EAST CHARLEY TIMBER SALE SSE-1386

Timber Cruise

Abstract

Operational timber cruise for the East Charley Timber Sale SSE-1386 K, consisting primarily of State Young Growth timber with a minor residual Old Growth timber component. The stand is located approximately ½ mile north of the Community of Edna Bay, Alaska Publish July 2024.

Southeast Office DNR-Division of Forestry and Fire Protection

Table of Contents

Stand Description
DOF East Charley Timber Cruise
Sample Type/ Frequency2
Min. Size/ Sorts/ Specifications
Acreage2
Stratification3
East Charley Timber Sale Map4
East Charley Cruise Tabular Summaries5
Board Foot Volumes Report5
Statistical Report5
ADNR-DOF Sort Guidelines

East Charley Timber Sale Cruise Report

July 11, 2023

Stand Description

This report is a compilation of information summarizing the estimation of timber volume and quality in the East Charley Timber Sale (File SSE-1386 K) on State land on Kosciusko Island near the community of Edna Bay as delineated in the Draft Forest Land Use Plan dated June, 2024. The stand was sampled as one type mainly consisting of young growth timber with a residual old growth component. The dominant characteristic of the stand controlled how the species is described in this report as far as age. For this report, young growth is associated with potentially merchantable timber that is generally less than 70 years old. The balance of the other timber described and cruised was considered old growth. The old growth observed with minor exceptions on the southern end of the sale was dispersed in the stand and not sampled as a discrete population. The sale area was logged in the mid 1940's; the young growth stands are a product of that activity and residual stand disturbance related to that harvest. The residual old growth appears to be associated with commercially unviable timber at the time of the previous harvest entry. The 1940's logging generally focused on high grade timber (spruce) needed for aircraft dock construction in World War II.

DOF East Charley Timber Cruise

Sample Type/ Frequency

The units were cruised during May of 2024 by DOF using a variable plot cruise sampling method based on an unbiased grid system. The grid was spaced on 2 x 5 chains representing one acre per cruise plot. This combined sampling produced 199 cruise plots over 201 acres. The Atterbury Cruise Program was used to manage the data. A basal area factor of 40 BAF at 16 feet above projected stump height was used to sample measured trees. Obvious cull trees were generally not recorded. This obtained an average of 4.6 trees per plot overall.

Min. Size/ Sorts/ Specifications.

Only trees containing a minimum merchantable saw log were sampled. Diameters measuring under 10 inches at four feet above stump height were categorically not recorded. Sorts were developed based on perceived industry markets. See attached ADNR-DOF Old Growth and Second Growth Sort Guidelines for Southeast Alaska. Log grades were determined using Official Log Scaling and Grading Rules for the Pacific Northwest as applied and accepted in the Southeast Alaska region. Logs not meeting DOF saw log sorts were recorded as pulp logs. Young growth and old growth #4 saw logs are segregated into the pulp sort. Utility logs (having 50% sound usable chips) are all in the utility pulp sort.

Acreage

Cruised acreage was determined using ArcGIS, based off points collected along the harvest unit line using a GIS grade GPS receiver (Geode) that was restricted to sampling positions when theoretical accuracy was calculated to be less than 10 feet. GPS data utilized GNSS correction applied by the proprietary algorithm of Juniper Systems, Inc. ArcGIS calculated there to be 201 acres of timber.

Stratification

Timber was generally a mixed stand with portions exhibiting a pronounced age type but not a discrete geographically definable age class. The timber was not stratified by age. Individual trees were subjectively identified by the cruiser as having residual old growth or young growth characteristics generally associated with size and tree form. Some of the smaller hemlock could be treated as either old growth or young growth; these trees were likely influenced by the previous harvest entry. The larger old growth hemlock has notably more defect than the young growth. While some of this is associated with tree age, most was attributable to previous logging damage and secondary stand disturbances. The very minor populations of old growth Sitka Spruce and Western redcedar in the units are not generally distributed uniformly in the stand; estimations of the population represented should be conservatively used.

