KAPLAN-MEIER
BACKGROUND AND PURPOSE

When a sample contains both detects and non-detects generated by a common process and
governed by a single underlying distribution (Figure 15-1), a more reliable strategy is to attempt to fit
the sample to a known distribution (e.g., normal, lognormal) and then to estimate the mean and standard
deviation of this distribution via a censored estimation technique. These adjusted estimates can be input
into standard equations for parametric prediction, tolerance, and control chart limits, as well parametric
confidence intervals around the mean.

Two censored estimation methods which can address the multiple detection limit problem are
discussed in the Unified Guidance: the Kaplan-Meier estimator and robust regression on order statistics
[ROS] (Section 15.4). Both involve initially fitting a left-censored sample to a known distribution. After
that, the procedures differ. The Kaplan-Meier creates an estimate of the population mean and standard
deviation adjusted for data censoring, based on the fitted distributional model, whereas the Robust ROS
uses the fitted model to construct a model-based imputation for each non-detect. Once the imputations
are made, the adjusted mean and standard deviation are estimated using standard equations for the
sample mean (X ) and standard deviation (s).

The key to either method is finding a single distributional model that adequately fits the joint
sample of detects and non-detects. While each procedure does the fitting in a slightly different fashion,
both utilize the notion of partial ranking. As discussed in Section 16.2 on “Handling Non-Detects,” the
presence of left-censored measurements, particularly when there are multiple RLs and/or an
intermingling of detects and non-detects, prevents a full and complete ranking of the sample. Both
Kaplan-Meier and ROS construct a partial ranking of the data, accounting for the non-detects and
assigning explicit ranks to each of the detected values. These detected values can then be graphed on a
censored probability plot and fitted against a known distribution.

The Kaplan-Meier technique estimates the approximate proportion of concentrations below each
observed level by sorting and ordering the distinct sample values, although the exact concentrations of
non-detects are unknown. In particular, the probability of observing a concentration no greater than a
given level (x) depends on the relative proportion of the sample greater than x;. Any detects larger than
x; obviously fall into this latter proportion, while non-detects with RLs of at most x; do not. On balance,
the proportion of the sample greater than x; cannot be precisely calculated for every x;, but it can be
estimated.
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The Kaplan-Meier estimator for left-censored data thus depends on a series of conditional
probabilities, where the frequency of lower concentrations depends on how many larger concentrations
have already been observed. The final result is an estimate of the cumulative distribution function [CDF]
for each distinct concentration level in the sample.

In mathematical notation, suppose there are m distinct values in the sample (out of a total of n
measurements), including distinct reporting limits. Order these values from least to greatest and denote
them as Xy, X@), ..., Xm). Let n; for i = 1 to mdenote the ‘risk set’ associated with value Xg;. The risk set
represents the total number of measurements — both detects and non-detects — no greater than X.
Since a non-detect with a RL larger than X is potentially (but not necessarily) larger than Xg, non-
detects with RL > X are not included in nmi. A further term d; identifies the number of detected
measurements exactly equal to Xg).

With these definitions in place and letting X denote a random variable concentration from the true
underlying distribution, the Kaplan-Meier estimator is constructed from the pair of probabilities:

Pr (x < x(m)): 1 [15.1]

di+ .
Pr(Xs x(i)‘xs x(i+1)) =1-— L for i=1tom [15.2]

i+1

where Xm+1) = +o0, dm+1 = 0, and nm+1 = N all by definition. Equation [15.2] represents the conditional
probability that the concentration does not exceed X; given that it does not exceed Xj+1). The final
Kaplan-Meier CDF estimate (Fkv) for each i =1 to m-1 (each distinct detected value) is given by a
product of these conditional probabilities and can be expressed as:

d., d.., do ) Tr(, G
Few (%)) = Pr(X < %)) = [1— nHle(l— - Jx ...x(l—n—mJ = Ik—[(l nmJ [15.3]

Once the CDF is estimated using equation [15.3], two additional steps are made possible. One is to
use the distinct values () and their corresponding CDF values (Fkm) to construct censored probability
plots. The other is to use the Kaplan-Meier CDF to estimate the population mean and standard deviation.

REQUIREMENTS AND ASSUMPTIONS

The Kaplan-Meier estimator is a non-parametric procedure originally devised to estimate survival
probabilities for right-censored samples (Kaplan and Meier, 1958), such as in medical studies of cancer
treatments. Because it is non-parametric, there is no requirement that the underlying population be
normal or transformable to normality. However, in adapting the technique to left-censored data (i.e.,
samples containing non-detects), the Unified Guidance recommends that the Kaplan-Meier procedure be
utilized to estimate the mean and variance of a normal or normalized distribution for use in parametric
statistical tests.

The Kaplan-Meier assumes that all detected and non-detect data arise from the same population,
but that non-detect values have been ‘censored’ at their RLs. This implies that the contaminant of
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concern is actually present in non-detect samples, but that the analytical method cannot accurately
measure, or is not sufficiently sensitive to, concentrations lower than the RL.

To construct a censored probability plot, a normal quantile or z-score needs to be computed for
each value of the Kaplan-Meier CDF (Fky). Doing so is straightforward except for the CDF value of the
sample maximum, which is assigned a value of one. The zscore associated with a cumulative
probability of one is infinite. To surmount this difficulty, the Unified Guidance recommends
temporarily setting the CDF value for the sample maximum equal to (n — .375)/(n + .25). This value is
the Blom plotting position often utilized in standard probability plots (Helsel, 2005). It is close to one
for large n, but allows for a finite z-score.

Estimation of the Kaplan-Meier mean and standard deviation using equations [15.4] and [15.5]
below will tend to be slightly biased, typically with the mean on the high side and the standard deviation
on the low side. This occurs because the Kaplan-Meier CDF levels corresponding to distinct RLs are
treated as if they were known measurements rather than the upper bounds on possible values. As long as
the total proportion of censored measurements is not too high, the degree of bias will tend to be small.
Larger biases are more likely whenever the detection rate is less than 50%.

PROCEDURE

Step 1. Given a sample of size n containing left-censored measurements, identify and sort the m<n
distinct values, including distinct RLs. Label these as X), X2), ..., Xm)-

Step2. Foreachi =1 to m, calculate the risk set (n;) as the total number of detects and non-detects
no greater than xg;. Also compute d; as the number of detected values exactly equal to X).

Step 3. Using equation [15.3], compute the Kaplan-Meier CDF estimate F_, (x(i)]for =1, .., m1

Also let F_, (x(m)): 1.

Step 4. Construct censored probability plots using the estimated CDF. First temporarily set
Fw (x(m)): (n— .375)/(n+ .25) so that a finite normal quantile (or z-score; see Chapter 9)

can be associated with Xm). Then compute normal quantiles (i.e., z-scores) for each value of

Fkm from Step 3 as 20~ d)‘l[FKM (x(i))] where @[] is the inverse of the standard normal

distribution function as discussed in the construction of probability plots in Chapter 9. Plot
the values z; against the unique detected concentrations Xg to form a normal censored
probability plot. Plot the Z;’s against a transformation of the x;’s (e.g., log, square root,
inverse, etc.) to form a normalized censored probability plot.

Step 5. For each attempted transformation f(-) including the unchanged observations as one option,
compute the correlation coefficient between the pairs [f(Xq), zip] (Chapter 3). The
transformation with the highest correlation coefficient and also a linear appearance on the
censored probability plot, is one that optimally normalizes the left-censored sample. Estimate
the mean and standard deviation in Step 6 on the transformed scale and use these estimates in
subsequent statistical analysis.
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Step 6.

If no transformation results in an adequately linear censored probability plot, conclude that the
sample cannot be normalized. Mean and standard deviation estimates of the original
concentrations can still be computed, but they will not correspond to a known probability
distribution.

If the raw concentration data are approximately normal, compute mean and standard deviation
estimates adjusted for censoring using the equations:

;[lKM = ix(i) ’ [FKM (X(i))_ Fiu (X(i—l) )] [15.4]

OA_KM = \/Z (X(i) - :[‘KM )2 ’ [FKM (X(i))_ FKM (X(i—l) )] [15-5]
i=1
where x;) =0 and F,, (x(o)): F., (0)=0 by definition. Otherwise, compute the adjusted

mean and standard deviation after applying the normalizing transformation f(-) with the
equations:

;[lKM = ﬁl‘, f (X(i) ) [FKM (X(i))_ Fiu (X(i—l) )] [15.6]
Oxm = \/i‘,(f (Xi )- A )2 : [FKM (X(i) ) — Fym (X(i—l) )] [15.7]

Estimates from equations [15.4] and [15.5] can then be used in place of the sample mean (X))
and standard deviation (s) in parametric equations for prediction and control limits, and for
confidence intervals. If a normalizing transformation is required, equations [15.6] and [15.7]
can be used to construct similar statistical limits and intervals on the transformed scale.

» EXAMPLE 15-1

Use the Kaplan-Meier technique on the following manganese concentration data to construct
estimates of the population mean and standard deviation that are adjusted for censoring.

Manganese Concentrations (ppb) in Background
Sample Well 1 Well 2 Well 3 Well 4 Well 5
1 <5.0 <5.0 <5.0 6.3 17.9
2 12.1 7.7 5.3 11.9 22.7
3 16.9 53.6 12.6 10.0 3.3
4 21.6 9.5 106.3 <2.0 8.4
5 <2.0 45.9 34.5 77.2 <2.0
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Step 1.

Step 2.

Step 3.

Step 4.

SOLUTION

From the combined sample of n = 25 measurements, identify and sort the 21 distinct values
including distinct RLs as in the table below. Compute the risk set (n;) for each distinct level
(X)) as the total number of detects and non-detects no greater than Xg. Also calculate the exact
number of detects (d;) equal to each level.

Compute the Kaplan-Meier estimate of the CDF using equations [15.1] and [15.3], shown in
column 5 of the table below. Two example calculations are given by:

(2. 1), 1), 1), 1)
Fn 7)1 2 (a2 (125 =08

o @3=(1- 2 (1- 1) (1-2) (1 L) (1- L] -028

i X(i) At Risk (ni) di CDF
1 <2.0 3 0 0.21
2 3.3 4 1 0.28
3 <5.0 7 0 0.28
4 5.3 8 1 0.32
5 6.3 9 1 0.36
6 7.7 10 1 0.40
7 8.4 11 1 0.44
8 9.5 12 1 0.48
9 10.0 13 1 0.52
10 11.9 14 1 0.56
11 12.1 15 1 0.60
12 12.6 16 1 0.64
13 16.9 17 1 0.68
14 17.9 18 1 0.72
15 21.6 19 1 0.76
16 22.7 20 1 0.80
17 34.5 21 1 0.84
18 45.9 22 1 0.88
19 53.6 23 1 0.92
20 77.2 24 1 0.96
21 106.3 25 1 1.00

Compute normal quantiles or z-scores for each value of Fy in the above table. First re-set the
last entry to (n - .375)/(n + .25) = 0.9752 so that a finite quantile can be associated with the
sample maximum.

Plot the z-scores against the distinct manganese levels to form a normal censored probability
plot (Figure 15-3). The probability plot correlation coefficient is r = 0.902. The plot itself
shows substantial curvature, suggesting that the sample is non-normal.
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Step 5.  Plot the z-scores against one or more transformations of the manganese levels. First attempt a
log transformation, as shown in Figure 15-4. In this case, the correlation coefficient improves
to r = 0.989 and the normalized censored probability plot looks fairly linear. Conclude that the
sample is approximately normal on the log-scale, that is, the manganese concentrations are
lognormal in distribution.

Step 6. Compute Kaplan-Meier log-mean ( [zy,KM) and log-standard deviation (&y,KM) estimates for

the manganese data using equations [15.6] and [15.7], taking f(-) as the natural logarithm. This
gives for the log-mean:

Ay =109(2)-[21-0] + 10g(3.3)-[.28—.21] + ... + 10g(106.3)-[L—.96] = 2.31l0g(ppb)

and for the log-standard deviation:

8ym = \/(Iog(Z)—2.31)2 -[21-0]+... + (log(106.3)—2.31)" - [1-.96] =1.18 log(ppb)

These adjusted mean and standard deviation estimates can then be used in place of the sample
log-mean and log-standard deviation in parametric prediction and control limits, or in
parametric confidence intervals. <

Figure 15-3. Censored Probability Plot of Manganese Concentrations
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Figure 15-4. Censored Probability Plot of Logged Manganese Sample
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15.4 ROBUST REGRESSION ON ORDER STATISTICS
BACKGROUND AND PURPOSE

Robust regression on order statistics [ROS] differs from Kaplan-Meier in that it uses the fitted
model to construct a model-based imputation for each non-detect. Once the imputations are made, the
adjusted mean and standard deviation are estimated using standard equations for the sample mean (X))
and standard deviation (s).

