

State of Alaska Department of Environmental Conservation Village Safe Water Program

555 Cordova Street Anchorage, AK 99501 April.akers@alaska.gov

August 1, 2022

To: Vendor List

Re: Amendment 2

ITB 22-VSW-UNK-044

Unalakleet Water Source Project

ITB Due Date: August 11, 2022 @ 2:00 PM AST

The following are vendor questions and the department's response:

1. Vendor: Section 33 - 90 -10 - 1.1 A calls for contractor to purchase pipe and fittings please confirm that this is just in addition to what is called out as supplied an other sections of the specifications. Also please confirm that submittals will be supplied on what was purchased and not be required to be submitted again.

Department: The submittals for the owner provided material will not be required to be submitted again by the contactor and are attached titled Arctic Pipe and Utilities, Pipe End Views and Thermacor Process, Inc., Piping Submittal Data, 10X10 Well Enclosure Unalakleet, Alaska. Please see section 01 64 00 for an itemized list / quantity breakdown of owner supplied pipe and below question and answer # 7.

2. Vendor: Please confirm that Water from the new wells or raw water from the existing water supply source will be available in sufficient quantity and volume to use for flushing the new line. Please indicate if there is a fee for this water.

Department: The maximum allowable pumping rates from each well are:

- Well 1: 17 gpm,
- Well 3: 41 gpm,
- Well 4: 16 gpm,
- Well 6: 17 gpm,
- Well 8: 24 gpm.

The contractor may utilize the wells for construction purposes as long as the well heads are protected from damage and contamination, all products used within the wells are National Sanitation Foundation (NSF) approved for potable water, and the pumping rates for individual wells do not exceed those listed above. If additional flow / volume is necessary the contractor will need to make other arrangements. There is no fee for water use.

3. Vendor: Please confirm that there will be potable water available to flush the new water mains with after chlorination is complete so that there will be no issue with contaminated water introduced into the line for water quality testing. Please indicate if there is a cost for this.

Department: Water from the wells will be available as noted above. The City of Unalakleet (City) also has a 1-million gallon potable water storage tank. Any use of water from the storage tank must be coordinated with the City. Charges may apply to water from the tank.

4. Vendor: Water testing calls for samples to be drawn every 1200 feet of new water main. The main does not have access points indicated in the installation drawings. Please advise if these will need to be added for this requirement. If not, what samples will be required to be collected and sent out for testing?

Department: The department will allow for samples to be collected at the termination of the water line (at the water treatment plant). The line will be drained at a slow rate and samples will be taken from the drain stream at periodic intervals that mimic sampling water at 1,200 lf intervals.

5. Vendor: Please confirm if the commissioning agent will be supplied by owner or by engineering team and will run all meetings and provide all forms required for contractor use.

Department: The commissioning agent will be provided by the department's engineering firm and all necessary commissioning forms will be provided by the department. Commissioning agent will observe the contractor performing the necessary functional checklist items.

6. Vendor: Please confirm that no insulated fittings or joint kits have been purchased at this point or there are no plans to have the owner supply them.

Department: No insulated fittings, joint kits, or accessories are being provided. The owner (department) is only providing the pipe itself.

7. Vendor: Specifications Section 01 64 00, Receipt of Owner Furnished Materials: Can the items being purchased in this list provided by owner show what the lengths of pipe are coming in? Re: 20 ft./40 ft. / coils?

Department: All insulated pipe (items 2-5) was made in 40' lengths. The bare 2' HDPE pipe (item 6) was made in 40' lengths. The bare 1-1/4" HDPE pipe (item 7) was made in 20' lengths.

8. Vendor: Are there any pipe fittings, joint kits and accessories being pre-purchased by owner or are these all contractor provided?

Department: See above question and answer # 6.

9. Vendor: The owner furnished materials include items expected to be delivered into Unalakleet this fall. Its understood the owner furnished materials would need to be handed over to the successful contractor upon award. At this time, I would suspect the materials arriving this fall would deliver before a contractor is awarded a contract. Please confirm the expected handover process post award and if the materials will already be secured/staged for winter storage this fall pre award.

Department: All materials that arrive this fall will be unloaded and staged at the barge landing area by the city of Unalakleet. Contractor is responsible for inspecting and accepting the materials in Unalakleet prior to winter.

10. Vendor: The specification for the fiberglass shelters include a variety of information on design, material properties, etc. Please confirm the warranty requirement (5 year) is being handled directly between Village Safe Water and vendor during purchase and not to be handled by the contractor on this project.

Department: Shelter manufacturer is responsible for warranty of any defects in the construction of the shelters. Contractor is responsible for warranty of any damage that the structures incur due to construction activities after the Contractor takes possession. Contractor warranty period duration shall be as specified in the contract documents.

11. Vendor: Please confirm items included in the shelter purchase (lifting eyes, roof access hatch, etc) or other information to clarify what exactly is included.

Department: The department provided shelters include all items shown on the attached approved shop drawings titled 10x10 Well Enclosure Unalakleet, Alaska.

12. Vendor: The trenching in asphalt paved roads has the requirement to pave a 12' panel and match existing thickness and a minimum of 2". Please confirm the expected asphalt thickness.

Department: Contractor shall assume that asphalt thicknesses of up to 5-inches will be encountered.

13. Vendor: The bid schedule appears to be a single line and listed as "basic bid" (page 19 of the RFP package). There is also included in the documents (on page 120 of the entire RFP package for reference) which has a more broken down list of work and also called bid schedule with more detailed quantities. Please confirm the bid schedule is to be provided as a single lump sum.

Department: Bid schedule to be provided is lump sum. Disregard the bid schedule shown immediately after technical specification index page. Bidders shall only use the bid schedule form 00312 on page 19 of the Invitation to Bid (ITB) package.

14. Vendor: The specification section 01 22 00 "Unit Prices" implies items are paid on a unit price basis. Please confirm the bid schedule for the project is a single lump sum.

Department: Please see above response.

15. Vendor: There is reference to the geotechnical report as being included, but it does not appear to be contained in the RFP package. Please provide the Geotech report for review.

Department: Bidders must contact the procurement officer for a copy of the geotechnical report dated 5/20/2020. This file will be sent via ZendTo.

16. Vendor: In the scope of work, contractors are required to abide by all permit stipulations, which according to the Summary specifications include the Fire Marshall Permit and ADEC approval to construct permit. Please provide for review. Also please confirm there is no wetland fill permit required for the access road construction.

Department: Bidders must contact the procurement officer for copies of the permits. Files will be sent via ZendTo. Permit POA-2022-00715 confirms the wellfield does not contain waters of the US and is classified dryland.

17. Vendor: Drawing C105 indicates that the WS (Water Service?) type piping runs from Well House #1 to 30+00 connection. Please confirm that this is the correct type of carrier pipe and piping type as the fittings are called out as Raw Water.

Department: The piping shown on sheet C105 (STA 30+44 to STA 33+07) and sheet C106 (STA 40+19 to STA 42+42) running down the center of the access roads will be "raw water arctic pipe" (Detail 1/C502). The shorter runs of pipe between the raw water arctic pipe and the well house will be "well service line arctic pipe" (detail 2/C502). The transition between the two pipe types will be in accordance with the details on sheet C509. The error will be corrected on the conformed drawings.

18. Vendor: Drawing C106 indicates that the WS (Water Service?) type piping runs from Well House #4 to 40+00 connection. Please confirm that this is the correct type of carrier pipe and piping type as the fittings are called out as Raw Water.

Department: See response above. The general configuration shown on sheets C103 and C104 apply to all the well house connections (raw water arctic pipe along the access road, well service line arctic pipe for the 40 ft + /- run to each well house).

19. Vendor: If the two lines above are in fact Well Service Lines There is no detail for well service lines that are hdpe jacket to be buried. Would it be the same as C502 detail 2 with hdpe $-1 \frac{1}{4}$ " or $1 \frac{1}{2}$ " Heat trace.

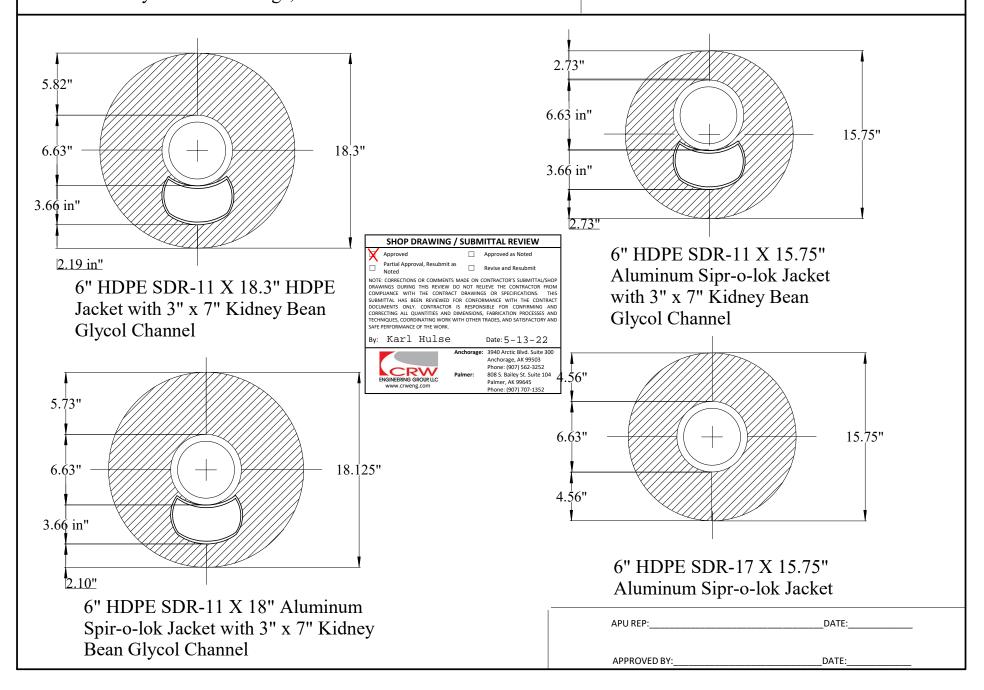
Department: See above responses. Details 1/C502 and 2/C502 are correct and cover all arctic pipe requirements for the job.

Evan Patterson

Evan Patterson

Procurement Specialist

Attachments:


- 1. Arctic Pipe and Utilities, Pipe End Views,
- 2. Thermacor Process, Inc., Piping Submittal Data,
- 3. 10X10 Well Enclosure Unalakleet, Alaska,
- 4. Geotechnical report dated 5/20/2020 (sent via ZendTo),
- 5. Permits (sent via ZendTo):
 - United States Department of Agriculture, Rural Development, Revised Notice of Availability of an Environmental Assessment,
 - State of Alaska (SOA), Department of Environmental Conservation, Drinking Water Program, Separation Distance Waiver and Conditional Construction Approval,

- SOA, Department of Transportation & Public Facilities, Permit No.: 2-166851-22-023,
- SOA, Department of Public Safety, Division of Fire and Life Safety, Water Treatment Plant Renovation / Remodel,
- Department of Defense, Department of the Army, POA, No.: POA-2022-00175.