East Charley Timber Sale Map

Vicinity Map (1 page)

TC 05/29/2024

East Charley Cruise Tabular Summaries

(Atterbury Program Reports, 3 Pages)

East Charley Type 98

Board Foot Volumes Report Statistical Report T TSPCSTGR

Species, Sort Grade - Board Foot Volumes (Type) Project: EASTCHAR

T068 Twj 068	R076 S15 p R 07	5 T98 ge 6	Sec 15 H	Tract EASTCH	IAR	Туре 98	Acre 201.	es Plot: .00 199	5	Sampl	e Trees 913		C S	uFt	T068 R BdFt W	076 S15	5 T98	
			%					Percent N	et Boa	ard Foot	Volum	e			Avera	ge Log		
	s _{So}	Gr	Net	Bd.	Ft. per Acre		Total	Log Sc	ale Di	a	Los	- Leng	oth		In Dia	Bd	CF/	Logs Per
Spp	T rt	ad	BdFt	Def%	Gross	Net	Net MBF	4-5 6-11	12-1	6 17+	12-20	21-30	31-35	36-99	Ft In	Ft	Lf	/Acre
c	5C	28	/0	1	11 758	11 751	2 362		68	32	0	21	46	33	32 15	271	1 70	13.3
S	SG	25	25	.1	5 678	5 673	1 140	76	24	52	1	10	35	54	34 10	120	0.89	43.3
s	CS	35	11	2	2,595	2,590	521	100	24			10	55	100	36 6	60	0.51	43.2
s	PU	38		1.7	114	112	22	68	32		6	15	79	100	32 7	62	0.53	1.8
S	PU	4S	2		524	524	105	100			60	38	3		18 6	22	0.34	23.5
s	0	2 S	13	.3	2,905	2,896	582			100		58	37	5	28 22	581	3.35	5.0
s	Totals		58	.1	23,574	23,547	4,733	32	40	28	2	21	36	41	31 10	144	1.01	164.1
	DD	26			22	77	15			100			100		22.22	605	2.50	
WH	PK SA	25	1	10.0	41	37	15			100			100		33 22	1080	5.39	.1
WH	SA SA	28	48	8.8	5 146	4 694	943		29	71		6	57	37	34 17	300	2 42	11.8
WH	SA	35	18	4.6	1.903	1.815	365	44	43	13	1	15	28	57	34 10	131	1.05	13.8
WH	SA	4S	10		9	9	2	100	10	10	61	39	20	0,	22 7	30	0.62	.3
WH	PU	3S	17	8.6	1,796	1,641	330	25	18	57	3	9	13	75	34 12	215	1.58	7.6
WH	PU	4S	1	.7	158	157	32	100			49	48	3		20 7	28	0.48	5.7
WH	PU	U	15	21.2	1,752	1,381	278	8	22	70	0	11	56	33	32 15	283	2.20	4.9
WН	Totals		24	9.8	10,882	9,811	1,972	15	28	57	2	10	44	45	32 12	222	1.63	44.2
HM	SG	2S	20	3.5	1,365	1,317	265		95	5	3	22	23	52	32 13	201	1.45	6.5
HM	SG	3S	43	1.6	2,917	2,871	577	87	13		4	11	38	46	32 9	97	0.82	29.6
НМ	CS	3S	24	.5	1,551	1,544	310	100						100	36 6	60	0.47	25.9
НМ	PU	3S	2	11.0	133	119	24	72	28			17	9	74	36 8	83	0.79	1.4
НМ	PU	4S	9	.7	636	631	127	100			30	63	6		21 6	26	0.33	23.9
HM	PU	U	2	19.3	102	82	17	72	28					100	37 8	88	0.98	.9
HM	Totals		16	2.1	6,704	6,564	1,319	73	26	1	5	16	22	57	30 8	74	0.66	88.3
ss	PR	1 S	6	10.2	45	40	8			100			100		32 33	1410	7.56	.0
SS	PR	2S	17	4.9	115	109	22			100		100			26 32	1220	7.90	.1
SS	SA	2S	49	3.3	326	316	63		12	88		46	54		30 24	829	4.38	.4
SS	SA	3S	16		108	108	22	19	11	70	4	41		55	30 16	360	2.21	.3
SS	PU	U	12	25.4	96	71	14		8	92			8	92	34 24	756	5.24	.1
SS	Totals		2	6.5	690	645	130	3	8	88	1	46	34	19	30 22	721	4.16	.9
RC	SA	3S	18	2.5	37	36	7		57	43		43		57	33 15	257	2.56	.1
RC	SA	2R	82	10.3	177	158	32			100	6	65	29		27 26	791	7.14	.2
RC	Totals		0	8.9	214	195	39		11	89	5	61	24	11	29 21	570	5.01	.3
Туре Т	fotals			3.1	42,064	40,761	8,193	34	34	32	2	18	36	44	31 10	137	1.01	297.8