The first step in using Robust ROS is to find a single distributional model that adequately fits the
joint sample of detects and non-detects. Standard probability plots (Chapter 9) and normality tests
(Chapter 10) rely on a full ranking or ordering of the sample in order to fit candidate distributions. With
left-censored data, the true concentrations of non-detects are unknown, so only a partial ranking is
possible. Like Kaplan-Meier, the Robust ROS technique constructs a partial ranking of the data,
accounting for the non-detects and assigning explicit ranks to each of the detected values. These
detected values can be graphed on a censored probability plot to check the fit of possible distributional
models.

Once an adequate distribution is found, Robust ROS determines the approximate cumulative
probability associated with each distinct RL. The method then arbitrarily distributes non-detects with a
common RL so that each one accounts for an equal share of the estimated cumulative probability
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assigned to that RL. Once non-detects are ranked in this manner, the fitted distributional model is used
to impute a value for each non-detect. This last task is accomplished by conducting a linear regression
(Chapter 17) between the detected values and the z-scores from the censored probability plot. The
parameters of the regression line (i.e., intercept and slope) can be used to estimate the mean and standard
deviation of the distributional model, which in turn will generate imputed values for the non-detects.

The mathematics behind Robust ROS can be expressed as follows. First suppose there are k
distinct RLs in the sample. Order these from least to greatest. Define A; as the number of detected values
between the ith and (i+1)th RLs fori =1 to k-1. Let Ax = number of detects above the highest RL, and
take Ap = number of detects below the lowest RL. Also define B; as the total number of observations,
both detects and non-detects, with values below the ith RL. Define By = 0. Then the number of non-
detects below the ith RL can be written as:

C=B-B,-A, for i =1tok [15.8]

With these definitions in place, exceedance probabilities can be assigned to each of the k RLs,
representing the proportion of the sample greater than or equal to each distinct RL. These probabilities
can be written as:

A
e =pe. + —(1- pe 15.9
pl p|+1 A}+Bi( p|+1) [ ]

where peg denotes the proportion of the sample exceeding the ith RL. Equation [15.9] can be interpreted
in the following manner. The exceedance probability associated with a given RL is equal to the
exceedance probability assigned to the next highest RL combined with a fraction of the remaining, non-
exceedance probability (i.e.,, 1 — pe+1). The specific fraction depends on the relative occurrence of
detects between the ith and (i+1)th RLs. When i =k, define pe+1 = 0; when i = 0, define pegy = 1.

Once the exceedance probabilities are computed, plotting positions for the detects — i.e,
cumulative probabilities on a probability plot — can be calculated with the equation

pd, =(1- pe,)+[ﬁj-(pe,—pq+l) for j=1to A; andi=0tok [15.10]
+

for each set of detected values falling between the ith and (i+1)th RLs. Note that this equation also

applies to any detects below the lowest RL [i = 0] or above the highest RL [i = Kk]). Similarly, plotting
positions for each group of non-detects can be written as:

j . .
c. =|—— | 1- for j=1toC;andi=1tok 15.11
pC; (Ci+1j( pe,) j . [15.11]

With plotting positions for the detects, a normal quantile or z-score can be computed for each
value of pd. Then censored probability plots can be constructed using either the detected concentrations
(x;) or some normalizing transformation of the detected values, say f(x;;). If a linear probability plot can
be identified, a linear regression (Chapter 17) can be calculated for the pairs (z;, f(x;)) and used to
impute values for the non-detects in the sample.
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REQUIREMENTS AND ASSUMPTIONS

Robust ROS was originally devised to account for non-detects in water quality data (Helsel, 2005).
Robust ROS is an extension of a technique termed regression on order statistics [ROS (Gilliom and
Helsel, 1986), described in Section 15.5. That procedure assumes the joint sample of detects and non-
detects follows an underlying lognormal distribution. The fitted lognormal is used to estimate the
population mean and standard deviation as a parametric technique. Robust ROS by contrast only relies
on a parametric model to impute values for the non-detects. It can be applied to any normal or
normalized distribution, rather than just the lognormal distribution. It may also be regarded as quasi-
non-parametric since estimates for the sample are computed from the combined group of observed
detects and imputed non-detects, rather than from the mean and standard deviation of the underlying
distributional model, as in the original formulation.

In practice, because Robust ROS is not fully non-parametric, a known distribution must be fitted to
the entire sample in order to construct imputed values for the non-detects. Closely related to this, Robust
ROS assumes that both detected and non-detect data arise from the same population, with non-detect
values censored at their respective RLs. Like Kaplan-Meier, this implies that the contaminant of concern
is present in non-detect samples, but that the analytical method cannot accurately measure
concentrations lower than the RL.

PROCEDURE

Step 1. Given a left-censored sample with a total of n measurements, identify and sort the k distinct
RLs. Following the discussion above, count the number of detected values below the lowest
RL (Ao), the number of detected values at least as great as the highest RL (Ax), and the number
of detects between the ith and (i+1)th RLs (A for i = 1 to k-1). Also let By, = 0 and count the
total number of detects and non-detects below the ith RL (B; for i = 1 to k). Then use equation
[15.8] to calculate the number of non-detects (C; for i = 1 to k) below the ith RL.

Step 2. Let pey =1 and pe+1 = 0. For i = 1 to k, compute the probability of exceeding the ith distinct
RL (pe) using equation [15.9].

Step 3.  With the exceedance probabilities from Step 2, sort each group of detects associated with A;
and then compute plotting positions (i.e., cumulative probabilities) for these detects — pd;; —
using equation [15.10].

Step 4. Form normal quantiles (i.e., z-scores) associated with the detected measurements and plotting
positions pd;; by computing Z.? =" (pd”. ) where CI>‘1(-) is the inverse standard normal
CDF.

Step 5.  Construct censored probability plots using the z-scores from Step 4. Plot the values zfj‘ against
the detected concentrations X.? to form a normal censored probability plot. Plot the Z.? ’S

against a transformation of the xi‘jj ’s (e.g., log, square root, inverse, etc.) to form a normalized
censored probability plot.
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Step 6.

Step 7.

Step 8.

Step 9.

For each attempted transformation f(-) including the unchanged observations as one option,
compute the correlation coefficient between the pairs [f(x } (Chapter 3). The

transformation with the highest correlation coefficient and also a linear appearance on the
censored probability plot, is the one that optimally normalizes the left-censored sample. If no
transformation results in an adequately linear censored probability plot, conclude that the
sample cannot be normalized and that the Robust ROS may not provide reasonable
imputations for the non-detects.

If a normalizing transformation can be identified, compute a linear regression (Chapter 17) of

the values f (xf]’) on the zscores, z', to form the regression equation f (X)=4a+ b-Z. The
slope and intercept can be estimated using the equations

b:i i(z -2,)- 1)/ (n,-1)-s2 [15.12]

a=%x, -b-Z, [15.13]

where Z, is the mean of the z-scores associated with the detected values, ng = number of
detects, sf is the sample variance of the detected z-scores, and X, is the mean of the detected

measurements. The regression intercept (a) is an estimate of the population mean of the

normalized distribution, while the slope (6) is an estimate of the population standard
deviation.

Compute plotting positions (pc;) for the non-detects (i.e., censored observations) associated
with each distinct RL using equation [15.11]. Then form a second set of z-scores, this time

associated with the non-detects, by computing zl‘j: =P (pc”. ) forj=1toCj;andi=1tok

Form imputed values f(f(i?): a+Db- z; using the slope and intercept from Step 7 and the
censored z-scores from Step 8. Combine these (transformed) imputed values for the non-
detects with the (transformed) detected measurements f (xi‘j‘ ) to get censored estimates of the

population mean and standard deviation by computing the overall sample mean (& = X) and
sample standard deviation (& = s).

These censored estimates can be used in place of the unadjusted sample mean (X) and
standard deviation (s) in parametric equations for prediction and control limits, and for
confidence intervals. If a normalizing transformation f(-) is needed, the censored estimates
should be used to construct statistical limits and intervals on the transformed scale.

» EXAMPLE 15-2

In Example 15-1, the Kaplan-Meier technique was used on a sample of background manganese
concentrations to compute the log-mean and log-standard deviation, adjusted for the presence of non-
detects. Apply Robust ROS to these same data to compare the estimates.
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SOLUTION

Step 1. The n =25 manganese observations include 2 distinct RLs (<2 and <5). Count the number of
detected measurements below the lowest RL, above the highest RL, and between the two RLs,
denoted by A; in the table below. Also count the total number of measurements — both
detected and non-detect — below each RL, denoted below by B;. Use equation [15.8] to count
the number of non-detects associated with each RL, denoted below by Ci.

i RL A; Bi G
0 0 0 0
1 <2 1 3 3
2 <5 18 7 3

Step 2. Compute the probability of exceeding each RL using equation [15.9] and noting that pe; = 0:

A
A +B,

pe, = pe,+ (- p%)z%zo.n

18

_ A (e 1 oa _
pe = pe, + A+E (- pe)= o.72+1+3(1 0.72)=0.79

Step 3. Sort the detects associated with each A; and compute plotting positions for these detects using
equation [15.10], as listed in the table below. For instance, A; = 1, corresponding to the
detected value 3.3. The plotting position for this observation equals

pd, = (1— pel)+( A11+ J (pel - pe, ): 0.21+ 0.5(0.79 — 0.72): 0.245

Also form the normal quantiles (i.e., z-scores) associated with the detected observations, as
listed below:
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Step 4.

Step 5.

Detected Plotting z-score
Value (ppb) Position
3.3 0.245 -0.690
5.3 0.318 -0.474
6.3 0.356 -0.370
7.7 0.394 -0.270
8.4 0.432 -0.172
9.5 0.469 -0.077
10.0 0.507 0.018
11.9 0.545 0.114
12.1 0.583 0.210
12.6 0.621 0.308
16.9 0.659 0.410
17.9 0.697 0.515
21.6 0.735 0.627
22.7 0.773 0.748
34.5 0.811 0.880
45.9 0.848 1.030
53.6 0.886 1.207
77.2 0.924 1.434
106.3 0.962 1.776

Plot the z-scores against the detected manganese levels to form a normal censored probability
plot (Figure 15-5). The probability plot correlation coefficient is r = 0.901, almost identical to
the Kaplan-Meier censored probability plot constructed in Example 15-1. The plot also shows
substantial curvature, suggesting that the sample is non-normal. Also plot the z-scores against
a log transformation of the detected manganese values (Figure 15-6). Not only does the
normalized probability plot appear linear, but the correlation coefficient increases to r = 0.994.
Conclude as in Example 15-1 that the sample is approximately normal on the log-scale, so

that the manganese concentrations are lognormal in distribution.

Compute a linear regression of the ny = 19 logged manganese detects against their
corresponding z-scores using equations [15.12] and [15.13]. The sample mean and variance of

the detected z-scores are Z, = 0.3802 and sfd =0.4577 . Also, the log-mean of the detected

observations equals log (xG| ): 2.80. The slope and intercept of the resulting line are:

b= ;[1.194- (-.690-.3802) +... + 4.666(1.776 —.3802)] = 1.372

18x.4577

a=X, -b-z, =2.80-1.372x.3802 = 2.278

A
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Figure 15-5. Robust ROS Censored Probability Plot of Manganese Concentrations
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Figure 15-6. Robust ROS Censored Probability Plot of Logged Manganese
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Step 6.

Step 7.

Step 8.