Arctic Pipe and Utilities

6320 MacKay Street Anchorage, AK 99518

Pipe End Views

Piping Submittal Data

P.O. Box 79670, Fort Worth, Texas 76179 Phone: 817-847-7300 Fax: 817-847-7222 Created: 3/28/2022: By Shannon Walker Modified: 3/28/2022: By Shannon Walker

Project Name:	UNA	LAKL	EET WATER SOURCE								
Project Number:	NO-0	0441	42-N902 QUOTE N11406A-902 REV 1								
Project Location:	ALAS	ALASKA									
Representative:	ARC [*]	ARCTIC PIPE & UTILITIES									
Salesperson:	WILE	BARK	GER CER								
Contractor:											
Other Contact:											
Submittal Revision	n:	19 00									
Project Summary	II. I Addition Table 1 And Angel 1 Ang	11934-1536 terroren vezet									
Primary Tag	Model Series		Model Descriptions								
6" x 18" INSULATED PIPE			BONDED FOAM SYSTEM WITH SDR-11 HDPE CARRIER PIPE AND HDPE JACKET WITH A 3" \times 7" KIDNEY BEAN GLYCOL CHANNEL								
3" x 15" INSULATED 06-SPIRAL-THERM		HERM	BONDED FOAM SYSTEM WITH SDR-17 HDPE CARRIER PIPE AND ALUMINUM JACKET								
6" x 15" INSULATED 06-SPIRAL-TI PIPE		HERM	BONDED FOAM SYSTEM WITH SDR-11 HDPE CARRIER PIPE AND ALUMINUM JACKET WITH A 3" \times 7" KIDNEY BEAN GLYCOL CHANNEL								
6" x 18" INSULATED 06-SPIRAL-THERM		HERM	BONDED FOAM SYSTEM WITH SDR-11 HDPE CARRIER PIPE AND ALUMINUM JACKET WITH A 3" \times 7" KIDNEY BEAN GLYCOL CHANNEL								
		nctionards, expension of									
		X	Released as Submitted, No Changes								
		0	Released with Changes as Noted								
		Ç	Revise and Resubmit as Noted								
		0	Submittal Approval Only - Hold For Release								
А	pproved By:	Ka	rl Hulse, P.E.								
	Title:	Er	ngineer								
	Date:	4/	20/2022								

Note: This submittal is based on equipment and options listed on the attachment(s) and represents our interpretation of your requirements. It is the contractor's responsibility to review this submittal and verify that it meets the job specifications.

POLYCOR:

BONDED FOAM SYSTEM WITH SDR-11 HDPE CARRIER PIPE AND HDPE JACKET WITH A 3" x 7" KIDNEY BEAN GLYCOL CHANNEL 6" x 18" INSULATED PIPE

1.02 - Carrier Pipe Specification: PE4710 High Density Polyethylene-IPS. To be centered in jacket

1.03 - Carrier Pipe Origin: 100% Domestic in Origin

1.04 - Carrier Pipe Weight: SDR 11

1.05 - Pipe Length: 40' Lengths

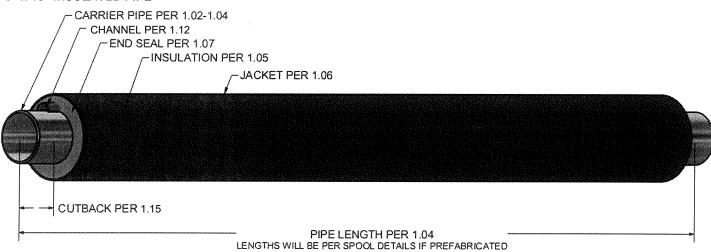
1.06 - Foam Specification: Polyurethane, 90% minimum corrected closed cell content, 2.0 to 4.0 pcf, K=.15@75°F and a compressive strength of not less than 35 psi. Operating temperature not to exceed 250°F. Insulation thickness is per attached chart with a tolerance of +/- 1/8" on ends, +/-1/4" in middle.

1.07 - Jacket Specification: Extruded black PE4710 high-density polyethylene (HDPE) with a minimum cell classification of PE445574C in accordance with ASTM D-3350, Minimum thickness 125 mils for jacket sizes less than or equal to 12", 150 mils for jacket sizes larger than 12" to 24", and 175 mils for jacket sizes greater than 24".

1.08 - End Seal Type: End seals shall be factory applied mastic completely sealing the exposed end of the insulation.

1.09 - System Type: System is Sticks & Kits: Straight Pipe Sections provided. System Design by Others.

1.10 - Fitting Type: By Others


1.11 - Joint Kit & Fitting Kit Types: By Others

1.12 - Channel: System will have a 3" X 7" Kidney Bean Glycol Channel. Channel shall stick out of insulation 1-2".

1.15 - Cutback: 12" +/- 1/2" Cutbacks

POLYCOR

6" x 18" INSULATED PIPE

Nominal	Jacket Size	Insulation
Pipe Size	(OD)	Thickness
6"	18.3"	5.57"

SPIRAL-THERM: BONDED FOAM SYSTEM WITH HDPE CARRIER PIPE AND ALUMINUM JACKET 6" x 15" INSULATED PIPE

1.02 - Carrier Pipe Specification: PE4710 High Density Polyethylene-IPS

1.03 - Carrier Pipe Origin: 100% Domestic in Origin

1.04 - Carrier Pipe Weight: SDR 11

1.05 - Carrier Pipe Length: 40' Lengths,

1.06 - Foam Specification: Polyurethane, 90% minimum corrected closed cell content, 2.0 to 4.0 pcf, K=.15@75°F and a compressive strength of not less than 35 psi. Operating temperature not to exceed 250°F. Insulation thickness is per attached chart with a tolerance of +/- 1/8" on ends, +/-1/4" in middle.

1.07 - Jacket Specification: .063", 5052 Aluminum Spiral Lock-seam jacket.

1.08 - End Seal Type: End seals shall be factory applied mastic completely sealing the exposed end of the insulation.

1.09 - System Type: System is Sticks & Kits: Straight Pipe Sections provided. System Design by Others.

1.10 - Fitting Type: Fittings By Others

1.11 - Joint Kit & Fitting Kit Types: By Others

1.15 - Cutback: 12" +/- 1/2" Cutback on each end.

Spiral-Therm:

6" x 15" INSULATED PIPE

Nominal	Jacket Size	Insulation
Pipe Size	(OD)	Thickness
6"	15.75"	4.68"

SPIRAL-THERM:

BONDED FOAM SYSTEM WITH SDR-11 HDPE CARRIER PIPE AND ALUMINUM JACKET WITH A 3" x 7" KIDNEY BEAN GLYCOL CHANNEL

6" x 15" INSULATED PIPE 6" x 18" INSULATED PIPE

1.02 - Carrier Pipe Specification: PE4710 High Density Polyethylene-IPS. To be centered in jacket.

1.03 - Carrier Pipe Origin: 100% Domestic in Origin

1.04 - Carrier Pipe Weight: SDR 11

1.05 - Pipe Length: 40' Lengths

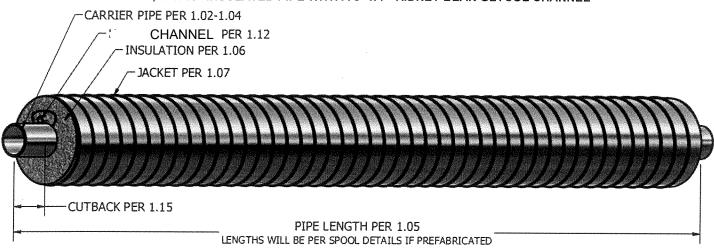
1.06 - Foam Specification: Polyurethane, 90% minimum corrected closed cell content, 2.0 to 4.0 pcf, K=.15@75°F and a compressive strength of not less than 35 psi. Operating temperature not to exceed 250°F. Insulation thickness is per attached chart with a tolerance of +/- 1/8" on ends, +/-1/4" in middle.

1.07 - Jacket Specification: .063", 5052 Aluminum Spiral Lock-seam jacket.

1.08 - End Seal Type: End seals shall be factory applied mastic completely sealing the exposed end of the insulation.

1.09 - System Type: System is Sticks & Kits: Straight Pipe Sections provided. System Design by Others.

1.10 - Fitting Type: By Others


1.11 - Joint Kit & Fitting Kit Types: By Others

1.12 - Channel: System will have a 3" X 7" Kidney Bean Glycol Channel. Channel shall stick out of insulation 1-2"

1.15 - Cutback: 12" +/- 1/2" Cutbacks

Spiral-Therm

 $6" \times 15"$ INSULATED PIPE, $6" \times 18"$ INSULATED PIPE WITH A $3" \times 7"$ KIDNEY BEAN GLYCOL CHANNEL

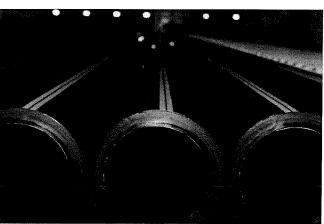
Nominal Pipe Size	Jacket Size (OD)	Insulation Thickness
6"	15.75"	4.68"
6"	18.125"	5.68"

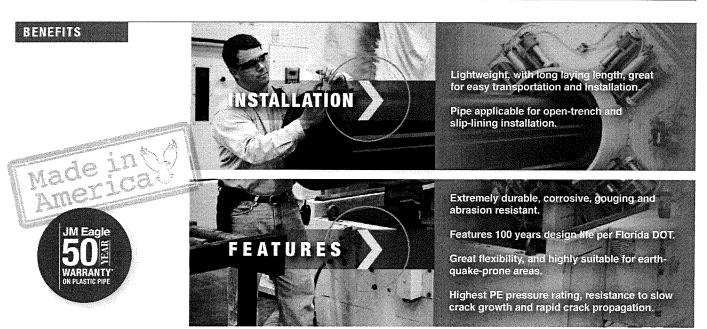
6" SDR-17 & SDR-11 HDPE CARRIER PIPE

HDPE Water/Sewer IPS

PRESSURE-RATED HDPE PIPE

ANSI/AWWA C906, ASTM F714, ASTM D3035 ASTM D3350 Cell Class 445574C/E, PPI (TR-4) PE 4710 ANSI/NSF 61/14


DELIVERING GOOD WATER TO YOU


MARKETS	Potable 💧 Reclaim	Sewel Drainage	Irrigation Rehabilitation
DESCRIPTION	IPS	PIPE SIZES:	ADDITIONAL OPTIONS:
	Nominal Laying Length: 40/50 feet (Laying length tolerances are in accordance	4",5", 6",7",8",10",12",14",16",18" 20",22",24",26"28",30",32",34",36"	Perforated*: 4", 5", 6, 7", 8"
	with AWWA and ASTM standards)	42", 48", 54", 63"	Coil*: 4", 5", 6"
	PIPE COLORS:	BLACK W/COLOR STRIPES:	ADDITIONAL COLOR OPTIONS:
	Black	Blue Green Purple	Grey*
Standard HDPE			

Coiled HDPE

AWWA	C906
DR 7	335 psi
DR 9	250 psi
DR 11	200 psi
DR 13.5	160 psi
 DR 17	125 psi
DR 19	112 psi
DR 21	100 psi
DR 26	80 psi
DR 32.5	63 psi

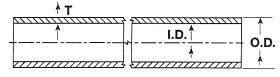
CARRIER PIPE SPECIFICATIONS 1.02, 1.03 & 1.04