TC TST	ATS				S	TATIST	ICS			PAGE	1
TWD	DCE	SECT	TDACT		PROJEC		EASTCHAR	N OTC	TREES	DATE /	DJE4
IWP	KGE	SECT			ТҮРЕ	AC	RES	PLOTS	TREES	Curt	Bart
068	076	15	EASTCHAR		98		201.00	199	913	S	W
							ESTIMATED	Р	ERCENT		
					TREES		TOTAL	S	AMPLE		
		PLOTS	TREES		PER PLOT		TREES	Т	REES		
TOTA	AL.	199	913		4.6						
CRUI	SE	199	913		4.6		28,698		3.2		
DBH	COUNT										
REFC	DREST										
COUN	NT										
BLAN	NKS										
100 %	0										
				STAN	ND SUMM	ARY					
		SAMPLE	TREES	AVG	BOLE	REL	BASAL	GROSS	NET	GROSS	NET
0000		IKEES	ACKE	DRH	LEN	DEN	AKEA	BF/AC	BF/AC	CF/AC	CF/AC
SPRC	SG	46	71.2	18.0	78	29.6	125.6	23,574	23,547	5,210	5,210
W HN	MLK	23	4 20.2	24.1	78	13.0	63.9	10,882	9,811	2,301	2,301
HML	K SG	19	97 50.8 9 2	14.4	59 86	15.1	57.1	6,704	6,504	1,705	1,704
S SPR	RUCE		8.3 5.2	34.0 27.9	80 51	0.4	2.2	090	045 105	50	50
TOT	K UG	01	3 .2 2 142.9	57.8	71	50.2	250.5	42 064	195	0.426	0.427
101/	AL	91	3 142.8	17.9	/1	39.2	250.5	42,004	40,701	9,430	9,437
CON	FIDENCE 68.1	LIMITS OF TIMES OU	THE SAMPLE T OF 100 THE VO	DLUME WIL	L BE WIT	HIN THE S	SAMPLE ERR	OR			
CL:	68.1 %	COE	FF		SAMPLI	E TREES -	BF	#	OF TREES F	REQ.	INF. POP.
SD:	1.0	VAR	8.% S.E.%	L	OW	AVG	HIGH		5	10	15
SPRC	SG	71	.8 3.3		473	490	506				
W HN	MLK	73	.4 4.8		700	736	771				
HML	K SG	61	.3 4.4		162	169	177				
S SPR	RUCE	56	.6 21.3 8 25.7		2,102	2,671	3,241				
TOT	AL.	97	6 <u>3</u> 2		<i>4</i> 91	507	524		380	95	42
CL	69.1 %	COF	FF 5.2		471	507	024		00		72
CL.	08.1 /0	VAD		Ţ	SAMPLI	E TREES -	CF	#	OF TREES F	REQ.	INF. POP.
SD:	1.0 1.5G	V A K 59	3 27	L	100	103	106		5	10	15
W HN	ALK	62	.4 4.1		158	165	100				
HML	K SG	54	.7 3.9		43	45	46				
S SPR	RUCE	50	.5 19.0		372	459	547				
RCDF	R OG	77	.0 38.3		211	342	473				
TOT	AL	83.	5 2.8		108	111	114		278	70	31
CL:	68.1 %	COE	FF		TREES/A	ACRE		#	OF PLOTS F	REQ.	INF. POP.
SD:	1.0	VAR	8.% S.E.%	LO	W	AVG	HIGH		5	10	15
SPRC	SG	115	.5 8.2		65	71	77				
W HN	MLK	157	.6 11.2		18	20	22				
HML	K SG	128	.8 9.1		46	51	55				
S SPR	RUCE	622	.8 44.1		0	0	0				
	AL	1144 50	3 1.1 3 1.1		137	143	149		140	35	16
	c0 1 %		5 7 .2		137	145	177		170	55	10
CL:	68.1 %	COE	ГГ		BASAL	AREA/ACI	RE	#	OF PLOTS F	REQ.	INF. POP.
SD:	1.0	VAR	8.% S.E.%	LO	JW 117	AVG	HIGH		5	10	15
SPRC W/UN	SG ALK	96	.0 6.8 5 97		58	126 64	134				
HMT	VILN KSG	123			50 52	04 57	62				
S SPR	RUCE	490	.3 34.7		1	2	3				
RCDF	ROG	1187	.7 84.1		0	2	3				
TOTA	AL	36.	1 2.6		244	251	257		52	13	6