Compute plotting positions for the non-detects (i.e., censored observations) associated with
each distinct RL using equation [15.11], listed in the table below. Form a second set of z-
scores, this time associated with the non-detects, also listed below. Note that each non-detect
is given a distinct plotting position, even though they cannot be ordered. This is done to “fill
in” the unknown portion of the underlying distribution, but should not be interpreted as a
legitimate ‘estimate’ for any particular non-detect observation. The positions for the first pair
of the 3 non-detects with RLs of 2 (i.e., <2) are

(1) (1)
P =g 41 (- pe)= (3:1) (1-0.79)=0.0525

(2 ) (2
pc, = L?HJ (1— pq): L;lJ (1—0.79): 0.105

RL Plotting z-score Imputed
Position Value
<2 0.0525 -1.621 0.054
<2 0.1050 -1.254 0.558
<2 0.1575 -1.005 0.899
<5 0.0700 -1.476 0.253
<5 0.1400 -1.080 0.796
<5 0.2100 -0.806 1.172

Form a second set of z-scores associated with the censored plotting positions from Step 6.
These are listed in the table above. Then, using the regression parameters from Step 5, form a

prediction for each non-detect using the equation Iog(xi‘]?): a+ ,5’ z; . Take these predictions

as the imputed values for the set of non-detects, as listed above. The first two imputed values
are computed as:

log(xS, )= 2.278 +1.372 - (- 1.621) = 0.054

log(xS, )= 2.278 +1.372 - (~1.254) = 0.558

Combine the logged detected manganese values with the imputed values from Step 7. Then
compute the sample mean and standard deviation using the adjusted sample. These
calculations give i =2.28log(ppb) and & =1.26 log(ppb). By comparison, the Kaplan-
Meier method in Example 15-1 gives very similar corresponding estimates of 2.31 log(ppb)
and 1.18 log(ppb). <
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SECTION 15.5 OTHER METHODS FOR A SINGLE CENSORING LIMIT

The two preferred methods using Kaplan-Meier or Robust ROS provided above for multiple
detection limits are computationally intensive. Helsel (2005) indicates that public software is available
for the Robust ROS method. Although the more common situation encountered in evaluating data sets
is the presence of multiple detection limits (hence the UG recommendations), two older techniques are
still applicable in some situations. The Cohen method and the parametric ROS techniques are both
simpler to apply, but depend on the use of a single censoring limit. One needs to evaluate the prospects
before applying them. If detectable data sets are large enough (e.g., n > 50) and detection percentages
near or greater than 50%, most of these methods will work comparably.

15.5.1 COHEN'S ADJUSTMENT

Cohen’s adjustment (Cohen, 1959) can be useful when a significant fraction (up to 50%) of the
observed measurements in a data set are reported as non-detects. The technique assumes that all the
measurements, detects and non-detects alike, arise from a common population, but that the lowest
valued observations have been censored at the QL. Using the censoring point (i.e.,, QL) and the pattern
in the detected values, Cohen’s method attempts to reconstruct the key features of the original
population, providing explicit estimates of the population mean and standard deviation. These in turn
can be used in certain statistical interval estimates, where Cohen’s adjusted estimates are used as
replacements for the sample mean and sample standard deviation.

REQUIREMENTS AND ASSUMPTIONS

Cohen’s adjustment assumes that the common underlying population has a normal distribution.
The technique should only be used when the observed sample data approximately fit a normal model
including transformations to normality. Because the presence of a large fraction of non-detects will
make explicit normality testing difficult, if not impossible, the most helpful diagnostic aid may be to
construct a censored probability plot on the detected measurements. If the censored probability plot is
clearly linear on the original measurement scale but not on the log-scale, assume normality for purposes
of computing Cohen’s adjustment. If, however, the censored probability plot is clearly linear on the log-
scale, but not on the original scale, assume instead that the common underlying population is lognormal.
Then compute Cohen’s adjustment to the estimated mean and standard deviation on the log-scale
measurements and construct the desired statistical interval using the algorithm for lognormally-
distributed observations.

When the detection rate is less than 50%, the accuracy of Cohen’s method worsens as the
percentage of non-detects increases. The guidance does not generally recommend the use of Cohen’s
adjustment when more than half the data are non-detect. In such circumstances, one should consider an
alternate statistical method, for instance a non-parametric interval or perhaps the Wilcoxon rank-sum
test for small samples.

One other requirement of Cohen’s original method is that there should be just a single censoring
point. Data sets with multiple RLs will usually require a more sophisticated treatment such as Kaplan-
Meier or Robust ROS methods or via maximum likelihood techniques (Cohen, 1963) or perhaps a
multiply-censored probability plot technique (Helsel and Cohn, 1988). If only 2 or 3 RLs do not
substantially differ and few detected intermingled data are lost, the censoring point (QL) can be set to
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the highest RL. Cohen's method requires explicit definition of the censoring limit, and is somewhat
sensitive to variation in this parameter.

PROCEDURE

Step 1.  Divide the data set into two groups, detects and non-detects. If the total sample size equals n,
let m represent the number of detects and (n—m) represent the number of non-detects. Denote
the ith detected measurement by X;. Then compute the mean and sample variance of the set of
detects using the equations:

m

1 1 i
=M x and =—-|) X*-nik>
m; i d m_l ; i d

X, =

Step 2. Denote the single censoring point by QL. Then compute the two intermediate quantities, h and
v, necessary to derive Cohen’s adjustment via the following equations:

h=100-(n-m)/n=ND% and y=5/(x,-QLY

Step 3. Use the intermediate quantities h and 1y to determine Cohen’s adjustment parameter A from the

table below.
Values of Lamba (A) for Cohen’s Adjustment
v\ND% 1 5 10 15 20 25 30 35 40 45 50
.01 .0102 .0530 1111 .1747 .2443 .3205 .4043 .4967 .5989 .7128 .8403
.05 .0105 .0547 .1143 .1793 .2503 .3279 14130 .5066 .6101 .7252 .8540
.10 .0110 .0566 .1180 .1848 .2574 .3366 4233 .5184 .6234 .7400 .8703
.20 .0116 .0600 .1247 .1946 .2703 .3525 4422 .5403 .6483 .7678 .9012
.30 .0122 .0630 .1306 .2034 .2819 .3670 .4595 .5604 .6713 .7937 .9300
.40 .0128 .0657 .1360 2114 .2926 .3803 .4755 .5791 .6927 .8179 .9570
.50 .0133 .0681 .1409 .2188 .3025 .3928 .4904 .5967 .7129 .8408 .9826
.60 .0137 .0704 .1455 .2258 .3118 .4045 .5046 .6133 .7320 .8625 1.0070
.70 .0142 .0726 .1499 .2323 .3206 4156 .5180 .6291 .7502 .8832 1.0303
.80 .0146 .0747 .1540 .2386 .3290 4261 .5308 .6441 .7676 .9031 1.0527
.90 .0150 .0766 .1579 .2445 .3370 4362 .5430 .6586 .7844 .9222 1.0743

1.00 .0153 .0785 .1617 .2502 .3447 .4459 .5548 .6725 .8005 .9406 1.0951

1.25 .0162 .0828 .1705 .2636 .3627 .4687 .5825 .7053 .8385 .9841 1.1443
1.50 .0170 .0868 .1786 .2758 .3793 .4897 .6081 .7357 .8738 .0245 1.1901
1.75 .0177 .0905 .1861 .2873 .3948 .5094 .6321 .7641 .9069 .0625 1.2332
2.00 .0184 .0940 .1932 .2981 .4093 .5279 .6547 .7909 .9382 .0984 1.2739

1

1

1
2.25 .0191 .0973 .1999 .3082 4231 .5454 .6761 .8164 .9679 1.1325 1.3127
2.50 .0197 .1005 .2062 .3179 4363 .5621 .6965 .8407 .9962 1.1651 1.3498
2.75 .0203 .1035 .2123 .3272 .4489 .5781 .7161 .8639 1.0234  1.1963 1.3854
3.00 .0209 .1063 .2182 .3361 .4609 .5935 .7348 .8863 1.0495 1.2264 1.4197
3.50 .0219 .1118 .2292 .3529 .4838 .6226 .7704 .9287 1.0990 1.2835 1.4847
4.00 .0229 .1168 .2395 .3687 .5052 .6498 .8038 .9685 1.1455 1.3371 1.5458

4.50 .0239 1216 .2492 .3836 .5253 .6755 .8353 1.0060 1.1895 1.3878 1.6037
5.00 .0248 1262 .2585 .3977 .5445 .7000 .8653 1.0418 1.2312 1.4359 1.6587
5.50 .0256 .1305 .2673 4111 .5628 .7233 .8938 1.0758 1.2711 1.4820 1.7113
6.00 .0264 .1346 .2757 4240 .5803 .7456 9212 1.1085 1.3094 1.5262 1.7617
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Step 4. Using the adjustment parameter A found in Step 3, compute adjusted estimates of the
population mean and standard deviation with the equations:

i =% -AX, -QL) and & =452 +1-(X,—QL)

Step 5.  Once the adjusted estimates for the population mean and standard deviation are derived, these
values can be substituted for the sample mean and standard deviation in equations for the
statistical intervals.

15.5.2 PARAMETRIC REGRESSION ON ORDER STATISTICS (ROS)

A second useful method (EPA, 2004) for estimating mean and standard deviation parameters for
data sets with non-detect values censored at a single limit is a parametric Regression on Order Statistics
(ROS). The same assumptions apply as with Cohen's method. Both the detected and non-detect
portions of the data are presumed to arise from a single population. That population should either be
normal or transformable to a normal distribution. The parametric ROS method performs similarly to
Cohen's method, and offers two principal advantages. The procedure can easily be implemented on
almost any statistical software, and the method is not sensitive to the exact censoring limit.

If variable X originates from a normal distribution with mean x and standard deviation o
[X = N(u,0)] and Z is the standard normal distribution [Z > N(0,1)], statistical theory indicates that
X =u+o0-Zwhen X and Z are at the same percentiles in their respective distributions. For a given
observation or sample x above a detection limit, the order statistic (i.e., the proportion of observations
less than x) can be estimated. This order statistic is an estimate of the percentile. The corresponding Z-
value can be obtained from reference tables or a computer algorithm. For a list of ordered observations
above the detection limit (xg, X, ..... to Xm) of m detectable samples out of a total n and a corresponding
set of Z-values (Z1, 2, ..... to Z,) at the same percentiles, regression analysis of X against Z will
provide estimates of the mean and standard deviation of distribution X.  The intercept is the mean
estimate and the slope of the regression is the standard deviation estimate.

When sample data better fit a lognormal or other normal transformable distribution, the regression
is performed on the transformed data. The mean and standard deviation estimates are also for the
transformed data (e.g., logarithmic mean and standard deviation). One may also use the regression
results to "fill in" or quantify the values below the detection limit. When the Z-distribution is developed
for the full set of total n sample values, the Z-values for the detectable portion are separated from those
for the remaining n - m non-detect percentiles. Estimates for the non-detect values are obtained from
the equation X =1+ 6-Z, using j the intercept mean estimate, & the slope standard deviation
estimate and the non-detect Z-values. These can then be aggregated with the sample detectable values
to obtain the overall mean and standard deviation estimate.

PROCEDURE

Step 1. Determine the appropriate normal transformation and convert the data if necessary. Divide
the data set into two groups, detects and non-detects. If the total sample size equals n, let m
represent the number of detects and (n — m) represent the number of non-detects. Denote the
ith detected measurement by x;. Order the mdetected data from smallest to largest.
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Step 2.  Define the normal percentiles for the total n sample set as follows. For a set of i values from 1
ton, p, =(i —.375)/(n+.25). Then convert to Z-values using the inverse normal distribution
Z =®"'(p,). Separate the Z values into two groups: the larger m detected and n - m non-
detected portions.

Step 3. Use linear regression of the ordered m data values against the corresponding Z-values. Obtain
the intercept and slope of the regression as the estimated mean and standard deviation
estimates, ZZand 6. These can be used directly as the distributional parameter estimates or

Step 4 can be followed.

Step4. Using equation X, . =ia+6-Z,, with g the intercept mean estimate, & the slope

standard deviation estimate and the non-detect Z,.m values, calculate the remaining X,.m values
and combine with the X, detected data. Use the combined direct sample mean and standard
deviation calculations as the final parameter estimates:

» EXAMPLE 15-3

Use Cohen's and the parametric ROS methods for the data in Example 15-1 and compare the
results to the Kaplan-Meier and Robust ROS Methods. A single overall logarithmic distribution can be
assumed. In the example, it is possible to utilize the higher detection limit (<5) as the censoring limit,
with the loss of only a single detected point of information. The detection frequency is still 72%.

For Cohen's method, h = .28 and y = .465 for the logarithmic data. The adjustment parameter from
the above table is interpolated as 4 = .445. The resulting mean and standard deviation estimates for the
full data set are jz=2.32 log(ppb) and & = 1.22 log(ppb).