HDPE Water/Sewer

PRESSURE-RATED HDPE PIPE

SUBMITTAL AND DATA SHEET

HDPE IRON PIPE SIZE (IPS) PRESSURE PIPE


PIPE SIZE (IN)	AVG.O.D. (IN)	MIN. T. (IN)	AVG I.D. (IN)	WGT (LBS/FT)	MIN. T. (IN)	AVG I.D. (IN)	WGT (LBS/FT)	MIN. T. (IN)	AVG I.D. (IN)	WGT (LBS/FT)
			R 7 (335	p(i)}		IR 8 (250	p#I)	13	R 11 (200	psij
4	4.500	0.643	3.137	3.40	0.500	3,440	2.75	0.409	3.633	2.30
5	5.375	0.795	3.747	4.85	0.618	4,109	3.92	0.506	4.338	3.29
6	6.625	0.946	4.619	7.36	0.736	5.065	5.96	0.602	5.349	4.99
7	7.125	1.018	5.056	8.52	0.792	5.446	6.89	0.648	5.751	5.78
8	8.625	1.232	6.013	12.48	0.958	6.594	10.09	0.784	6.963	8.46
10	10.750	1.536	7.494	19.40	1.194	8.219	15.68	0.977	8.679	13.14
12	12.750	1.821	8.889	27.28	1.417	9.746	22.07	1.159	10.293	18.49
14	14.000	2.000	9.760	32.90	1.556	10.107	26.61	1.273	11.301	22.30
16	16.000	2.286	11.154	42.97	1.778	12.231	34.75	1.455	12.915	29.12
18	18.000	2.571	12.549	54.37	2.000	13.760	43,97	1.636	14.532	36.84
20	20.000	2.857	13.943	67.13	2.222	15.289	54.28	1.818	16.146	45.49
22	22.000	3.143	15.337	81.23	2.444	16.819	65.68	2.000	17.760	55.05
24	24.000	3.429	16.732	96.67	2.667	18.346	78.18	2.182	19.374	65.52
26	26,000	N/A	N/A	N/A	2.889	19.875	91.75	2.364	20.988	76.90
28	28.000	N/A	N/A	N/A	3.111	21.405	106.40	2.545	22.605	89.15
30	30.000	N/A	N/A	N/A	3.333	22.934	122.13	2.727	24.219	102.35
3/2	32 000	N/A	N/A	N/A	N/A	N/A	N/A	2.909	25.833	116.46
34	34,000	N/A	N/A	N/A	N/A	N/A	N/A	3.091	27.447	131.48
36	36.000	N/A	N/A	N/A	N/A	N/A	N/A	3.273	29.061	147.41

Product Standard: ANSI/AWWA C906 ASTM F714 ASTM D3035 Pipe Compound: PPI TR-4 PE 4710, ASTM D3350 Cell Class 445574 C/E Certification: ANSI/NSF 61, ANSI/NSF 14* **Additional Option:** Perforated (4" - 8")*

Nominal Laying Length: 40/50 feet (Laying length tolerances are in accordance with AWWA and ASTM standards) Coil option available upon request for size 6" and below. Installation: JM Eagle™ HDPE Water/ Sewer Installation Guide

Manning Coefficient (n) = 0.009 Hazen-Williams Coefficient (c) = 150

*Supply may vary based on plant location. Please call regarding availability.

T: (Wall Thickness) I.D.: (Inside Diameter) O.D.: (Outside Diameter)

	PIPE SIZE (IN)	AVG.O.D. (IN)	MIN. T. (IN)	AVG I.D. (IN)	WGT (LBS/FT)	MIN. T. (IN)	AVG I.D. (IN)	WGT (LB9/FT)	MIN. T.	AVG I.D. (IN)	WGT (LBS/FT)	PIPE SIZE (IN)	AVG.O.D. (IN)	MIN. T. (IN)	AVG I.D. (IN)	WGT (LBS/FT)	MIN. T. (IN)	AVG I.D. (IN)	WGT (LBS/FT)	MIN. T. (IN)	AVG I.D. (IN)	WGT (LBS/FT)
2000			(0)(0)200000000000000000000000000000000	1 13 5 10	0 (0)	b	R 17 (125	psil	1	in 19 (11)	psl)			U	r 21 (100	ps ()		0.7281010	asij	0	1 12 5 (6)	i pelj
200	4	4.500	0.333	3.794	1.91	0.265	3.938	1.55	0.237	3,998	1.39	4	4,500	0.214	4.046	1.27	0.173	4.133	1.03	0.138	4.207	0.83
	5	5.375	0,412	4,531	2.73	0.327	4.705	2.21	0.283	4.775	1.99	5	5.375	0.265	4.832	1.81	0.214	4.936	1.48	0.171	5,025	1,19
7	- 8	6.625	0.491	5.584	4.15	0.390	5.798	3.35	0.349	5,885	3.02	- 8	6.625	0.315	5.957	2.74	0.255	6.084	2.24	0.204	6.193	1.81
800	7	7.125	0.528	6,006	4.80	0.420	6.237	3.88	0.375	6.330	3.49	7	7.125	0.340	6.406	3.18	0.274	6.544	2.59	0.219	6.661	2.09
	8	8.625	0.639	7.270	7.03	0.507	7.550	5.68	0.454	7.663	5.12	8	8 625	0.411	7.754	4.66	0.332	7,921	3.80	0.265	8.063	3.06
8	10	10.750	0.796	9.062	10.92	0.632	9.410	8.82	0.566	9,550	7.95	10	10.750	0.512	9.665	7.24	0.413	9.874	5.90	0.331	10.048	4.77
	12	12.750	0.944	10.749	15.36	0.750	11.160	12.41	0.671	11.327	11.19	12	12.750	0.607	11,463	10.17	0.490	11.711	8,30	0.392	11.919	6.69
	14	14.000	1.037	11.802	18.52	0.824	12.253	14.98	0.737	12.438	13.49	14	14.000	0.667	12.586	12.28	0.538	12.895	10.00	0.431	13.086	8.08
	16	16.000	1.185	13.488	24.19	0.941	14.005	19.55	0.842	14.215	17.61	16	16.000	0.762	14.385	16.03	0.615	14.696	13.07	0.492	14.957	10.54
	18	18,000	1.333	15.174	30.61	1.059	15.755	24.75	0.947	15,992	22.29	18	18 000	0.857	16.183	20.28	0.692	16.533	16.54	0.554	16.826	13.36
	20	20.000	1.481	16.860	37.79	1.176	17.507	30.53	1.053	17.768	27.52	20	20.000	0.952	17.982	25.03	0.769	18,370	20.43	0.615	18.696	16.48
988	22	22.000	1,630	18.544	45.75	1.294	19.257	36.86	1.158	19.545	33.30	22	22.000	1.048	19.778	30.31	0.846	20.206	24.72	0.677	20.565	19.95
200	24	24.000	1.778	20.231	54.44	1.412	21.007	43.99	1.263	21,322	39.63	24	24.000	1.143	21,577	36.06	0.923	22.043	29.42	0.738	22.435	23.72
	26	26.000	1.926	21,917	63.89	1.529	22.759	51.61	1.368	23.100	46.51	26	26,000	1.238	23.375	42.32	1.000	23.880	34.53	0.800	24.304	27.86
200	28	28.000	2.074	23.603	74.09	1.647	24.508	59.87	1.474	24.875	53.94	28	28 000	1.333	25.174	49.07	1.077	25.717	40.05	0.862	26,173	32.33
	30	30,000	2.222	25.289	85.04	1.765	26.258	68.74	1.579	26.653	61.92	30	30.000	1.429	26.971	56.36	1.154	27.554	45.98	0.923	28.043	37.09
	32	32.000	2.370	26.967	96.76	1.882	28.010	78.18	1.684	28,430	70.45	32	32.000	1.542	28.730	64.11	1.231	29.390	52.31	0.985	29.912	42.22
	84	34.000	2.519	28.660	109.26	2.000	29.760	88.28	1.790	30.205	79.54	34	34.000	1.619	30.568	72.36	1.308	31.227	59.06	1.046	31,782	47.63
	36	36.000	2.667	30.346	122.49	2.118	31.510	98.98	1.895	31,983	89.17	36	36.000	1.714	32.366	81.12	1.385	33.064	66.22	1.108	33.651	53.42
	42	42.000	3.111	35.404	166.70	2.471	36.761	134.72	2.211	37.314	121.37	42	42.000	2.000	37.760	110.43	1,615	38.576	90.08	1.292	39.261	72.68
	48	48.000	3.556	40.462	217.76	2.824	42.013	175.97	2.526	42.644	158.52	48	48.000	2.286	43,154	144.25	1.846	44.086	117.68	1.477	44.869	94.95
	54	54.000	N/A	N/A	N/A	3.177	47.265	222.67	2.842	47.975	200.63	54	54.000	2.571	48.549	182.51	2.077	49.597	148.95	1.662	50.477	120.20
												63	63.000	3.000	56.640	248,46	2.423	57.863	202.73	1.938	58.891	163.53

1.07 - JACKET SPECIFICATION 18.3" HDPE JACKET

6" x 18" POLYCOR

STANDARD CASING PIPE 8" and Larger

		Out	Outside Diameter	ter	 	Wall Thickness	SS	QI	Merchanist and the control of the co
Nominal Size	Size	Avg.	Min.	Мах.	Avg.	Min.	Мах.	Avg.	Lbs/Ft
5.563	Inches	5.563	5.538	5.588	0.184	0.175	0.193	5.195	1.300
0.175 Wall	MM	141.300	140.665	141.935	4.674	4.445	4.902	131.953	
		And the second second							
6.625 Casing	Inches	6.625	6.595	6.655	0.193	0.180	0.206	6.239	1.600
0.180 Wall	MM	168.275	167.513	169.037	4.902	4.572	5.232	158.471	
8.625 Casing	Inches	8.625	8.586	8.664	0.191	0.180	0.201	8.244	2.100
0.180 Wall	MM	219.075	218.084	220.066	4.839	4.572	5.105	209.398	
10.80 Casing	Inches	10.800	10.724	10.876	0.210	0.200	0.220	10.380	2.950
0.200 Wall	MM	274.320	272.390	276.250	5.334	5.080	5.588	263.652	
12.80 Casing	Inches	12.800	12.724	12.876	0.210	0.200	0.220	12.380	3.500
0.200 Wall	MM	325.120	323.190	327.050	5.334	5.080	5.588	314.452	
15.65 Casing	Inches	15.650	15.619	15.681	0.276	0.250	0.301	15.099	5.350
0.250 Wall	MM	397.510	396.723	398.297	6.998	6.350	7.645	383.515	
18.30 Casing	Inches	18.300	18.218	18.382	0.276	0.250	0.301	17.749	6.250
0.250 Wall	Σ	464.820	462.737	466.903	6.998	6.350	7.645	450.825	
20.30 Casing	Inches	20.300	20.209	20.391	0.325	0.300	0.350	19.650	8.300
0.300 Wall	MM	515.620	513.309	517.931	8.255	7.620	8.890	499.110	
								The second	
22.80 Casing	Inches	22.800	22.697	22.903	0.325	0.300	0.350	22.150	9.300
0.300 Wall	MΜ	579.120	576.504	581.736	8.255	7.620	8.890	562.610	
. 002.00									
24.50 Casing	Inches	24.500	24.390	24.610	0.325	0.300	0.350	23.850	10.000
0.300 Wall	MΜ	622.300	619.506	625.094	8.255	7.620	8.890	605.790	

.063 ALUMINUM JACKET

THERMACOR - NORTHWEST

500 Metcalf St. Bldg. A-3 Sedro Woolley, WA. 98284 Ph. (360) 855 - -9829 -- Fax (360) 855 - 1680

INTERNAL LOCK SEAM ALUMINUM JACKET

Thermacor Northwest Inc. manufactures aluminum jacketing from 16 gauge (.063"), 5052 H-32 aluminum material.

The jacketing has an internal locking seam with inside corrugations. Sizes available are 4" thru 22" in even numbers above 20".

The jacketing has passed the five-foot water test. The internal lock seam is air and watertight.

Thermacor Northwest may also exercise the option to purchase aluminum jacketing from SpiralTec, Inc.

See attached letter from SpiralTec.

6" x 15" & 6" x 18" SPIRAL-THERM

SPIRALTEC INC. 3951 HAMMER DR BELLINGHAM WASH PH 360-734-7831

We have been contacted by Thermacor Northwest Inc. to provide aluminum jacket.

All products manufactured by SPIRALTEC meet or exceed SMACNA 1995 Duct construction standards.