TC TST.	ATS					STATI	STICS			PAGE	2	
					PRO	JECT	EASTCH	AR		DATE	7/30/2024	
TWP	RGE	SECT	TRA	АСТ	ТҮР	E A	ACRES	PLOTS	TREES	CuFt	BdFt	
068	076	15	EA	STCHAR	98		201.00	199	913	S	W	
CL:	68.1%	CO	EFF		NET	BF/ACRE			# OF PL	OTS REQ.	INF. PO)P.
SD:	1.0	VA	R.	S.E.%	LOW	AVG	HIGH		5	10	1:	5
CL:	68.1 %	CO	EFF		NET	BF/ACRE			# OF PLOT	S REO.	INF. POP.	
SD:	1.0	VA	R.%	S.E.%	LOW	AVG	HIGH		5	10	1	5
SPRC	SG	9	7.3	6.9	21,924	23,547	25,169					
W HN	1LK	13	2.7	9.4	8,888	9,811	10,733					
HMLI	K SG	13	0.1	9.2	5,959	6,564	7,169					
S SPR	UCE	50	3.1	35.6	415	645	875					
RCDF	ROG	112	1.7	79.4	40	195	350					
ΤΟΤΑ	AL.	4	3.3	3.1	39,511	40,761	42,010		75	19	ć	8
CL:	68.1 %	CO	EFF		NET	CUFT FT/	ACRE		# OF PLOT	S REQ.	INF. POP.	
SD:	1.0	VA	R.%	S.E.%	LOW	AVG	HIGH		5	10	1.	5
SPRC	SG	9	6.8	6.9	4,852	5,210	5,567					
W HM	1LK	12	8.5	9.1	2,091	2,301	2,510					
HMLI	K SG	12	6.3	8.9	1,606	1,764	1,922					
S SPR	UCE	49	4.9	35.1	73	113	152					
RCDF	R OG	118	0.4	83.6	8	50	91					
TOTA	AL.	40	0.1	2.8	9,169	9,437	9,705		64	16		7

ADNR-DOF Sort Guidelines

Southeast Alaska

(2 pages)

Revised Sort Matrix Reference Card (For Old Growth Cruising)

		Min.	Min.	
Code	Description	Length	Diameter	
	SPRUCE AND HEMLOCK LOGS			
Α	High Grade Sort	14'	24"	
	Clean appearing #2 and better.			
	Reasonably straight, with clear			
	cuttings. Maximum twist 2" per foot. Max. defect 15%.			
В	Premium Sort	14'	20"	
	#2 or better. Clear cutting in one			
	Quadrant minimum. Total deductions			
	not more than 50%.			
S	Sawlog Sort	12'	6"	
	#3 or better, no rough tops.			
	Maximum deduction 66%.			
Р	Pulp Sort	12'	6"	
	Min. 50% net utility scale.			
	Won't fit into sawlog sorts			
	due to quality and defect.			
	RED CEDAR LOGS			
L	Shake & Shingle	12'	20"	
	Suitable to produce 4' blocks for			
	shakes or 16" blocks for shingles.			
	Larger logs that aren't saw quality.			
S	Sawlog Sort	12'	6"	
	#3 or better, no rough tops.			
	Maximum deduction 66%.			
	YELLOW CEDAR LOGS			
S	All Saw Logs	12'	6"	
	Camp run sort. Grade determines			
	quality. No excessive sweep or twist.			
	Must be suitable for sawlogs.			
	1/3 sound Scribner volume.			

2022 ADNR-DOF Old Growth Sort Guidelines for Southeast Alaska

Preferred Lengths in order of preference: 36', 33' 40', 26', 16', 14', 12'

Young Growth Product Categories

ADNR-DOF Young Growth Reporting for Southeast Alaska

		Min.	Min.	Max
Code	Description	Length	Diameter	Diameter
	All Species			
0	Oversize	16'	20"	
	#3 and better sawlog.			
S	Standard/Gang	16'	8"	20"
	#3 and better sawlog.			
Ν	Chip and Saw	16'	6"	8"
	#3 sawlog.			
	36' only allowed length.			
	No Bark seems.			

Log Grades

				Min	Min	Min	Vol
Grade	Abrv	Desc	Fbr	Diameter	Length	Vol	Туре
0	CU	CULL	G	6	1	0	
1	1S	#1 SAW	G	24	16	0	
2	2S	#2 SAW	G	12	12	60	Net
3	3S	#3 SAW	G	6	12	50	Net
4	4S	#4 SAW	G	6	12	10	Net
5	S	SP MILL	G	16	17	0	
7	1R	1 SAW RC	G	28	16	500	Net
8	2R	2 SAW RC	G	20	12	210	Net
Р	PE	PEELER	G	24	17	0	
S	SL	SELECT	G	30	16	90	%clear
U	U	UTILITY	G	6	12	0	