Mean and standard deviation estimates for the parametric ROS method are i = 2.33 log(ppb) and

6 = 1.21 log(ppb) following regression of the ordered detectable log values against the corresponding
Z- values of the standard normal distribution. With such few non-detects near the lowest end of the
sample distribution, the results are quite similar to the Robust ROS and Kaplan-Meier methods. For
higher non-detect percentages and more heavily intermingled non-detect data, the results using these
methods can differ considerably. <

15.6 USE OF THE 15% AND 50% NON-DETECT RULE

In this chapter and elsewhere in the Unified Guidance, it is recommended that imputing arbitrary
values be limited to data sets with 10-15% or fewer non-detects and that parametric procedures be
applied when there are 50% or fewer non-detects. The guidance continues to suggest this basic non-
detects rule for both historical and conservative reasons. The same approach was found in both the
earlier RCRA 1989 and 1992 RCRA statistical guidance documents, although it was recognized in the
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first as a guideline “based on judgment”. It was also noted that “there is no general procedure that is
applicable in all cases.” The 10-15% rule using direct substitution of arbitrary values is believed
adequate for many applications, but one of the censoring estimation techniques provided in this chapter
can be used instead. For a skewed distribution like the lognormal, the latter approach would be
preferable. We have cited studies above by Davis and others indicating that parameter estimation and
test performance can suffer when more than 50% of the data are non-detects. Most of the common
parameters (i.e., mean, median, standard deviation, etc.) can be estimated with tolerable bias and error
when no more than 50% of the values are originally non-detect and the superior non-detect fitting
techniques used. Statistical test performance using these limitations appears to be reasonable for most
applications. However, it should be recognized that they are only “rules of thumb”, not absolute criteria.

Other authors (e.g., Helsel 2005) have suggested that certain tests will perform adequately even
with higher non-detect rates in data. The criterion of non-detect percentage is not the only factor. For
example with very large data sets (e.g., 100-300), quite reasonable fits can be made to the detectable
portion using techniques found in Chapter 15 even with non-detect percentages greater than 50%.
Having a sufficient number of detectable data is also an important consideration, applying equally to
small data sets. One should have a fairly good idea that the detect data themselves follow one or another
parametric distributions. To do so, one should have a sufficiently large number of detected data points
for comparison.

A second factor is the potential application for fitted non-detect data. As an example, fits of high
non-detect percentage larger data sets using the lognormal distribution can provide decent parameter
estimates (log mean and log standard deviation) for use with upper prediction limit detection monitoring
tests. Generally, the fits accurately describe the upper portions of the observed data sets. At the same
time, these estimated logarithmic parameters may result in considerably larger errors when estimating
the true arithmetic mean and standard deviation (the bias problem in transformations), such as with
compliance level tests. In this case, the 50% rule is best followed.

The guidance generally recommends non-parametric options when non-detect data exceed 50%.
However, even this suggestion comes with caveats. For example, if a number of wells to be compared
using Kruskal-Wallis non-parametric ANOVA had mostly or all well data sets greater than 50% non-
detects, the outcome would be ambiguous. This is because the test involves comparisons of medians,
which would lie below the detection limit. At very high non-detect percentages, fewer options are
available. Upper non-parametric prediction limits can work with very few detectable values, but the
assumption of any distributional pattern is increasingly tenuous. In some cases, a binomial test of
proportions (found in the 1989 guidance) may be the only realistic option. As a final suggestion, we
recommend that users take these factors into account and consider recommendations of other statistical
literature in the field as well, when considering non-detect limitations to specific test procedures.

15-25 March 2009



Chapter 15. Managing Non-Detect Data Unified Guidance

This page intentionally left blank

15-26 March 2009



PART III. DETECTION MONITORING TESTS Unified Guidance

PART III. DETECTION MONITORING
TESTS

This third part of the Unified Guidance presents core procedures recommended for formal
detection monitoring at RCRA-regulated facilities. Chapter 16 describes two-sample tests appropriate
for some small facilities, facilities in interim status, or for periodic updating of background data. These
tests include two varieties of the t-test and two non-parametric versions-- the Wilcoxon rank-sum and
Tarone-Ware procedures. Chapter 17 discusses one-way analysis of variance [ANOVA], tolerance
limits, and the application of trend tests during detection monitoring. Chapter 18 is a primer on several
kinds of prediction limits, which are combined with retesting strategies in Chapter 19 to address the
statistical necessity of performing multiple comparisons during RCRA statistical evaluations. Retesting
is also discussed in Chapter 20, which presents control charts as an alternative to prediction limits.

As discussed in Section 7.5, any of these detection-level tests may also be applied to
compliance/assessment and corrective action monitoring, where a background groundwater protection
standard [GWPS] is defined as a critical limit using two- or multiple-sample comparison tests. Caveats
and limitations discussed for detection monitoring tests are also relevant to this situation. To maintain
continuity of presentation, this additional application is presumed but not repeated in the following
specific test and procedure discussions.

Although other users and programs may find these statistical tests of benefit due to their wider
applicability to other environmental media and types of data, the methods described in Parts 111 and IV
are primarily tailored to the RCRA setting and designed to address formal RCRA monitoring
requirements. In particular, the series of prediction limit tests found in Chapter 18 is designed to
address the range of interpretations of the sampling rules in 8264.97(g), §264.98(d) and §258.54.
Further, all of the regulatory tests listed in §264.97(i) and 8258.53(h) are discussed, as well as the
Student’s t-test requirements of 8265.93(b).

Taken as a whole, the set of detection monitoring methods presented in the Unified Guidance
should be appropriate for almost all the situations likely to be encountered in practice. Professional
statistical consultation is recommended for the rest.
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CHAPTER 16. TWO-SAMPLE TESTS
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This chapter describes statistical tests between two groups of data, known as two-sample tests.
These tests may be appropriate for the smallest of RCRA sites performing upgradient-to-downgradient
comparisons on a very limited number of wells and constituents. They may also be required for certain
facilities in interim status, and can be more generally used to compare older versus newer data when
updating background.

Two versions of the classic Student’s t-test are first discussed: the pooled variance t-test and
Welch’s t-test. Since both these tests expect approximately normally-distributed data as input, two non-
parametric alternatives to the t-test are also described: the Wilcoxon rank-sum test (also known as the
Mann-Whitney) and the Tarone-Ware test. The latter is particularly helpful when the sample data exhibit
a moderate to larger fraction of non-detects and/or multiple detection/reporting limits.

16.1 PARAMETRIC T-TESTS
BACKGROUND AND PURPOSE

A statistical comparison between two sets of data is known as a two-sample test. While several
varieties of two-sample tests exist, the most common is the parametric t-test. This test compares two
distinct statistical populations. The goal of the two-sample t-test is to determine whether there is any
statistically significant difference between the mean of the first population when compared against the
mean of the second population, based on the results observed in the two respective samples.

In groundwater monitoring, the typical hypothesis at issue is whether the average concentration at a
compliance point is the same as (or less than) the average concentration in background, or whether the
compliance point mean is larger than the background mean, as represented in equation [16.1] below:

Hy it St Vs Hy i > iy, [16.1]

A natural statistic for comparing two population means is the difference between the sample
means, (XC —YBG). When this difference is small, a real difference between the respective population

means is considered unlikely. However, when the sample mean difference is large, the null hypothesis is
rejected, since in that case a real difference between the populations seems plausible. Note that an
observed difference between the sample means does not automatically imply a true population
difference. Sample means can vary for many reasons even if the two underlying parent populations are
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identical. Indeed, the Student’s t-test was invented precisely to determine when an observed sample
difference should be considered significant (i.e., more than a chance fluctuation), especially when the
sizes of the two samples tend to be small, as is the usual case in groundwater monitoring.

Although the null hypothesis (Ho) represented in equation [16.1] allows for a true compliance point
mean to be less than background, the behavior of the t-test statistic is assessed at the point where Hg is
most difficult to verify — that is, when Hy is true and the two population means are identical. Under the
assumption of equal population means, the test statistic in any t-test will tend to follow a Student’s t-
distribution. This fact allows the selection of critical points for the t-test based on a pre-specified Type |
error or false positive rate (o). Unlike the similarly symmetric normal distribution, however, the
Student’s t-distribution also depends on the number of independent sample values used in the test,
represented by the degrees of freedom [df].

The number of degrees of freedom impacts the shape of the t-distribution, and consequently the
magnitude of the critical (percentage) points selected from the t-distribution to provide a basis of
comparison against the t-statistic (see Figure 16-1). In general, the larger the sample sizes of the two
groups being compared, the larger the corresponding degrees of freedom, and the smaller the critical
points (in absolute value) drawn from the Student’s t-distribution. In a one-sided hypothesis test of
whether compliance point concentrations exceed background concentrations, a smaller critical point
corresponds to a more powerful test. Therefore, all other things being equal, the larger the sample sizes
used in the two-sample t-test, the more protective the test will be of human health and the environment.

Figure 16-1. Student’s t-Distribution for Varying Degrees of Freedom
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In groundwater monitoring, t-tests can be useful in at least two ways. First, a t-test can be
employed to compare background data from one or more upgradient wells against a single compliance
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well. If more than one background well is involved, all the upgradient data would be pooled into a single
group or sample before applying the test.

Second, a t-test can be used to assess whether updating of background data is appropriate (see
Chapter 5 for further discussion). Specifically, the two-sample t-test can be utilized to check whether
the more recently collected data is consistent with the earlier data assigned initially as the background
data pool. If the t-test is non-significant, both the initial background and more recent observations may
be considered part of the same statistical population, allowing the overall background data set to grow
and to provide more accurate information about the characteristics of the background population.

The Unified Guidance describes two versions of the parametric t-test, the pooled variance
Student’s t-test and a modification to the Student’s t-test known as Welch’s t-test. This guidance prefers
the latter t-test to use of Cochran’s Approximation to the Behrens-Fisher (CABF) Student’s t-test.
Initially codified in the 1982 RCRA regulations, the CABF t-test is no longer explicitly cited in the 1988
revision to those regulations. Both the pooled variance and Welch’s t-tests are more standard in
statistical usage than the CABF t-test. When the parametric assumptions of the two-sample t-test are
violated, the Wilcoxon rank-sum or the Tarone-Ware tests are recommended as non-parametric
alternatives.

REQUIREMENTS AND ASSUMPTIONS

The two-sample t-test has been widely used and carefully studied as a statistical procedure. Correct
application of the Student’s t-test depends on certain key assumptions. First, every t-test assumes that the
observations in each data set or group are statistically independent. This assumption can be difficult to
check in practice (see Chapter 14 for further discussion of statistical independence), especially if only a
handful of measurements are available for testing. As noted in Chapter 5 in discussing data mixtures,
lab replicates or field duplicates are not statistically independent and should not be treated as
independent water quality samples. That section discussed the limited conditions under which certain
replicate data might be applicable for t- testing. Incorrect usage of replicate data was one of the concerns
that arose in the application of the CABF t-test.

Second, all t-tests assume that the underlying data are approximately normal in distribution.
Checks of this assumption can be made using one of the tests of normality described in Chapter 10. The
t-test is a reasonably robust statistical procedure, meaning that it will usually provide accurate results
even if the assumption of normality is partially violated. This robustness of the t-test provides some
insurance against incorrect test results if the underlying populations are non-normal. However, the robust
assumption is dubious when the parent population is heavily skewed. For data that are lognormal and
positively skewed, the two-sample t-test can give misleading results unless the data are first log-
transformed. Similarly, a transformation may be needed to first normalize data from other non-normal
distributions.

Another assumption particularly relevant to the use of t-tests in groundwater monitoring is that the
population means need to be stable or stationary over the time of data collection and testing. As
discussed in Part 11 of the guidance, many commonly monitored groundwater parameters exhibit mean
changes in both space and time. Consequently, correct application of the t-test in groundwater requires
an implicit assumption that the two populations being sampled (e.g., a background well and a
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compliance point well) have average concentrations that are not trending with time. Time series plots
and diagnostic trend tests (Chapter 14) can sometimes be used to check this assumption.

The t-test does an excellent job of identifying a stable mean level difference between two
populations. However, if one or both populations have trends observable in the sample measurements,
the t-test may have difficulty correctly identifying a difference between the two groups. For instance, if
earlier samples in a compliance well were uncontaminated but later samples are increasing with time, the
t-test may still provide a non-significant result. With compliance point concentrations increasing relative
to background, the t-test may not be the appropriate method for identifying this change. Some form of
trend testing will provide a better evaluation.

Another concern in applying the t-test to upgradient-downgradient interwell comparisons is that the
null hypothesis is assumed to be true unless the downgradient well becomes contaminated. Absent such
an impact, the population means are implicitly assumed to be identical. Spatial variability in
background and compliance well groundwater concentrations for certain monitoring constituents do not
allow clear conditions for comparisons intended to identify a release at a downgradient compliance well.
Natural or pre-existing synthetic mean differences among background wells will be confused with a
potential release. In such cases, neither the two-sample t-test nor any interwell procedure comparing
upgradient against downgradient measurements is likely to give a correct conclusion.