Our Spiral Jacket has a high quality 4-ply lockseam that is air and watertight, that wind's around the exterior of the pipe to give it added strength and rigidity as compared to conventional longitudinal seam jacket.

We have met the five foot water test on our jacket with a sealer in the seam. We have also gone from the 3000 series aluminum to the 5000 series aluminum, for availability of material and to get more quility in our product.

Aluminum Jacket MFG: .063 (16 G.A.) 5052 H-32 Inside seam Inside corrugations. Sizes available: 4" Diam to 60" Diam with or without corrugations.

SPIRAL DUCT SYSTEMS

DAVE MELLOTT

MANUFACTURER OF COMMERCIAL GRADE

1970 HAMMER DR BELLINCHAM, WA 98276

PH. (360) 734-7831 FAX (360) 738-7838 Thank You Dave Mellott Owner

) ave Mellt

ELASTOPOR® P 15953R SYSTEM

TECHNICAL DATA SHEET

DESCRIPTION

Elastopor® P 15953R Resin/Elastopor® P 1001U Isocyanate is a two-component polymeric MDI based system utilizing a low global warming potential blowing agent. This system is designed for use in pipe insulation applications. The desired foam performance and suitability of use at any service temperature must be tested and qualified by the end user.

ELASTOPOR® P 15953R RESIN COMPONENT

Appearance	Amber liquid -				
Odor	Slight amine				
Specific Gravity @ 73°F	1.04 ± 0.02				
Resin Viscosity @ 73°F	730 ± 100 cps				
Flash Point, ASTM 3278-89	> 93°C				
ELASTOPOR® P 1001U ISOCYANATE COMPONENT					
Appearance	Dark brown liquid				
Odor	Slight aromatic				
Viscosity @ 77°F	200 ± 30 cps				
Flash Point	> 400°F				
Vapor Pressure at 20°C	0.00016 mm Ha				
STORAGE RECOMMENDATIONS					
Resin - Shelf Life	180 days				
- Temperature	16 × 27 °C (56 × 80 °F)				
Isocyanate - Shelf Life	365 days				
- Temperature	10 - 25 °C (50 - 77 °F)				

For more information on this product, please contact the BASF Tech Desk at 800.527.8324 or techquestions.na@basf.com

IMPORTANT! The information, data and products presented herein are based upon information reasonably available to BASF at the time of publication, and are presented in good faith, but are not to be construed as guarantees or warranties, express or implied, regarding performance, results to be obtained from use comprehensiveness merchantability, or that said information, data or products can be used without infringing patents of third parties. You should thoroughly test any application, and independently determine satisfactory performance before commercialization.

WARNING! These products can be used to prepare a variety of polyurethane products. Polyurethanes are organic materials and must be considered combustible.

ELASTOPOR® P 15953R SYSTEM

TECHNICAL DATA SHEET

ELASTOPOR® P 15953R RESIN COMPONENT

Parts by Weight	85 Resin / 100 Isocyanate
Parts by Volume	di es y
HANDMIX REACTIVITY	
Resin/Isocyanate Temperature	53°F / 73°F
Mix Time Jiffy Mixer @ 1720 rpm	8 seconds
Cream Time	40 - 55 seconds
Gel Time	240 - 280 seconds
Tack Free Time	500 - 540 seconds
Free Rise Density #10 Cup	2.7 - 2.9 pcf
DIMENSIONAL STABILITY	
%Volume Change, D2126 ASTM	
158°F 28 days	-0.02%
158°F / 97% RH 28 days,	0.41%
-4°C, 28 days	0.27%

^{*}Physical property values were measured on a specimen taken from a moulded 2' x 2' x 4" laboratory sample.

For more information on this product, please contact the BASF Tech Desk at 800.527.8324 or techquestions neithbast, com

IMPORTANT! The information, data and products presented herein are based upon information reasonably available to BASF at the time of publication, and are presented in good faith, but are not to be construed as guarantees or warranties, express or implied, regarding performance, results to be obtained from use comprehensiveness merchantability, or that said information, data or products can be used without infringing patents of third parties. You should thoroughly test any application, and independently determine satisfactory performance before commercialization.

WARNING! These products can be used to prepare a variety of polyurethane products. Polyurethanes are organic materials and must be considered combustible.

ELASTOPOR® P 15953R System

TECHNICAL DATA SHEET

TYPICAL PHYSICAL PROPERTIES**

Molded, ASTM D 1622	4.2 pof
Core Density, ASTM D 1622	3.5 paf
Compressive Strength @10% deflection, perpendicular, ASTM D 1621	49 psi
Compressive Modulus, ASTM D 1621	970 psi
Compressive Strength @10% deflection, parallel, ASTM D 1623	51 851
Compressive Modulus, ASTM D 1621	1,236 psi
Water Absorption, ASTM D 2842	
Surface Area	0.02 1.04.
Volume	2.53 lb/ft ³
% by volume	4
Closed Cells, ASTM D 6226	92% (uncorrected)
k Factor, ASTM C518	
Initial	0.161 BUDBUEFTZ-F
Aged, 30 days	0.201 BTW-IN/HR-FT2-°F

^{**}Physical property values were measured on a specimen taken from a moulded 2' x 2' x 4" laberator) sample.

For more information on this product, please contact the BASF Tech Desk at 800.527.8324 or techquestions.na@basf.com

IMPORTANT! The information, data and products presented herein are based upon information reasonably available to BASF at the time of publication, and are presented in good faith, but are not to be construed as guarantees or warranties, express or implied, regarding performance, results to be obtained from use comprehensiveness merchantability, or that said information, data or products can be used without infringing patents of third parties. You should thoroughly test any application, and independently determine satisfactory performance before commercialization.

WARNING! These products can be used to prepare a variety of polyurelhane products. Polyurelhanes are organic materials and must be considered combustible.

Mastic End Seal

1.08-End Seal Type

- Weathercoat and vapor seal over insulation in normal or corrosive atmospheres
- Corrosion protection
- Waterproofing

BLACKHAWK Seal Kote

Meets ASTM D 4479 Type II

Functions, Typical Uses

Vapor Seal and Weather Barrier in normal or corrosive atmospheres

- · Over insulation on low temperature storage tanks, process vessels
- Over foamed-in-place polyurethane on machinery, roofs, etc.
- · As a vapor barrier under polyurethane foam
- · Over insulation on underground chilled water lines
- · Over insulated ells, tees, etc. on piping

Corrosive Prevention

- · Over metal buildings, roofs, structural steel, barges, piping, kilns, etc.
- · Over cement concrete structures in plant process, or corrosive chemical areas
- · On totally or intermittently water immersed bridge structures, waterfront construction

Applications Surface Preparation

All surfaces to be coated should be dry and free of dust or loosely bonded insulation. With proper equipment to warm the Seal Kote, applications can be made with surface temperatures below freezing provided the surfaces are frost free.

Priming is desirable on porous. dusty or fibrous insulation types. Such surfaces may be primed with BH SP Asphalt by brush or spray, with coverage at 150 to 250 sq. ft, per gallon, depending on surface roughness and degree of absorptivity of the insulation. Where unusual insulation movement might be expected due to thermal differentials, or undue mechanical stress, a glass fabric may be imbedded as reinforcement. A tack coat of about 2 gallons per 100 sq. ft. of Seal Kote should be applied, the fabric pressed in smoothly and a second coat of Seal Kote applied to the desired

ft is also recommended that the coating be reinforced with strips of

imbedded glass fabric at edges, angles and protrusions.

In areas where corrosive conditions are severe, and especially where sharp corners or edges are to be coated, added protection against under film corrosion creep at edges and unavoidable coating holidays is recommended in the form of primer systems. Commercial vinyl wash or chromate primers have been successful under Seal Kotes in severe corrosive conditions.

Application Methods

Brush Grade is usually applied by a soft bristle brush. Two coats are recommended, the second applied with brush strokes running at right angles to those of first application.

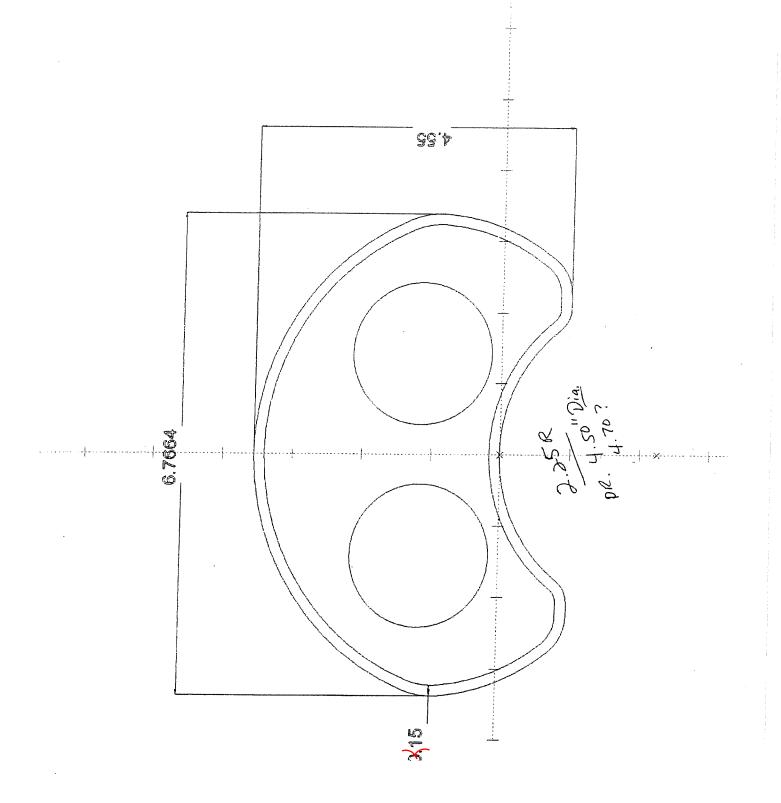
Spray Grade is of the correct consistency for spray application through industrial type mastic spray equipment. Either airless or air atomizing type equipment may be used (refer to Spray Recommendations data sheet). Large areas may be coated quickly and efficiently by this method, of application. By this method, a onecoat thickness of up to 1/8" wet film may be applied.

Trowel Grade is applied by toweling or palming with coating films up to 3/16" thickness. In toweling, wetting the trowel with mineral spirits will ease the pull required. The trowel grade is also well suited for caulking purposes and can be extruded rapidly through a hand or pressure caulking oun.

Corrosive Conditions - As in all coating applications, metal surface preparation is extremely important to insure good coating bond and lasting corrosion protection. The "Surface Preparation Specifications" approved by the Steel Structures Painting Council serve as excellent guidelines for coating application. In severely corrosive environments specification SSPC-SP6-63, "Commercial Blast Cleaning," or SSPC-SP8-63, "Pickling," should be used. In mildly corrosive atmospheres SSPC-SP2-63. "Hand Tool Cleaning," SSPC-SP3-63, "Power Tool Cleaning," or SSPC-SP7-63, "Brush-Off Blast Cleaning," may

Military or Federal Specification Mil-C-82052 (Dock) SS-A-00694C; Brush, Spray SS-A-00694d; Brush only

ErgonArmor
A Division of Ergon Asphalt & Emulsions
450 Funston Road
Kansas City. KS 66115
1-800-456-8556
Enx 913-481-3419


LIMITED WARRANTY

Ingoin makes no warranty, either express or implied, as to the quality, me whannibility or finess for any particular purpose of any products referred to and except as herein after a used, makes no extraction of results or of stretcherion from a funer upon the information or excommendations set forth. The buyer's or user's exclusive amongly and Ergon, solv initial of lability from any losses remaining from the use of said product shall be for the purchase prize of the product causing the loss. For turbuler warranty information, contact in as 1 is \$10.256, \$250.

Mastic End Seal Typical Properties & Performance

1.425.014		SECTION	Heavy
		angle or the Sugar State State 2005 a	Trowel
EPE E2:363		opray	ttoner
\$9-120)	50-120 Brush 80-120	50-100 tean be sprayed above 901
} (%)	erar voca voca a	100	100
63	model spike of the st	63	68
None		None	None
\$ 7	while around to the	41	ser stammen kanalise kanalise F
None	indon denakan dana	None	None
8.5		8.53	835
2.0	A district and the second of	2.0	2.0
24	ed a compression	34	24
500		SOCI	500
Excelle	m	Excellent	Excellent
None		Nense	Nemec
Excelle	nt	Excellent	Excellent
0.0021		0.0030	0.0025
Poor 150	and a second section.	Poor 150	Poor 150
1.7 BT	U/hr. + sq. ft "F	inch	ettigitettistä kinteet tiinkeet klaasimissa vahtaja viinissa eistä ja
No appreciable attack, blistering or hardening of coating or corrosion of panels b 10% HCL 10% H ₂ SO ₅ and 10%, 30% and 85% solutions of phosphoric acids. N recommended for concentrated nitric acid exposure.			
No appreciable attack, blistering or hardening of coating or corrosion of panels by solutions of 10% and 30% NaOH, 45% ammonium nitrate, and saturated solution of ammonium sulfate.			
Poor. Not recommended for application in locations where exposed to solvents asphalt.			
60 to 3	23	-60 to 325	-60 to 325
Dry Film Thickness Inches	Thickness Required to		e Required Gallons/100 Sq. Ft
1/32"	3/64"	34.3	2.9
1/16"	7/64"	14.7	6.8
			9.7
			12.7 18.5
			25.0
	Brush S0-120	Brush S0-120 100 63 None 37 None 8.5 2.0 24 500 Excellem None Excellem None Excellem None Fixellem No appreciable attack, blist solutions of 10% and 30% of ammonium sulfate. Poor, Not recommended for concentrations of 10% and 30% of ammonium sulfate. Poor, Not recommended for solutions of 10% and 30% of ammonium sulfate. Poor, Not recommended for solutions of 10% and 30% of ammonium sulfate. Poor, Not recommended for solutions of 10% and 30% of ammonium sulfate. Poor, Not recommended for solutions of 10% and 30% of ammonium sulfate. Poor, Not recommended for 50% of ammonium sulfate.	Brush Spray S0-120 Brush 80-120

Limitations: Neither can be used with foamed styrene insulation, or when exposed to oils and solvents, or when exposed to concentrated nitric acid.

10x10 STATE OF ALASKA SHIPTOURIE

ALL OUR SHELTERS ARE DESIGNED THE SAME AS THIS SHELTER.

FLOOR LOAD 200 PSF+ ROOF 90 PSF WIND 250 MPH SEISMIC ZONE

ANY SPECIFIC ITEMS UPON YOUR REQUEST FOR PROPOSAL WILL BE NOTE: ELECTRICAL COMPONENTS INCLUDING CONDUIT, JUNCTION BOXES, MAIN PANELS, EXHAUST FANS, LIGHTING, SURGE PROTECTORS, AIR CONDITIONERS, ETC., CAN BE PLACED ON ANY WALL OF THE SHELTER. THE 'LAYOUT' OF THESE ITEMS ARE NOT RESTRICTED. ALSO THE DOOR CAN BE PLACED IN ANY WALL. WE'LL PUT IT WHERE YOU WANT IT."

SHEET AND DRAWING INDEX

1 OF 7	TITLE SHEET
2 OF 7	OUTSIDE DIMENSIONS AND DETAILS
3 OF 7	FLOOR AND SKID DETAILS
4 OF 7	FLOOR AND SKID DESIGN
5 OF 7	ROOF & WALL CORE & FRAMING
6 OF 7	DETAILS
7 OF 7	ROOF HATCH DETAILS

SHOP DRAWING / SUBMITTAL REVIEW

Approved

Partial Approval, Resubmit as

Revise and Resubmit

NOTE: CORRECTIONS OR COMMENTS MADE ON CONTRACTOR'S SUBMITTAL/SHOI DRAWINGS DURING THIS REVIEW DO NOT RELIEVE THE CONTRACTOR FROM COMPLIANCE WITH THE CONTRACT DRAWINGS OR SPECIFICATIONS. THIS SUBMITTAL HAS BEEN REVIEWED FOR CONFORMANCE WITH THE CONTRACT DOCUMENTS ONLY. CONTRACTOR IS RESPONSIBLE FOR CONFIRMING AND CORRECTING ALL QUANTITIES AND DIMENSIONS. FABRICATION PROCESSES AND TECHNIQUES, COORDINATING WORK WITH OTHER TRADES, AND SATISFACTORY AND SAFE PERFORMANCE OF THE WORK.

By: Karl Hulse

Date: 6-13-22

DRAWN DMR

CHECKED XXX

Anchorage: 3940 Arctic Blvd. Suite 300 Anchorage, AK 99503 Phone: (907) 562-3252 808 S. Bailey St. Suite 104 Palmer, AK 99645 Phone: (907) 707-1352

06/05/22

00/00/20

PROPRIETARY AND CONFIDENTIAL UNLESS OTHERWISE SPECIFIED:

THE INFORMATION CONTAINED IN THIS DRAWING IS THE SOLE PROPERTY OF REIFF MANUFACTURING COMPANY. ANY REPRODUCTION IN PART OR AS A WHOLE WITHOUT THE WRITTEN PERMISSION OF REIFF MANUFACTURING COMPANY IS

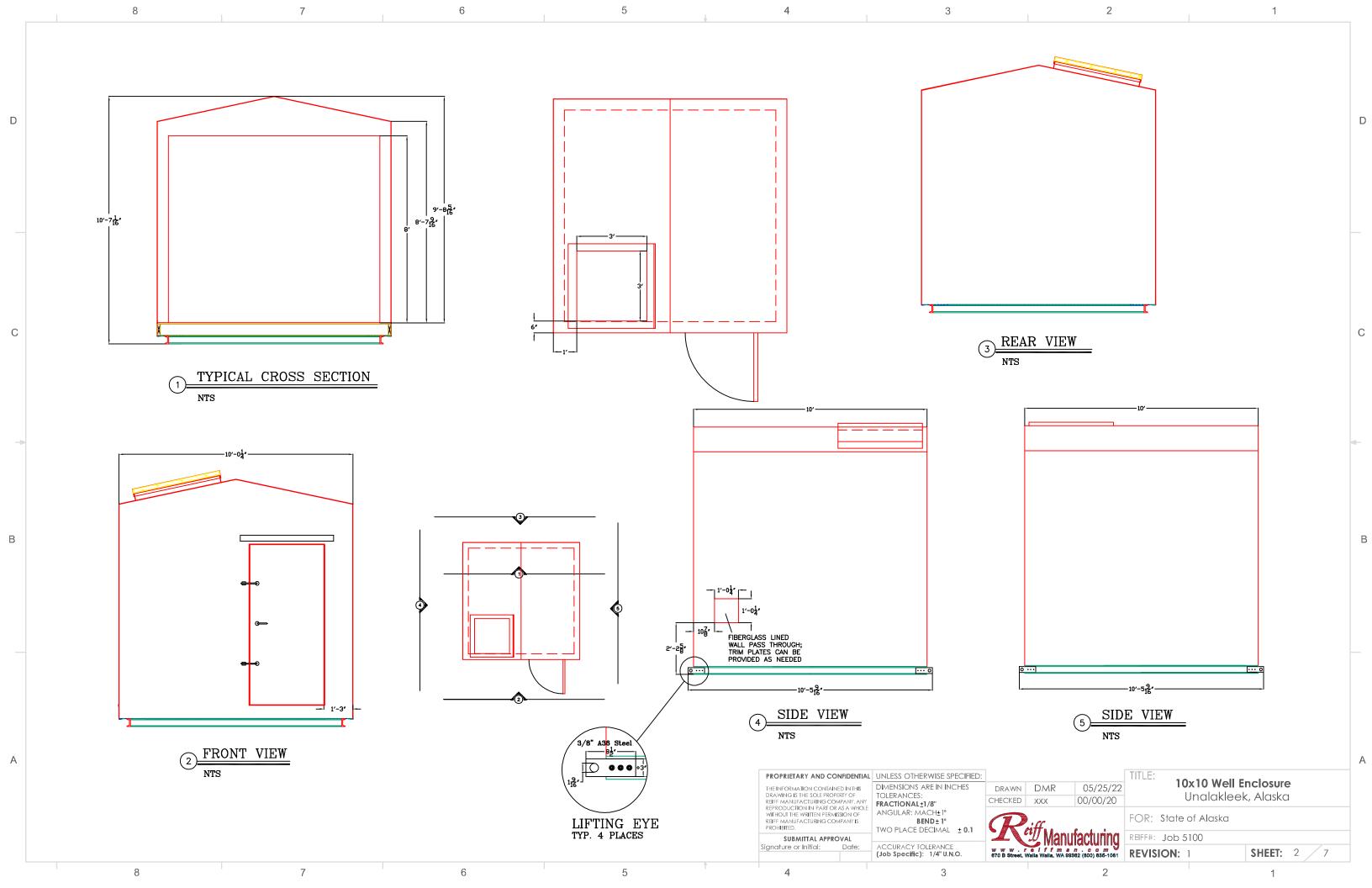
SUBMITTAL APPROVAL Signature or Initial:

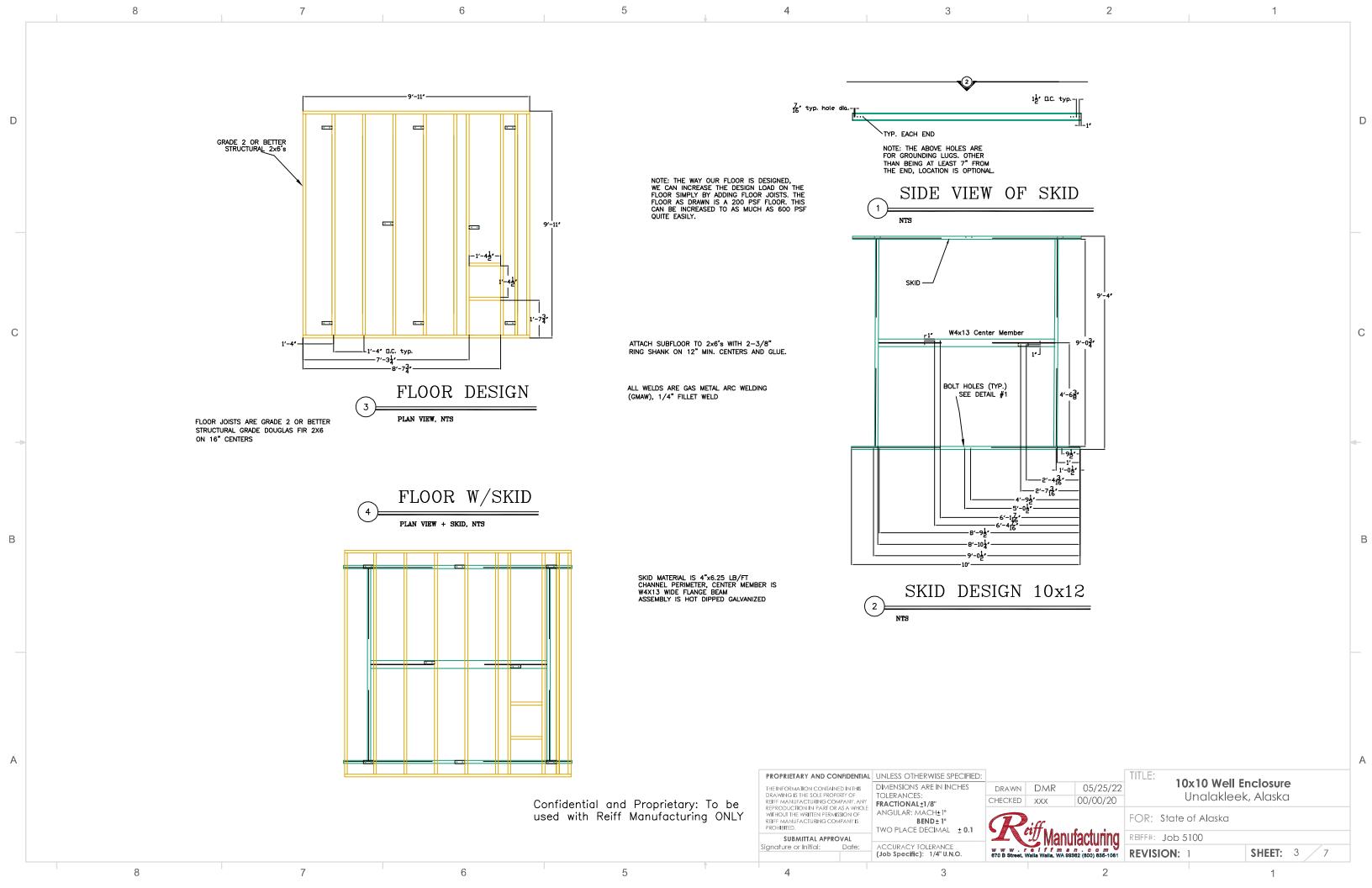
DIMENSIONS ARE IN INCHES TOLERANCES: FRACTIONAL±1/8" ANGULAR: MACH± 1°

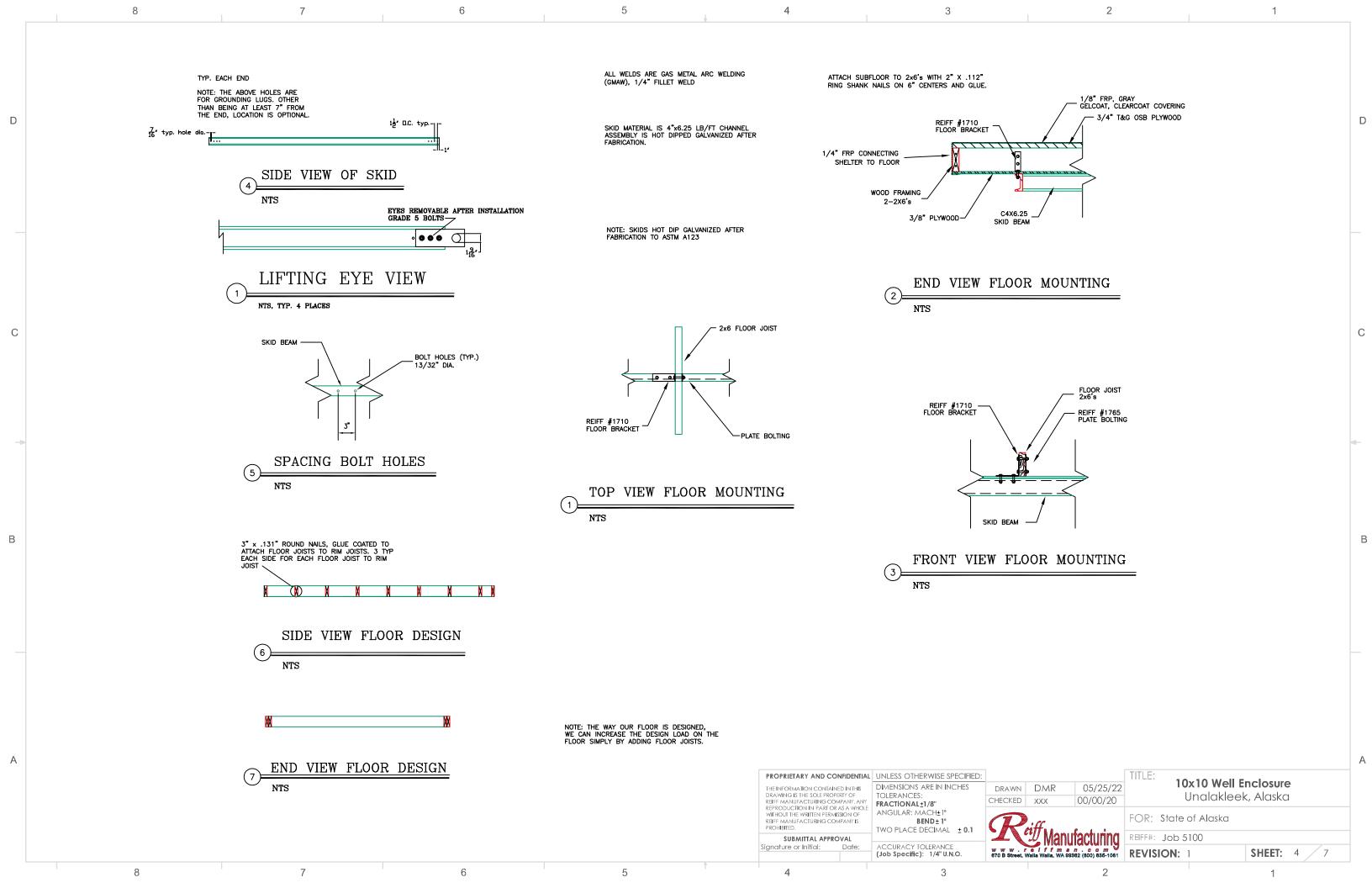
BEND±1° TWO PLACE DECIMAL ± 0.1

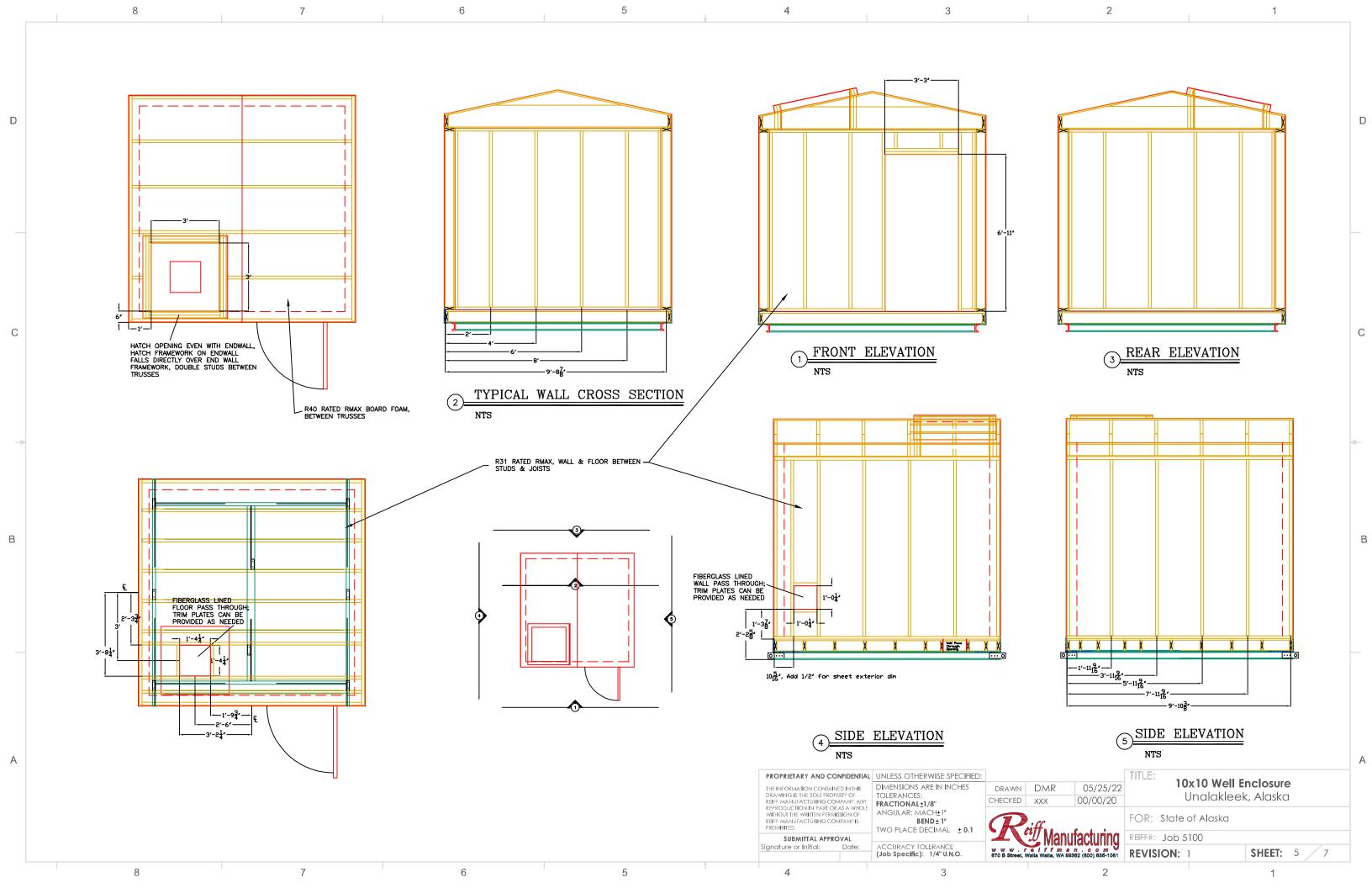
ACCURACY TOLERANCE (Job Specific): 1/4" U.N.O.

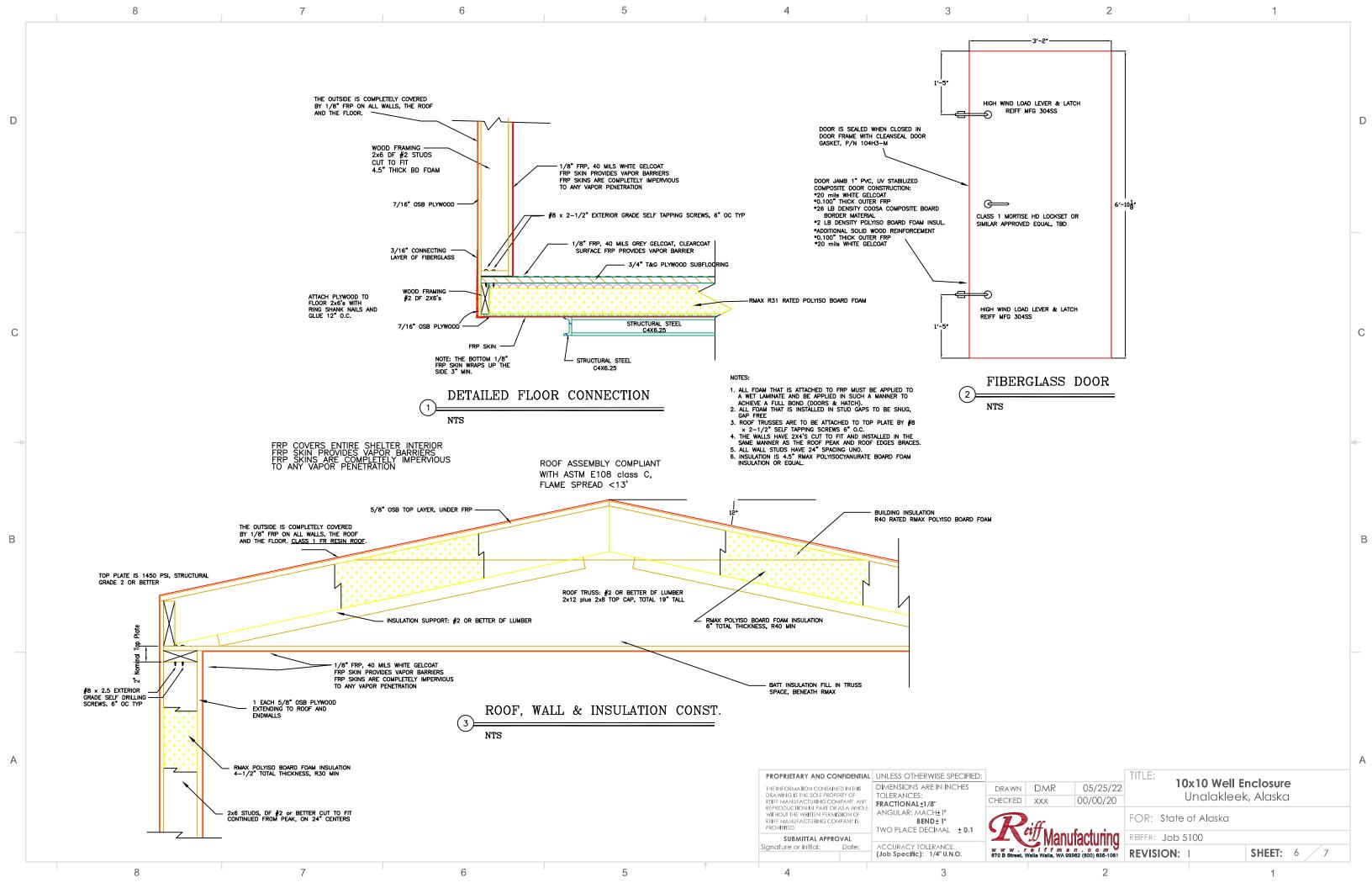
TITLE:

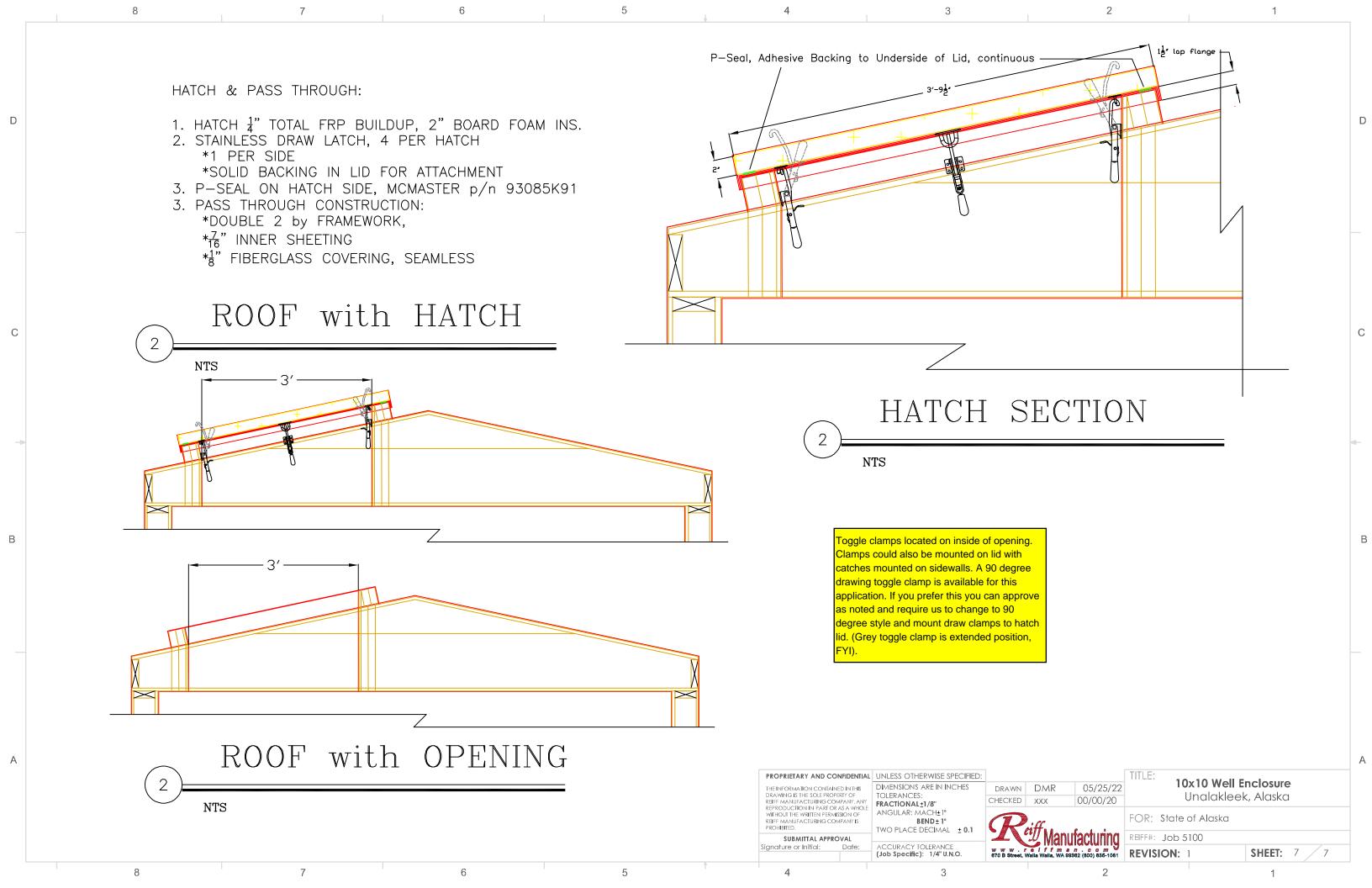

10x10 Well Enclosure Unalakleek, Alaska




FOR: State of Alaska


REIFF#: Job 5100


SHEET: 1 / 7



THERMASHEATH®

INSULATION FOR THE BUILDING ENVELOPE

PRODUCT DESCRIPTION

Rmax Thermasheath® is an energy-efficient thermal insulation board composed of a closed-cell polyisocyanurate (polyiso) foam core bonded to reinforced aluminum foil facers with clear coating for limited protection against oxidation on each side.

COMPLIANCES

- ASTM C1289 Type I, Class 1 and 2
- International Building Code (IBC) Section 2603, Foam Plastic
- ASHRAE 90.1
- DrJ TER 1309-03
- ESR-1864, ICC Evaluation Service
- International Energy Conservation Code (IECC)
- Miami-Dade County Product Control Approved
- RR 25322, City of Los Angeles Research Report
- California Code of Regulations, Title 24 (BHFTI License T1523)
- Tested per NFPA 285 to comply with IBC Section 2603.5.5
- Tested per NFPA 286 (ICC-ES AC12 Appendix B)
- Water-Resistive Barrier (WRB) per ICC-ES AC71 (ASTM E331, AATCC Test Method 127)
- Class A Flame Spread and Smoke Developed Indices per IBC Chapter 8, Interior Finishes (1" min.)
- 1, 2, 3 or 4 hour Fire Rated Assemblies as shown in the UL Fire Resistance Directory.

NOTE: For details, requirements and/or limitations, refer to Third-Party Evaluation Reports

APPLICATIONS

Exterior walls (Type I-IV): Masonry, steel stud, FRTW stud; wood stud (Type V); concrete foundation; exterior ducting; limited roofing applications

THERMAL PROPERTIES / PRODUCT DATA

"R" means resistance to heat flow. The higher the R-value, the greater the insulating power.

NOMINAL THICKNESS	THERMAL R-VALUE ¹
Inches	°F•ft²•hr/Btu
0.50	3.2
0.75	5.0
1.00	6.0
1.10	6.7
1.25	7.8
1.50	9.6
1.55	10.0
1.75	11.4
2.00	13.1
2.10	13.9
2.30	15.3
2.50	16.7
2.90	19.6
3.00	20.3
3.50	23.9
3.70	25.3
4.00	27.4
4.50	31.0

nermal values are determined by using ASTM C518 test method at 75°F mean temperature on material conditioned according to PIMA Technical Bulletin No. 101.

TYPICAL PHYSICAL PROPERTIES

Physical properties shown are based on data obtained under controlled conditions and are subject to normal manufacturing tolerances.

PROPERTY	TEST METHOD	RESULTS
Density, Overall, Nominal	ASTM D1622	2.0 pcf
Compressive Strength	ASTM D1621	20 psi ¹
Flexural Strength	ASTM C203	60 psi
Flame Spread, Core ²	ASTM E84	≥ 1" 25 or Less < 1" 75 or Less
Smoke Developed, Core ² ASTM E84		< 450
Air Permeance	ASTM E2178	< 0.02 L/(s·m²)
Water Vapor Permeance	ASTM E96	< 0.03 perm
Water Absorption	ASTM C209 ASTM C272	< 0.2% Vol. 0.3% max
Dimensional Stability, Length and Width	ASTM D2126	< 1% Linear Change
Mold Resistance	ASTM D3273	10, no defacement
Service Temperatures		250°F max

¹Also available in 25 psi upon request. Less than 1" is standard at 16 psi. Flame spread and smoke numbers are shown for comparison purposes only and are not intended to represent the performance of Thermasheath® and related components under actual fire conditions.

APPLICATION / INSTALLATION

NOTE: For use as a code prescribed Water-Resistive Barrier over wood or steel studs, refer to the Water-Resistive Barrier section for specific installation and securement details.

General – Thermasheath® shall be installed vertically or horizontally with all edges tightly butted. Vertical joints must be backed by framing or structural sheathing. Taping the joints is acceptable, although not required. Rmax recommends using a pressure sensitive tape such as R-SEAL Construction Tape, R-SEAL 3000, or equivalent.

Securement – Rmax recommends a minimum of eight fasteners per 4'x8' board. Additional fasteners may be required in locations expected to experience additional loading (heavy wind drafts/gusts, accelerated wear and tear, etc.). The appropriate number of fasteners also depends on the type of fastener and its capacity; consult fastener manufacturer.

Fasten to wood framing using cap nails, washers with roofing nails, or washers with bugle head screws. When used in conjunction with Thermasheath®-SI, staples at 12" o.c. pattern may be used to fasten Thermasheath®. With staples, Rmax recommends taping the joints as soon as possible. All fasteners shall be long enough to penetrate wood framing a minimum of 1". Fasten to metal framing using self-taping screws and plastic washers. The fasteners shall be long enough to penetrate metal framing a minimum of four threads. Secure to concrete surfaces using plastic masonry fasteners with washer or a quality grade construction adhesive. TRUFAST Walls fasteners, sold by Rmax, are a great option for fastening Thermasheath® to wood, steel and concrete substrates. Refer to the Rmax/TRUFAST Walls Fastener List and Installation Guide for more details.

Water-Resistive Barrier – When Thermasheath® is installed over wood or steel studs with the joints sealed, it serves as a code prescribed Water-Resistive Barrier (WRB). For use as a WRB, Thermasheath® shall be installed with vertical board joints placed directly over wood framing spaced a maximum of 24" o.c. Use a minimum 3/4" cap nail spaced 12:16 o.c. or 1 3/8" staples spaced 12" o.c. at all vertical framing. All insulation board joints must be covered by R-SEAL Construction Tape or R-SEAL 3000. All transitions and throughwall penetrations must be flashed to comply with applicable code.

LIMITATIONS

Thermasheath® is not recommended, nor warranted, for use as a commercial roof insulation. Consult Rmax Sales for suitable commercial roof insulation products.

Thermasheath® is not a structural panel; stud walls insulated with Thermasheath® must be properly braced for lateral loads according to the requirements of local Building Codes.