One final requirement for running any t-test is that each group should have an adequate sample
size. The t-test will have minimal statistical power to identify any but the largest of concentration
differences if the sample size in each group is less than four. Four measurements per group should be
considered a minimum requirement, and much greater power will accrue from larger sample sizes. Of
course, the attractiveness of larger data sets must be weighed against the need to have statistically
independent samples and the practical limitation of semi-annual or annual statistical evaluations. These
latter requirements often constrain the frequency of sampling so that it may be impractical to secure
more than 4 to 6 or possibly 8 samples during any annual period.

16.1.1 POOLED VARIANCE T-TEST
BACKGROUND AND PURPOSE

In the case of two independent samples from normal populations with common variance, the
Student’s t-test statistic is expressed by the following equation:

(nBG _1)5536 + (nC _1)52 (1 n i\ [16.2]
(nBG TN = 2) Nec nCJ |

t:(YC_YBG)

The first bracketed quantity in the denominator is known as the pooled variance, a weighted average of
the two sample variances. The entire denominator of equation [16.2] is labeled the standard error of the
difference (SEgir). It represents the probable chance fluctuation likely to be observed between the
background and compliance point sample means when the null hypothesis in equation [16.1] is true.
Note that the formula for SEgi¢ depends on both the pooled variance and the sample size of each group.
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When the null hypothesis (Ho) is satisfied and the two populations are truly identical, the test
statistic in equation [16.2] behaves according to an exact Student’s t-distribution. This fact enables
critical points for the t-test to be selected based on a pre-specified Type | error rate (o) and an
appropriate degrees of freedom. In equation [16.2], the joint degrees of freedom is equal to

(nBG +n, —2), the sum of the background and compliance point sample sizes less two degrees of
freedom (one for each mean estimate).

REQUIREMENTS AND ASSUMPTIONS

Along with the general requirements for t-tests, the pooled variance version of the test assumes that
the population variances are equal in both groups. Since only the sample variances will be known, this
assumption requires a formal statistical test of its own such as Levene’s test described in Chapter 11.
An easier, descriptive method is to construct side-by-side box plots of both data sets. If the population
variances are equal, the interquartile ranges represented by the box lengths should also be comparable. If
the population variances are distinctly different, on the other hand, the box lengths should also tend to be
different, with one box much shorter than the other.

When variances are unequal, the Unified Guidance recommends Welch’s t-test be run instead.
Welch’s t-test does not require the assumption of equal variances across population groups. Furthermore,
the performance of Welch’s t-test is almost always equal or superior to that of the usual Student’s t-test.
Therefore, one may be able to skip the test of equal variances altogether before running Welch’s t-test.

All t-tests require approximately normally-distributed data. If a common variance (c%) exists
between the background and compliance point data sets, normality in the pooled variance t-test can be
assessed by examining the combined set of background and compliance point residuals. A residual can

be defined as the difference between any individual value and its sample group mean (e.g., X, — X, for

background values x;). Not only will the combined set of residuals allow for a more powerful test of
normality than if the two samples are checked separately, but it also avoids a difficulty that can occur if
the sample measurements are naively evaluated with the Shapiro-Wilk multiple group test. The multiple
group normality test allows for populations with different means and different variances. If an equal
variance check has not already been made, the multiple group test could register both populations as
being normal even though the two population variances are distinctly different. The latter would violate
a key assumption of the pooled variance t-test. To avoid this potential problem, either always check
explicitly for equal variances before running the pooled variance t-test, or consider running Welch’s t-
test instead.

PROCEDURE

Step 1. To conduct the two-sample Student’s t-test at an a-level of significance, first compute the
sample mean (X ) and standard deviation (s) of each group. Check for equal variances using a
test from Chapter 11. If there is no evidence of heteroscedasticity, check normality in both
samples, perhaps by calculating the residuals from each group and running a normality test on
the combined data set.
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Step 2.

Step 3.

Once the key assumptions have been checked, calculate the two-sample t-statistic in equation
[16.2], making use of the sample mean, sample standard deviation, and sample size of each

group.

Set the degrees of freedom to df =n_, +n_ -2, and look up the (1-o) x 100th percentage

point from the t-distribution in Table 16-1 in Appendix D. Compare this a-level critical point
against the t-statistic. If the t-statistic does not exceed the critical point, conclude there is
insufficient evidence of a significant difference between the two population means. If,
however, the t-statistic is greater than the critical point, conclude that the compliance point
population mean is significantly greater than the background mean.

» EXAMPLE 16-1

Consider the quarterly sulfate data in the table below collected from one upgradient and one
downgradient well during 1995-96. Use the Student’s t-test to determine if the downgradient sulfate
measurements are significantly higher than the background values at an a = 0.01 significance level.

Step 1.

Sulfate Concentrations (ppm)
Background Downgradient

Quarter Background Downgradient Residuals Residuals

1/95 560 23.75

4/95 530 -6.25

7/95 570 600 33.75 -8.33
10/95 490 590 -46.25 -18.33

1/96 510 590 -26.25 -18.33
4/96 550 630 13.75 21.67
7/96 550 610 13.75 1.67
10/96 530 630 -6.25 21.67
Mean 536.25 608.33

sD 26.6927 18.3485

SOLUTION

Compute the sample mean and standard deviation in each well, as listed in the table above.
Then compute the sulfate residuals by subtracting the well mean from each individual value.
These differences are also listed above. Comparison of the sample variances shows no
evidence that the population variances are unequal. Further, a probability plot of the combined
set of residuals (Figure 16-2) indicates that the normal distribution appears to provide a
reasonable fit to these data.
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Step 2.

Step 3.

16.1.2
BACKGROUND AND PURPOSE

Figure 16-2. Probability Plot of Combined Sulfate Residuals
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Compute the two-sample t-statistic on the raw sulfate measurements using equation [16.2].
Note that the background sample size is ngg = 8 and the downgradient sample size is nc = 6.

7(26.6927) +5(18.3485) |(1 1)

t = (608.33-536.25) 5 67 gt g) =566

Compute the degrees of freedom as df =8 + 6 — 2 = 12. Since o = .01, the critical point for the
test is the upper 99th percentile of the t-distribution with 12 df. Table 16-1 in Appendix D
then gives the value for t, = 2.681. Since the t-statistic is clearly larger than the critical point,
conclude the downgradient sulfate population mean is significantly larger than the background
population mean at the 0.01 level. <«

WELCH'S T-TEST

The pooled variance Student’s t-test in Section 16.1.1 makes the explicit assumption that both
populations have a common variance, ¢°>. For many wells and monitoring constituents, local
geochemical conditions can result in both different well means and variances. A contamination pattern
at a compliance well can have very different variability than its background counterpart.

Welch’s t-test was designed as a modification to the Student’s t-test when the population variances
might differ between the two groups. The Welch’s t-test statistic is defined by the following equation:
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s, S
t=(x, —XBG)/ e [16.3]
BG C

The denominator of equation [16.3] is also called the standard error of the difference (SEgif), Similar to
the pooled variance t-test. But it is a different weighted estimate based on the respective sample
variances and sample sizes, reflecting the fact that the two population variances may not be the same.

The most difficult part of Welch’s t-test is deriving the correct degrees of freedom. Under the
assumption of a common variance, the pooled variance estimate incorporated into the usual Student’s t-

test has df :(nBG +n, —2) degrees of freedom, representing the number of independent “bits” of

sample information included in the variance estimate. In Welch’s t-test, the derivation of the degrees of
freedom is more complicated, but can be approximately computed with the following equation:

2
Ngg Ne Ngg -1 Ne -1

Despite its lengthier calculations, Welch’s t-test has several practical advantages. Best and Rayner
(1987) found that among statistical tests specifically designed to compare two populations with different
variances, Welch’s t-test exhibited comparable statistical power (for df > 5) and was much easier to
implement in practice than other tests they examined. Moser and Stevens (1992) compared Welch’s t-
test against the usual pooled variance t-test and determined that Welch’s procedure was the more
appropriate in almost every case. The only advantage registered by the usual Student’s t-test in their
study was in the case where the sample sizes in the two groups were unequal and the population
variances were known to be essentially the same. In practice, the population variances will almost never
be known in advance, so it appears reasonable to use Welch’s t-test in the majority of cases where a two-
sample t-test is warranted.

REQUIREMENTS AND ASSUMPTIONS

Welch§ t-test is also a reasonably robust statistical procedure, and will usually provide accurate
results even if the assumption of normality is partially violated. This robustness of the t-test provides
some insurance against incorrect test results if the underlying populations are non-normal. But heavily
skewed distributions do require normalizing transformations. Certain limitations apply when using
transformed data, discussed in the following section.

Unlike the pooled variance t-test, Welch’s procedure does not require that the population variances
be equal in both groups. Other general requirements of t-tests, however, such as statistical independence
of the sample data, lack of spatial variability when conducting an interwell test, and stationarity over
time, are applicable to Welch’s t-test and needs to be checked prior to running the procedure.

Because the variances of the tested populations may not be equal, an assessment of normality
cannot be made under Welch’s t-test by combining the residuals (as with the pooled variance t-test),
unless an explicit check for equal variances is first conducted. The reason is that the combined residuals
from normal populations with different variances may not test as normal, precisely because of the
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heteroscedasticity. Since this latter variance check is not required for Welch’s test, it may be easier to
input the sample data directly into the multiple group test of normality described in Chapter 10.

Step 1.

Step 2.
Step 3.

Step 4.

Step 5.

PROCEDURE

To run the two-sample Welch’s t-test, first compute the sample mean (X) standard deviation
(s), and variance (s) in each of the background (BG) and compliance point (C) data sets.

Compute Welch’s t-statistic with equation [16.3].

Compute the approximate degrees of freedom in equation [16.4] using the sample variance
and sample size from each group. Since this quantity often results in a fractional amount,

round the approximate df to the nearest integer.

Depending on the a significance level of the test, look up an appropriate critical point (tc,) in
Table 16-1 in Appendix D. This entails finding the upper (1— a)x 100th percentage point of

the Student’s t-distribution with df degrees of freedom.

Compare the t-statistic against the critical point. If t < tc,, conclude there is no statistically
significant difference between the background and compliance point population means. If,
however, t > t¢, conclude that the compliance point population mean is significantly greater
than the background mean at the o level of significance.

» EXAMPLE 16-2

Consider the following series of monthly benzene measurements (in ppb) collected over 8 months
from one upgradient and one downgradient well. What significant difference, if any, does Welch’s t-test
find between these populations at the o = .05 significance level?

Benzene (ppb)
Month BG DG
Jan 0.5 0.5
Feb 0.8 0.7
Mar 1.6 4.6
Apr 1.8 2.0
May 1.1 16.7
Jun 16.1 12.5
Jul 1.6 26.3
Aug 0.6 186.0
N 8 8
Mean 3.0 31.2
SD 5.31 63.22
Variance 28.204 3997.131
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Step 1. Compute the sample mean, standard deviation, and variance of each group as in the table
above.

Step 2. Use equation [16.3] to compute Welch’s t-statistic:

t=(31.2- 3.0)/\/ 28':04 + 399;'131 =1.257

Step 3. Compute the approximate degrees of freedom using equation [16.4]:

2 2 2
o - [ 28204  3997.131 (28.204/8) N (3997.131/8) _71 7
8 8 7 7
Step4. Using Table 16-1 in Appendix D and given o = .05, the upper 95% critical point of the
Student’s t-distribution with 7 df is equal to 1.895.

Step 5. Compare the t-statistic against the critical point, te,. Since t < t¢,, the test on the raw
concentrations provides insufficient evidence of a true difference in the population means.
However, given the order of magnitude difference in the sample means and the fact that
several of the downgradient measurements are substantially larger than almost all the
background values, we might suspect that one or more of the t-test assumptions was violated,
possibly invalidating the result. <

16.1.3 WELCH’S T-TEST AND LOGNORMAL DATA

Users should recall that if the underlying populations are lognormal instead of normal and Welch’s
t-test is run on the logged data, the procedure is not a comparison of arithmetic means but rather between
the population geometric means. In the case of a lognormal distribution, the geometric means are
equivalent to the population medians. In effect, a test of the log-means is equivalent to a test of the
medians in terms of the raw concentrations. Both the population geometric mean and the lognormal
median can be estimated from the logged measurements asexp(y), where y =logx represents a logged

value and y is the log-mean. On the other hand, the (arithmetic) lognormal mean on the concentration
scale would be estimated as exp (7 + 35/2), a quantity larger than the geometric mean or median due to

the presence of the term involving sj, the log-variance.

Although a t-test conducted in the logarithmic domain is not a direct comparison of the arithmetic
means, there are situations where that comparison can be inferred from the test results. For instance,
consider using the pooled variance two-sample Student’s t-test on logged data with a common (i.e.,

equal) population log-variance (05) in each group. In that case, finding a larger geometric mean or
median in a compliance well population when compared to background also implies that the compliance

point arithmetic mean is larger than the background arithmetic mean. However, when using Welch’s t-
test, the assumption of equal variances is not required. Because of this, on rare occasions one might find

16-10 March 2009



Chapter 16. Two-Sample Tests Unified Guidance

a larger compliance point geometric mean or median when testing the log-transformed data, even though
the compliance point population arithmetic mean is smaller than the background arithmetic mean.

Fortunately, such a reversal can only occur in the unlikely situation that the background population
log-variance is distinctly larger than the compliance point log-variance. Factors contributing to an
increase in the log-mean concentration level in lognormal populations often serve, if anything, to also
increase the log-variance, and almost never to decrease it. Consequently, t-test results indicating a
compliance point geometric mean higher than background should very rarely imply a less-than-
background compliance point log-variance. This in turn will generally ensure that the compliance point
arithmetic mean is also larger than the background arithmetic mean, so that a test of the log-transformed
measurements can be used to infer whether a difference exists in the population concentration means.

One caution in this discussion is for cases where the Welch’s t-test is not significant on the log-
transformed measurements. Because the log-variances (ai) are not required to be equal in the two

populations when running Welch’s t-test, yet the arithmetic lognormal mean depends on both the
population log-mean (yy) and the log-variance through the quantity exp (,uy + o-j/z), it should not be

inferred that a non-significant comparison on the log-scale between a compliance point and background
is equivalent to finding no difference between the lognormal arithmetic means. If the log-variances differ
but the log-means do not, the lognormal arithmetic means will still be different even though the
lognormal medians might be identical.

Therefore, if a comparison of arithmetic means is required, but the statistical populations are
lognormal, care must be taken in interpreting the results of Welch’s t-test. Two possible remedies would
include: 1) only running a t-test on lognormal data if the log-variances can be shown to be approximately
equivalent (this would allow use of the pooled variance t-test); and 2) using a non-parametric two-
sample bootstrap procedure on the original (non-logged) measurements to compare the arithmetic means
directly. Consultation with a professional statistician may be required in this second case.

» EXAMPLE 16-3

The benzene data from Example 16-2 indicated no significant upgradient-to-downgradient
difference in population means when tested on the raw measurement scale. Check to see whether the
same data more closely approximate a lognormal distribution and conduct Welch’s t-test under that
assumption.
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Step 1.

Step 2.

Step 2.

Benzene (ppb) Log(Benzene) log(ppb)
Month BG DG BG DG
Jan 0.5 0.5 -0.693 -0.693
Feb 0.8 0.7 -0.223 -0.357
Mar 1.6 4.6 0.470 1.526
Apr 1.8 2.0 0.588 0.693
May 1.1 16.7 0.095 2.815
Jun 16.1 12.5 2.779 2.526
Jul 1.6 26.3 0.470 3.270
Aug 0.6 186.0 -0.511 5.226
N 8 8 8 8
Mean 3.0 31.2 0.372 1.876
SD 5.31 63.22 1.0825 1.9847
Variance 28.204 3997.131 1.1719 3.9392

SOLUTION

First check normality of the original measurements. To do this, compute the Shapiro-Wilk
statistic (SW) separately for each well. SW = 0.505 for the background data, and SW = 0.544
for the downgradient well. Combining these two values using the equations in Section 10.7,
the multiple group Shapiro-Wilk statistic becomes G = —6.675, which is significantly less than
the 5% critical point of —1.645 from the standard normal distribution.! Thus, the assumption of
normality was violated in Example 16-2.

Compute the log-mean, log-standard deviation, and log-variance of each group, as listed
above. Then compute the multiple group Shapiro-Wilk test to check for (joint) normality on
the log-scale. The respective SW statistics now increase to 0.818 for the background data and
0.964 for the downgradient well. Combining these into an overall test, the multiple group
Shapiro-Wilk statistic becomes —0.721 which now exceeds the o = 0.05 standard normal
critical point. A log transformation adequately normalizes the benzene data — suggesting that
the underlying populations are lognormal in distribution — so that Welch’s t-test can be run
on the logged data.

Using the logged measurements and equation [16.3], the t-statistic becomes:

t=(1.876-0.372) L1719, 39392 _1 68
8 8

! Note that oo = 5% is used in this example because the total sample size (BG and DG) is n = 16. Nevertheless, the test would
also fail at o = 1% or just about any significance level one might choose.

16-12 March 2009



Chapter 16. Two-Sample Tests Unified Guidance

Step 3.

Step 4.

Step 5.

Again using the log-variances and equation [16.4], the approximate df works out to:

=10.8=11

2 2 2
ot :{1,1;19+ 3,98392} [1.17;9/8] +[3.9392/8]

Note that the approximate df in Welch’s t-test is somewhat less than the value that would be
computed for the two-sample pooled variance Student’s t-test. In that case, with 8 samples per
data set, the df would have been 14 instead of 11. The reduction in degrees of freedom is due
primarily to the apparent difference in variance between the two groups.

Using Table 16-1 in Appendix D and given o = .05, the upper 95% critical point of the
Student’s t-distribution with 11 df is equal to 1.796.

Comparing t against tcp, we find that 1.88 exceeds 1.796, suggesting a statistically significant
difference between the background and downgradient population log-means, at least at the 5%
level of significance. This means that the downgradient geometric mean concentration — and
equivalently for lognormal populations, the median concentration — is statistically greater
than the same statistical measure in background. Further, since the downgradient sample log-
variance is over three times the magnitude of the background log-variance, it is also probable
that the downgradient arithmetic mean is larger than the background arithmetic mean.

Figure 16-3. Benzene Time Series Plot
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A note of caution in this example is that the same test run at the o = 0.01 level would yield a
non-significant result, since the upper 99% Student’s t critical point in that case would be
2.718. The fact that the conclusion differs based on a small change to the significance level
ought to prompt review of other t-test assumptions. A check of the downgradient sample
measurements indicates an upward (non-stationary) trend over the sample collection period
(Figure 16-3). This reinforces the fact that the t-test can be ill-suited for measuring differences
between populations when trends over time cause instability in the underlying population
means. It might be necessary to either perform a formal test of trend at the downgradient well
or to limit the compliance data included in the evaluation only to those most representative of
current conditions at the downgradient well (e.g., the last four measurements). <

16.2 WILCOXON RANK-SUM TEST
BACKGROUND AND PURPOSE

When the underlying distribution of a data set is unknown and cannot be readily identified as
normal or normalized via a transformation, a non-parametric alternative to the two-sample t-test is
recommended. Probably the best and most practical substitute is the Wilcoxon rank-sum test (Lehmann,
1975; also known as the two-sample Mann-Whitney U test), which can be used to compare a single
compliance well or data group against background. Like many non-parametric methods, the Wilcoxon
rank-sum test is based on the ranks of the sample measurements rather than the actual concentrations.
Some statistical information contained in the original data is lost when switching to the Wilcoxon test,
since it only uses the relative magnitudes of data values.

The benefit is that the ranks can be used to conduct a statistical test even when the underlying
population has an unusual form and is non-normal. The parametric t-test depends on the population
being at least approximately normal; when this is not the case, the critical points of the t-test can be
highly inaccurate. The Wilcoxon rank-sum test is also a statistically efficient procedure. That is, when
compared to the t-test using normally-distributed data especially for larger sample sizes, it performs
nearly as well as the t-test. Because of this fact, some authors (e.g., Helsel and Hirsch, 2002) have
recommended routine use of the Wilcoxon rank-sum even when the parametric t-test might be
appropriate.

Although a reasonable strategy for larger data sets, one should be careful about automatically
preferring the Wilcoxon over the t-test on samples as small as those often available in groundwater
monitoring. For instance, a Wilcoxon rank-sum test of four samples in each of a background and
compliance well and an o = 0.01 level of significance can never identify a significant difference between
the two populations. This is true no matter what the sample concentrations are, even if all four
compliance measurements are larger than any of the background measurements. This Wilcoxon test will
require at least five samples in at least one of the groups, or a higher level of significance (say a = 0.05
or 0.10) is needed.

The Wilcoxon test statistic (W) consists of the sum of the ranks of the compliance well
measurements. The rationale of the test is that if the ranks of the compliance data are quite large relative
to the background ranks, then the hypothesis that the compliance and background values came from the
same population ought to be rejected. Large values of the W statistic give evidence of possible
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contamination in the compliance well. Small values of W, on the other hand, suggest there is little
difference between the background and compliance well measurements.

REQUIREMENTS AND ASSUMPTIONS

The Wilcoxon rank-sum test assumes that both populations being compared follow a common,
though unknown, parent distribution under the null hypothesis (Hollander and Wolfe, 1999). Such an
assumption is akin to that used in the two-sample pooled variance Student’s t-test, although the form of
the common distribution need not be normal. The Wilcoxon test assumes that both population variances
are equal, unlike Welch’s t-test. Side-by-side box plots of the two data groups can be compared
(Chapter 9) to examine whether or not the level of variability appears to be approximately equal in both
samples. Levene’s test (Chapter 11) can also be applied as a formal test of heteroscedasticity given its
relative robustness to non-normality. If there is a substantial difference in variance between the
background and compliance point populations, one remedy is the Fligner-Policello test (Hollander and
Wolfe, 1999), a more complicated rank-based procedure.

The Wilcoxon procedure as described in the Unified Guidance is generally used as an interwell
test, meaning that it should be avoided under conditions of significant natural spatial variability.
Otherwise, differences between background and compliance point wells identified by the test may be
mistakenly attributed to possible contamination, instead of natural differences in geochemistry, etc. At
small sites, the Wilcoxon procedure can be adapted for use as an intrawell test, involving a comparison
between intrawell background and more recent measurements from the same well. However, the per-
comparison false positive rate in this case should be raised to either o = 0.05 or @ = 0.10. More
generally, a significance level of at least 0.05 should be adopted whenever the sample size of either
group is no greater than n = 4.

In addition to spatial stationarity (i.e., lack of natural spatial variability), the Wilcoxon rank-sum
test assumes that the tested populations are stationary over time, so that mean levels are not trending
upward or downward. As with the t-test, if trends are evident in time series plots of the sample data, a
formal trend test might need to be employed instead of the Wilcoxon rank-sum, or the scope of the
sample may need to be limited to only include data representative of current groundwater conditions.

HANDLING TIES

When ties are present in a combined data set, adjustments need to be made to the usual Wilcoxon
test statistic. Ties will occur in two situations: 1) detected measurements reported with the same
numerical value and 2) non-detect measurements with a common RL. Non-detects are considered ties
because the actual concentrations are unknown; presumably, every non-detect has a concentration
somewhere between zero and the quantitation limit [QL]. Since these measurements cannot be ordered
and ranked explicitly, the approximate remedy in the Wilcoxon rank-sum procedure is to treat such
values as ties.

One may be able to partially rank the set of non-detects by making use of laboratory-supplied
analytical qualifiers. As discussed in Section 6.3, there are probable concentration differences between
measurements labeled as undetected (i.e., given a “U” qualifier), non-detect (usually reported without a
qualifier), or as estimated concentrations (usually labeled with “J” or “E”). One reasonable strategy is to
group all U values as the lowest set of ties, other non-detects as a higher set of ties, and to rank all J
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and/or E values according to their estimated concentrations. In situations where estimated values for J
and E samples are not provided, treat these measurements as the highest group of tied non-detects.
Always give the highest ranks to explicitly quantified or estimated concentration measurements. In this
way, a more detailed partial ranking of the data will be possible.

Tied observations in the Wilcoxon rank-sum test are handled as follows. All tied observations in a
particular group should receive the same rank. This rank called the midrank (Lehmann, 1975) is
computed as the average of the ranks that would be assigned to a group of ties if the tied values actually
differed by a tiny amount and could be ranked uniquely. For example, if the first four ordered
observations are all the same, the midrank given to each of these samples would be equal to (1 +2 + 3 +
4)/4 = 2.5. If the next highest measurement is a unique value, its rank would be 5, and so on until all
observations are appropriately ranked. A more detailed example is illustrated in Figure 16-4.

Figure 16-4. Computation of Midranks for Groups of Tied Values

Order Concentration Mid-Rank

1 <1 1.5 1
|: 2 <1 1.5 = 5+2)
3 1.2 3
4 1.3 5 1
~(4+5+6
5 1.3 5 = 3( o+ )
|6 1.3 5
7 1.5 7.5 1
8 1.5 7.5 = 5(7+8)
9 1.6 9

HANDLING NON-DETECTS

If either of the samples contains a substantial fraction of non-detect measurements (say more than
20-30%), identification of an appropriate distributional model (e.g., normality) may be difficult,
effectively ruling out the use of parametric tests like the t-test. Even when a normal or other parametric
model can be fit to such left-censored data, a t-test cannot be run without imputing estimated values for
each non-detect. Past guidance has recommended the Wilcoxon rank-sum test as an alternative to the t-
test in the presence of non-detects, with all non-detects at a common RL being treated as tied values.

If the combined data set contains a single, common RL, that limit is smaller than any of the
detected/quantified values, and the proportion of censored data is small (say no more than 10-15% of the
total), it may be reasonable to treat the non-detects as a set of tied values and to apply the Wilcoxon
rank-sum test adjusted for ties (described below). More generally, however, the statistical behavior of
the Wilcoxon statistic depends on a full and accurate ranking of all the measurements. Groups of left-
censored values cannot be ranked with certainty, even if each such measurement possesses a common
RL. The problem is compounded in the presence of multiple RLs and/or quantified values less than the
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RL(s). What is the relative ranking, for instance, of the pair of measurements (<1, <5)? A higher RL
does not guarantee that the second observation is larger in magnitude than the first. A similar uncertainty
plagues the pair of values (4, <10). And there is no guarantee either that the pair (<2, <2) is actually tied.
One may be able to partially rank the set of non-detects by making use of laboratory-supplied analytical
qualifiers as described in the previous section.

Because non-detects generally prevent a complete ranking of the measurements, the Wilcoxon
rank-sum test is not recommended for most censored data sets. Instead, a modified version of the
Tarone-Ware test (Hollander and Wolfe, 1999) is presented in Section 16.3. The Tarone-Ware test is
essentially a generalization of the Wilcoxon test specifically designed to accommodate censored values.

PROCEDURE

Step 1. To conduct the Wilcoxon rank-sum test, first combine the compliance and background data
into a single data set. Sort the combined values from smallest to largest, and — if there are no
tied values or non-detects with a common RL — rank the ordered values from 1 to N. Assume
there are n compliance well samples and m background samples so that N = m + n. Denote the
ranks of the compliance samples by C; and the ranks of the background samples by B;.

Step 2. If there are groups of tied values (including non-detects with a common RL), form the
midranks of the combined data set by assigning to each set of ties the average of the potential
ranks the tied members would have been given if they could be uniquely ranked.

Step 3. Sum the ranks of the compliance samples to get the Wilcoxon statistic W:

wW=2x"C [16.5]

Step 4. Find the o-level critical point of the Wilcoxon test, making use of the fact that the sampling
distribution of W under the null hypothesis, Ho, can be approximated by a normal curve. By
standardizing the statistic W (i.e., subtracting off its mean or expected value and dividing by
its standard deviation), the standardized statistic or z-score, Z, can be approximated by a
standard normal distribution. Then an appropriate critical point (z¢p) can be determined as the
upper (1—o) x 100th percentage point of the standard normal distribution, listed in Table 10-1
in Appendix D.

Step 5. To compute Z when there are no ties, first compute the expected value and standard deviation
of W, given respectively by the following equations:

E(Ww )=%n(N +1) [16.6]
so(w)= émn(N +1) [16.7]

Then compute the approximate z-score for the Wilcoxon rank-sum test as:
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Step 6.

Step 7.

;W -EW)-12
SD(W)

[16.8]

The factor of 1/2 in the numerator serves as a continuity correction since the discrete
distribution of the Wilcoxon statistic W is being approximated by a continuous normal
distribution.

If there are tied values, compute the expected value of W using [16.6] and the standard
deviation of W adjusted for the presence of ties with the equation:

— mn(N+l)(_ g -t )
SD (\N)\/—12 Ll Z‘=1—N3—NJ [16.9]

where g equals the number of different groups of tied observations and t; represents the
number of tied values in the ith group.

Then compute the approximate z-score for the Wilcoxon rank-sum test as:

LW EW)-12
~ sD'(w)

Compare the approximate z-score against the critical point, ze,. If Z exceeds z,, conclude that
the compliance well concentrations are significantly greater than background at the o level of
significance. If not, conclude that the null hypothesis of equivalent background and
compliance point distributions cannot be rejected.

(16.10)

» EXAMPLE 16-4

The table below contains copper concentrations (ppb) found in groundwater samples at a Western
monitoring facility. Wells 1 and 2 denote background wells while Well 3 is a single downgradient well
suspected of being contaminated. Calculate the Wilcoxon rank-sum test on these data at the oo = .01 level
of significance.
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Copper Concentration (ppb)
Background Compliance
Month Well 1 Well 2 Well 3

1 4.2 5.2 9.4

2 5.8 6.4 10.1

3 11.3 11.3 14.5

4 7.0 11.5 16.1

5 7.0 10.1 21.5

6 8.2 9.7 17.6

SOLUTION

Step 1. Sort the N = 18 observations from least to greatest. Since there are 3 pairs of tied values,
compute the midranks as in the table below. Note that m = 12 and n = 6.

Step 2.  Compute the Wilcoxon statistic by summing the compliance well ranks, so that W = 84.5.

Step 3. Using a = .01, find the upper 99th percentage point of the standard normal distribution in
Table 10-1 of Appendix D. This gives a critical value of z¢, = 2.326.

Midranks of Copper Concentrations
Background Compliance
Month Well 1 Well 2 Well 3
1 1 2 8
2 3 4 10.5
3 12.5 12.5 15
4 5.5 14 16
5 5.5 10.5 18
6 7 9 17

Step 4. Compute the expected value and adjusted standard deviation of W using equations [16.6] and
(16.10), recognizing there are 3 groups of ties with t; = 2 measurements in each group:

E(W):%-6-19:57

sDW )= \/%-12-6-(18+1){1—3-{ 23:2 H = V113,647 = 10.661

18°-18
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Then compute the standardized statistic or z-score, Z, using equation (16.10):

, _845-57-05
10.661

=2.533

Step 5.  Compare the observed z-score against the critical point zc,. Since Z = 2.533 > 2.326 = Z gy,
there is statistically significant evidence of possible contamination in the compliance well at
the o = .01 significance level. <

16.3 TARONE-WARE TWO-SAMPLE TEST FOR CENSORED DATA
BACKGROUND

In statistical terms, non-detect measurements represent left-censored values, in which the ‘true’
magnitude is known only to exist somewhere between zero and the RL, i.e., within the concentration
interval [0, RL). The uncertainty introduced by non-detects impacts the applicability of other two-sample
comparisons like the t-test and Wilcoxon rank-sum test. Because the Student’s t-test cannot be run
unless a specific magnitude is assigned to each observation, estimated or imputed values need to be
assigned to the non-detects. The Wilcoxon procedure requires that every observation be ranked in
relation to other values in the combined sample, even though non-detects allow at best only a partial
ranking, as discussed in Section 16.2.

The Tarone-Ware two-sample test can be utilized to overcome these limitations for many
groundwater data with substantial fractions of non-detects along with multiple RLs. Tarone and Ware
(1977) actually proposed a family of tests to analyze censored data. One variant of this family is the
logrank test, frequently used in survival analysis for right-censored data. Another variant is known as
Gehan’s generalized Wilcoxon test (Gehan, 1965). The Unified Guidance presents the variant
recommended by Tarone and Ware, slightly modified to account for left-censored measurements.

The key benefit of the Tarone-Ware procedure is that it is designed to provide a valid statistical
test, even with a large fraction of censored data. As a non-parametric test, it does not require normally-
distributed observations. In addition, non-detects do not have to be imputed or even fully ranked.
Instead, for each detected concentration (c), a simple count needs to be made within each sample of the
number of detects and non-detects no greater in magnitude than c. These counts are then combined to
form the Tarone-Ware statistic.

REQUIREMENTS AND ASSUMPTIONS

The null hypothesis (Ho) under the Tarone-Ware procedure assumes that the populations in
background and the compliance well being tested are identical. This implies that the variances in the two
distributions are the same, thus necessitating a check of equal variances. With many non-detect data sets,
it can be very difficult to formally test for heteroscedasticity. Often the best remedy is to make an
informal, visual check of variability using side-by-side box plots (Chapter 9), setting each non-detect to
half its RL.
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The Tarone-Ware test will typically be used as an interwell test, meaning that it should be avoided
under conditions of significant natural spatial variability. In addition, the tested populations should be
stationary over time, so that mean levels are not trending upward or downward. Both assumptions can be
more difficult to verify with censored data. Spatial variation can sometimes be checked with a non-
parametric Kruskal-Wallis analysis of variance (Chapter 17). Trends with censored data can be
identified with the Mann-Kendall test (Chapter 14).

As with other two-sample tests, if a trend is identified in one or both samples, a formal trend test
may be needed instead of the Tarone-Ware, or the scope of the sample may need to be limited to only
include data representative of current groundwater conditions.

Because the Tarone-Ware test presented in the Unified Guidance depends on counts of
observations with magnitudes no greater than each detected concentration, and in that sense generalizes
the ranking process used by the Wilcoxon rank-sum procedure, it is recommended that estimated
concentrations (i.e., sample measurements assigned unique magnitudes but labeled with qualifiers “J” or
“E”) be treated as detections for the purpose of computing the Tarone-Ware statistic. Such observations
provide valuable statistical information about the relative ranking of each censored sample, even if
estimated concentrations possess larger measurement uncertainty than fully quantified values.

PROCEDURE

Step 1. To compare a background data set against a compliance well using the Tarone-Ware test, first
combine the two samples. Locate and sort the k distinct detected values and label these as:

Wigy { Wiy €ee dWipegy (W,

Note that the set of w’s will not include any RLs from non-detects. Also, if two or more
detects are tied, k will be less than the total number of detected measurements.

Step 2. For the combined sample, count the number of observations (described by Tarone & Ware as
‘at risk”) for each distinct detected concentration. That is, for i = 1,...,k, let nj = the number of
detected values no greater than wg plus the number of non-detects with RLs no greater than
wy. Also let d; = the number of detects with concentration equal to wg. This value will equal
1 unless there are multiple detected values with the same reported concentration.

Step 3.  For the compliance sample, count the observations ‘“at risk’, much as in Step 2. Fori =1 to k,
let ni = the number of detected compliance values no greater than wgy plus the number of
compliance point non-detects with RLs no greater than wg). Also let di = the number of
compliance point detects with concentration equal to wg. Note that di; = 0 if w;) represents a
detected value from background. Also compute nj;, the number “at risk’ in the background
sample.

Step 4. Fori=1tok, compute the expected number of compliance point detections using the formula:
E,=dn. /n (16.11)

Also compute the variance of the number of compliance point detections, using the equation:
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_ di (ni B di)nilniz

. ni2 (ni _1)

Note in equation (16.12) that if n; = 1 for the smallest detected value, the numerator of Vi, will
necessarily equal zero (since d; = 1 in that case), so compute Vi, = 0.

Vv (16.12)

Step 5.  Construct the Tarone-Ware statistic (TW) with the equation:

k
(d, —E
TW = zil\/;( i2 i2 (1613)
nVv.
ji=1 i i2

Step 6. Find the o-level critical point of the Tarone-Ware test, making use of the fact that the
sampling distribution of TW under the null hypothesis, Ho, is designed to approximately
follow a standard normal distribution. An appropriate critical point (z¢,) can be determined as
the upper (1-a) x 100th percentage point of the standard normal distribution, listed in Table
10-1 of Appendix D.

Step 7. Compare TW against the critical point, z¢,. If TW exceeds z,, conclude that the compliance
well concentrations are significantly greater than background at the o level of significance. If
not, conclude that the null hypothesis of equivalent background and compliance point
distributions cannot be rejected.

» EXAMPLE 16-5

A heavily industrial site has been historically contaminated with tetrachloroethylene [PCE]. Using
the Tarone-Ware procedure at an o = .05 significance level, test the following PCE measurements
collected from one background and one compliance well.

PCE (ppb)
Background Compliance
<4 6.4
1.5 10.9
<2 7
8.7 14.3
5.1 1.9
<5 10.0
6.8
<5

SOLUTION

Step 1. Combine the background and compliance point samples. List and sort the distinct detected
values (as in the table below), giving k = 10. Note that the 4 non-detects comprise 28% of the
combined data.

Step 2. Compute the number of measurements (n;) in the combined sample “at risk’ for each distinct
detected value (wg), indexed from i = 1,..., 10, by adding the number of detects and non-
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Step 3.

Step 4.

Step 5.

Step 6.

Step 7.

detects no greater than w, as listed in column 6 of the table below. Also list in column 3 the

number of detected values (d;) exactly equal to wg.

For the compliance point sample, compute the number (n;;) “at risk’ for each distinct detected
value, as listed in column 5 below. Also compute the number (n;;) ‘at risk’ for the background
sample (column 4) and the number of compliance point measurements exactly equal to wg;

(column 2).

Use equations (16.11) and (16.12) to compute the expected value (Ei;) and variance (Vi) of

the number of compliance point detections at each w (columns 7 and 8 below).

Wi diz d; nj; n;; n; Ei> Viz
1.5 0 1 1 0 1 0 0
1.9 1 1 1 1 2 0.5 0.25
5.1 0 1 5 2 7 0.2857 0.2041
6.4 1 1 5 3 8 0.375 0.2344
6.8 1 1 5 4 9 0.4444 0.2469
7.0 1 1 5 5 10 0.5 0.25
8.7 0 1 6 5 11 0.4545 0.2479
10.0 1 1 6 6 12 0.5 0.25
10.9 1 1 6 7 13 0.5385 0.2485
14.3 1 1 6 8 14 0.5714 0.2449

Calculate the Tarone-Ware statistic (TW) using equation (16.13):

TW =

J1:(0-0)++/2-(1-0.5)+ /7 - (0—.2857) +... + /14 - (1-.5714)

\/1-O+2-.25+7-.2041+...+l4-.2449

Determine the 0.05 level critical point from Table 10-1 in Appendix D as the upper 95th

percentage point from a standard normal distribution. This gives z¢, = 1.645.

Compare the Tarone-Ware statistic against the critical point. Since TW = 1.85 > 1.645 = z,
conclude that the PCE concentrations are significantly greater at the compliance well than in

background at the 5% significance level. €
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This chapter describes two statistical procedures — analysis of variance [ANOVA] and tolerance
limits — explicitly allowed within 8264.97(h) and 8258.53(g) for use in groundwater monitoring. The
Unified Guidance does not generally recommend either technique for formally making regulatory
decisions about compliance wells or regulated units, instead focusing on prediction limits, control charts,
and confidence intervals. But both ANOVA and tolerance tests are standard statistical procedures that
can be adapted for a variety of uses. ANOVA is particularly helpful in both identifying on-site spatial
variation and in sometimes aiding the computation of more effective and statistically powerful intrawell
prediction limits (see Chapters 6 and 13 for further discussion).

This chapter also presents selected trend tests as an alternative statistical method that can be quite
useful in groundwater detection monitoring, particularly when groundwater populations are not
stationary over time. Although trend tests are not explicitly listed within the RCRA regulations, they
possess advantages in certain situations and can meet the performance requirements of 8264.97(i) and
8258.53(h). They can also be helpful during diagnostic evaluation and establishment of historical
background (Chapter 5) and in verifying key statistical assumptions (Chapter 14).

17.1 ANALYSIS OF VARIANCE [ANOVA]
17.1.1 ONE-WAY PARAMETRIC F-TEST
BACKGROUND AND PURPOSE

The parametric one-way ANOVA is a statistical procedure to determine whether there are
statistically significant differences in mean concentrations among a set of wells. In groundwater
applications, the question of interest is whether there is potential contamination at one or more
compliance wells when compared to background. By finding a significant difference in means and
specifically higher average concentrations at one or more compliance wells, ANOVA results can
sometimes be used to identify unacceptably high contaminant levels in the absence of natural spatial
variability.

Like the two-sample t-test, the one-way ANOVA is a comparison of population means. However,
the one-way parametric ANOVA is a comparison of several populations, not just two: one set of
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background data versus at least two compliance wells. The F-statistic that forms the heart of the
ANOVA procedure is actually an extension of the t-statistic; an F-statistic formed in a comparison of
only two datasets reduces to the square of the usual pooled variance Student’s t-statistic. Like the t-
statistic, the F-statistic is a ratio of two quantities. The numerator is a measure of the average squared
difference observed between the pairs of sample means, while the denominator represents the average
variability found in each well group.

Under the null hypothesis that all the wells or groups have the same population mean, the F-
statistic follows the F-distribution. Unlike the t-distribution with a single degrees of freedom df, there
are two df quantities associated with F. One is for the numerator and the other for the denominator.
When critical points are needed from the F-distribution, one must specify both degrees of freedom
values.

Computation of the F-statistic is only the first step of the full ANOVA procedure, when used as a
formal compliance test. It can only determine whether any significant mean difference exists between the
possible pairs of wells or data groups, and not whether or what specific compliance wells differ from
background. To accomplish this latter task when a significant F-test is registered, individual tests
between each compliance well and background needs to be conducted, known as individual post-hoc
comparisons or contrasts. These individual tests are a specially constructed series of t-tests, with critical
points chosen to limit the test-wise or experiment-wise false positive rate.

REQUIREMENTS AND ASSUMPTIONS

The parametric ANOVA assumes that the data groups are normally-distributed with constant
variance. This means that the group residuals should be tested for normality (Chapter 10) and that the
groups have to be tested for equality of variance, perhaps with Levene’s test (Chapter 11). Since the F-
test used in the one-way ANOVA is reasonably robust to small departures from normality, the first of
these assumptions turns out to be less critical than the second. Research (Milliken and Johnson, 1984)
has shown that the statistical power of the F-test is strongly affected by inequality in the population
variances. A noticeable drop in power is seen whenever the ratio of the largest to smallest group variance
is at least 4. A severe drop in power is found whenever the ratio of the largest to smallest group variance
is at least a factor of 10. These ratios imply that the F-test will lose some statistical power if any of the
group population standard deviations is at least twice the size of any other group’s standard deviation,
and that the power will be greatly curtailed if any standard deviation is at least 3 times as large as any
other group’s.

If the hypothesis of equal variances is rejected or if the group residuals are found to violate an
assumption of normality (especially at the .01 significance level or less), one should consider a
transformation of the data, followed by testing of the ANOVA assumptions on the transformed scale. If
the residuals from the transformed data still do not satisfy normality or if there are too many non-detect
measurements to adequately test the assumptions, a non-parametric ANOVA (called the Kruskal-Wallis
test) using the ranks of the observations is recommended instead (see Section 17.1.2).

Since ANOVA is inherently an interwell statistical method, a critical point in using ANOVA for
compliance testing is that the well field should exhibit minimal spatial variability. Interwell tests also
require the groundwater well populations to be spatially stationary, so that absent a release the
population well means are stable over time. Because spatial variation is frequently observed in many
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groundwater constituents, especially for common inorganic constituents and some metals, ANOVA may
not be usable as compliance testing tool. Yet it can be utilized on the same data sets to help identify the
presence of spatial variability. In this capacity, the same procedure and formulas are utilized as
described below (with the exception of the post-hoc contrasts, which are unnecessary for assessing
spatial variation). The results are then employed to guide the appropriate choice of a compliance test
(e.g., intrawell or interwell prediction limits).

For formal ANOVA testing under §264.97(i) and §258.53(h), the experiment-wise or test-wise
false positive rate (o) needs to be at least 5% during any statistical evaluation for each constituent tested.
Furthermore, the individual post-hoc contrasts used to test single compliance wells against background
need to be run at a significance level of at least a* = 1% per well. Combined, these regulatory constraints
imply that if there are more than five post-hoc contrasts that need to be tested (i.e., more than 5
compliance wells are included in the ANOVA test), the overall, maximal false positive rate of the
procedure will tend to be greater, and perhaps substantially so, than 5%. Also, since a = 5% is the
minimum significance level per monitoring constituent, running multiple ANOVA procedures to
accommodate a list of constituents will lead to a minimum site-wide fal se positive rate [SWFPR] greater
than the Unified Guidance recommended target of 10% per statistical evaluation.

In addition, if a contaminated compliance well exists but too many uncontaminated wells are also
included in the same ANOVA, the F-statistic may result in a non-significant outcome. Performing
ANOVA with more than 10 to 15 well groups can “swamp” the procedure, causing it to lose substantial
power. It therefore will be necessary to consider one of the retesting strategies described in Chapters 18
and 20 as an alternative to ANOVA in the event that either the expected false positive rate is too large,
or if more than a small number of wells need to be tested.

Another drawback to the one-way ANOVA is that the F-test accounts for all possible paired
comparisons among the well groups. In some cases, the F-statistic may be significant even though all of
the contrasts between compliance wells and background are non-significant. This does not mean that the
F-test has necessarily registered a false positive. Rather, it may be that two of the compliance wells
significantly differ from each other, but neither differs from background. This could happen, for
instance, if a compliance well has a lower mean concentration than background while other compliance
wells have near background means. The F-test looks for all possible differences between pairs of well
groups, not just those comparisons against background.

In order to run a valid one-way F-test, a minimum number of observations are needed. Denoting
the number of data groups by p, at least p > 2 groups must be compared (e.g., two or more compliance
wells versus background). Each group should have at least three to four statistically independent
observations and the total sample size, N, should be large enough so that N-p > 5. As long as p > 3 and
there are at least 3 observations per well, this last requirement will always be met. But the statistical
power of an ANOVA to identify differences in population means tends to be minimal unless there are at
least 4 or more observations per data group. It is also helpful to have at least 8 measurements in
background for the test.

Similarly to the two-sample t-test, it may be very difficult to verify that the measurements are
statistically independent with only a handful of observations per well. One should additionally ensure
that the samples are collected far enough apart in time to avoid significant autocorrelation (see Chapter
14 for further discussion). A periodic check of statistical independence in each may be possible after a
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few testing periods, when enough data has been collected to enable a statistical assessment of this
assumption.

PROCEDURE

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

Combine all the relevant background data collected from multiple wells into one group. These
wells should have insignificant mean differences under prior ANOVA testing. If the regulated
unit has (p-1) compliance wells, there will then be a total of p data groups. Because there may
be different numbers of observations per well, denote the sample size of the ith group by n;
and the total number of data points across all groups by N.

Denote the observations in the ith well group by X for i = 1 to p and j = 1 to n;. The first
subscript designates the well, while the second denotes the jth value in the ith well. Then
compute the mean of each well group along with the overall (grand) mean of the combined
dataset using the following formulas:

X, :inij [17.1]
L
_ 1& N
X, = NZZX” [17.2]
i=1 j=1

Compute the sum of squares of differences between the well group means and the grand mean,
denoted SSyqs:

SSwens = i n (X.. - X..)Z = ini)_(i - NX.Z. [17.3]
i=1 i=1

The formula on the far right is usually the most convenient for calculation. This sum of
squares has (p-1) degrees of freedom associated with it and is a measure of the variability
between wells. It constitutes the numerator of the F-statistic.

Compute the corrected total sum of squares, denoted by SSota:

N

$otal = inzl X”. - Xcoj = izxi]? - NKZ. [17.4]

i=1 j=1 i=1 j=1

The far right equation is convenient for calculation. This sum of squares has (N-1) degrees of
freedom associated with it and is a measure of the variability in the entire dataset. In fact, if
SSotar 1S divided by (N-1), one gets the overall sample variance.

Compute the sum of squares of differences between the observations and the well group
means. This is known as the within-wells component of the total sum of squares or,
equivalently, as the sum of squares due to error. It is easiest to obtain by subtraction using the
far right side of equation [17.5] and is denoted SSyor:
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PN

SSerror = ZZ(Xij - X-i = Saotal - $We||s [175]
i=1 j=

SSaror 1S associated with (N—p) degrees of freedom and is a measure of the variability within

well groups. This quantity goes into the denominator of the F-statistic.

Step 6. Compute the mean sum of squares for both the between-wells and within-wells components of
the total sum of squares, denoted by MS,ais and MSqor. These quantities are simply obtained
by dividing each sum of squares by its corresponding degrees of freedom:

MS, s = SSweus/(p_ 1) [17.6]

MSE!TOI’ = $error/(N - p) [177]

Step 7. Compute the F-statistic by forming the ratio between the mean sum of squares for wells and
the mean s