WARNING

Polyiso is an organic material which will burn when exposed to an ignition source of sufficient heat and intensity and may contribute to flames spreading.

Installations utilizing Thermasheath® must be fully protected on the inhabited side of the building by a thermal barrier such as a minimum of 1/2" gypsum wallboard. Consult local building codes and insurance authorities regarding special applications or details required when using Thermasheath® as an exposed product in uninhabited spaces.

Per the IBC, a WRB is required behind the exterior wall veneer. The code also has provisions regarding vapor retarders, type and location, based on the assembly, climate zone and the amount of continuous insulation. It is up to the design professional to specify an assembly that will perform adequately and meet these requirements.

WARRANTY

See Rmax "Sales Policy" for terms and conditions. Rmax does not assume any responsibility or liability for the performance of any products other than those manufactured by Rmax.

NOTE: All Rmax products must be targed, placed on skids and kept dry before and throughout construction.

 Central
 East

 13524 Welch Road
 1649 South Batesville Road

 Dallas, TX 75244
 Greer, SC 29650

 (P) 972-387-4500
 (P) 864-297-1382

 (F) 972-387-4673
 (F) 864-234-7548

West 210 Lyon Drive Fernley, NV 89408 (P) 775-575-4849 (F) 775-575-5035

PRODUCT DATA SHEET

THERMASHEATH®

Revision.11-04-2021

Ashland Performance Materials

HETRON® FR 650 Series Flame Retardant Resins

HETRON FR 650 Series resins are flame retardant⁽¹⁾ polyester resins. Composites made with HETRON FR 650 Series resins have been tested and have achieved a Class 1 Flame Spread per ASTM E-84 without addition of synergists such as antimony trioxide.

HETRON FR 650 Series resins may be classified as a high strength resin per the definition in section § 63.5935 of the US RCP MACT (Title 40 CFR Part 63 Subpart WWWW).

HETRON FR 650 T-20 resin is a low viscosity, promoted, thixotropic, version. It exhibits excellent wet-out properties and low drainage when applied to vertical surfaces. This resin is formulated to contain 35% styrene.

HETRON FR 650 INF-20 resin is a low viscosity promoted resin optimized for the infusion process. This grade may also be used for resin transfer molding. It exhibits excellent glass wet out properties.

APPLICATIONS AND USE

HETRON FR 650 Series resins, depending on the grade selected, can be used in hand lay-up, spray-up, filament winding and infused flame retardant applications. Markets include architectural, mass transit, passenger rail, electrical and mine ducting.

MODAR 814 A resin may be considered where low smoke properties are desired. HETRON FR 992 resin resin may be considered when improved corrosion resistance is desired. Recommendations for specific services and environments can be provided by contacting us at hetron@ashland.com.

TYPICAL LIQUID RESIN PROPERTIES

Property ⁽²⁾ at 25°C (77°F)	Value	Value	Unit
	Thix (T) Version	Infusion (INF) Version	
Viscosity, Brookfield, #2 spindle @ 30 rpm	450	180	MPa·s (cps)
Thixotropic Index	2.8	n/a	
Specific Gravity	1.16	1.16	gm/cc
%Solids	60	60	%

TYPICAL CURING CHARACTERISTICS

Gel time at 25°C (77°F)	Value	Unit
Gel Time, 1.25 gm Norox ⁽³⁾ 925/100 gm resin	25	minutes

Ashland is committed to the continuous evolution of technology and service solutions that promote health, safety and environmental protection around the world.

* Registered service mark of the American Chemistry Council. ® Registered trademark and TM trademark of Ashland Inc.

Ashland Performance Materials

HETRON® FR 650 Series Flame Retardant Resins

- (1) HETRON resin will burn if provided with a sufficient amount of heat and oxygen. The degree of flame retardancy of the cured polyester resin is characterized by the ASTM E-84 tunnel test. This test is performed under strictly controlled conditions where a flame spread rating is assigned according to comparisons with test set-point materials. The behavior of the cured composite under these controlled conditions can vary from an actual fire situation.
- (2) Properties are typical values based on material tested in our laboratories or third party laboratories. Typical values should not be construed as a guaranteed analysis of any specific lot or as specification items.
- (3) Registered trademark of Syrgis.

TYPICAL MECHANICAL PROPERTIES

Value (SI)	Value (US)	Method
77 MPa	11,200 psi	ASTM D638
3.5 GPa	5.1×10 ⁵ psi	ASTM D638
2.7%	2.7%	ASTM D638
120 MPa	17,800 psi	ASTM D790
3.5 GPa	5.1×10 ⁵ psi	ASTM D790
68°C	156°F	ASTM D648
Value (SI)	Value (US)	Method
112 MPa	16,200 psi	ASTM D638
7.4 GPa	1.1×10 ⁶ psi	ASTM D638
179 MPa	25,900 psi	ASTM D790
6.5 GPa	9.5×10 ⁵ psi	ASTM D790
	77 MPa 3.5 GPa 2.7% 120 MPa 3.5 GPa 68°C Value (SI) 112 MPa 7.4 GPa 179 MPa	77 MPa 11,200 psi 3.5 GPa 5.1×10 ⁵ psi 2.7% 2.7% 120 MPa 17,800 psi 3.5 GPa 5.1×10 ⁵ psi 68°C 156°F Value (SI) Value (US) 112 MPa 16,200 psi 7.4 GPa 1.1×10 ⁶ psi 179 MPa 25,900 psi

Resistance to UV radiation may be improved by adding up to 1.0% CYASORB⁽⁶⁾ UV-9 ultraviolet screener to the resin for the exterior exposed surface.

For all surfaces that will be exposed to air during fabrication (top-coating, patching, exterior surfaces, etc.), the addition of 0.4% paraffin wax to the final resin layer is recommended. A waxed surface might affect secondary bonding and flame retardance.

TYPICAL FLAME RETARDANT

Ashland is committed to the continuous evolution of technology and service solutions that promote health, safety and environmental protection around the world.

* Registered service mark of the American Chemistry Council. ® Registered trademark and TM trademark of Ashland Inc.

Ashland Performance Materials

HETRON® FR 650 Series Flame Retardant Resins

PROPERTIES

Flame retardant testing was performed on HETRON FR 650 T-20 laminates without antimony trioxide.

Test	Value ⁽²⁾	Method
E-84 Tunnel Test (flame spread index (FSI))	Class 1	ASTM E-84
E 162 Radiant Heat Source Surface Flammability (FSI) ⁽⁷⁾	20	ASTM E-162
E-662 Optical Smoke Density - Flaming Exposure ⁽⁷⁾	0.22 @ 1.5 minutes	ASTM E-662
, , , , , , , , , , , , , , , , , , ,	41 @ 4 minutes	
	Maximum - 600	
E CC2 Outland Carolia Daneiti. Non Floreing Function (7)	0.44 @ 4.5 minutes	ACTM F CCO
E-662 Optical Smoke Density - Non-Flaming Exposure ⁽⁷⁾	0.14 @ 1.5 minutes	ASTM E-662
	8.3 @ 4 minutes Maximum - 290	
	Maximum - 290	
Toxic Gas Gas Generation - Flaming Exposure ⁽⁷⁾⁽⁸⁾		SMP 800-C
CO (ppm) Max/Avg	443 / 363	
CO ₂ (ppm) Max/Avg	4105 / 3272	
SO ₂ (ppm) Max/Avg	4/3	
Toxic Gas Gas Generation - Non-Flaming Exposure ⁽⁷⁾⁽⁸⁾		SMP 800-C
CO (ppm) Max/Avg	30 / 20	
CO ₂ (ppm) Max/Avg	194 / 182	
SO ₂ (ppm) Max/Avg	6 / 5	
SO ₂ (ppm) Max/Avg Toxic Gas Gas Generation - Non-Flaming Exposure ⁽⁷⁾⁽⁸⁾ CO (ppm) Max/Avg CO ₂ (ppm) Max/Avg	30 / 20 194 / 182	SMP 800-C

- (4) Neat resin casting prepared by curing with 1.25 phr MEKP 925H and 0.125 phr TBPB for 18 hours followed by post-curing as follows: 60°C (140°F) for 24 hrs for Tensile and Flex specimens. 150°C (300°F) for 2 hrs for HDT.
- (5) Chop / spray manufactured. Ambient cure, no post cure.
- (6) Registered trademark of Cytec Industries.
- (7) 100 parts resin, 75 parts alumina trihydrate, 44 parts (20%) chopped glass fibers
- (8) Bombardier SMP 800-C Toxic Gas Generation. HBr, HCl, HCN, HF and NO_x were not detected in this test.

CERTIFICATES AND APPROVALS

The manufacturing, quality control and distribution of products, by Ashland Performance Materials, comply with one or more of the following programs or standards: Responsible Care, ISO 9001, ISO 14001 and OHSAS 18001.

Ashland is committed to the continuous evolution of technology and service solutions that promote health, safety and environmental protection around the world.

* Registered service mark of the American Chemistry Council. ® Registered trademark and TM trademark of Ashland Inc.

Ashland Performance Materials

HETRON® FR 650 Series Flame Retardant Resins

STANDARD PACKAGE Non-Returnable Drum with Net Weight of 230 Kgs (507 Lbs)

DOT Label Requirement: Flammable Liquid

COMMERCIAL WARRANTY

Three months from date of shipment, when stored in accordance with the conditions stated below.

STORAGE

Drums - Store at temperatures below 25°C (77°F). Storage life decreases with increasing storage temperature. Avoid exposure to heat sources such as direct sunlight or steam pipes. To avoid contamination of product with water, do not store outdoors. Keep containers sealed to prevent moisture pick-up and monomer loss. Mild mixing is recommended after prolonged storage. Rotate stock.

Bulk - See Ashland's Bulk Storage and Handling Manual for Polyesters and Vinyl Esters. A copy of this may be obtained from Ashland Performance Materials at +1.614.790.3333 or 800.523.6963.

All other conditions being equal, higher storage temperatures will reduce product stability and lower storage temperatures will extend product stability.

Notice

All information presented herein is believed to be accurate and reliable, and is solely for the user's consideration, investigation and verification. The information is not to be taken as an express or implied representation or warranty for which Ashland assumes legal responsibility. Any warranties, including warranties of merchantability or non-infringement of intellectual property rights of third parties, are herewith expressly excluded.

Since the user's product formulations, specific use applications and conditions of use are beyond the control of Ashland, Ashland makes no warranty or representation regarding the results which may be obtained by the user. It shall be the responsibility of the user to determine the suitability of any of the products mentioned for the user's specific application.

Ashland requests that the user reads, understands and complies with the information contained herein and the current Material Safety Data Sheet.

Ashland is committed to the continuous evolution of technology and service solutions that promote health, safety and environmental protection around the world.

* Registered service mark of the American Chemistry Council. ® Registered trademark and ™ trademark of Ashland Inc.

Protocols of Mechanical Testing for Composite Materials

Objectives for testing

- Present goals
 - Test samples in urgent need
 - o Develop protocols of composite materials testing techniques
 - Testing techniques for fiber composites
 - Testing techniques for laminates (fiber-resin-reinforced composites and wood composite structures)
- Long-term goals
 - Establish property database specific for Reiff Manufacturing
 - o Develop industry-specific standards for testing protocols of composite materials
 - o If possible, develop grant proposal for advanced composite testing facilities through collaboration with Reiff Manufacturing

Objectives for composite simulations

- Develop general simulation protocols of composite materials
- Develop simulation models of composite structures with various application background

Tensile Strength Test

A few samples were tested for the specimens received a few years ago by Kirk Betz [1]. The dog-bone specimens as shown in Figure 1 were pulled using the Instron Hydraulic Universal Tester at WWU. The failure follows a typical pattern of similar fiber composites, breakage accompanying with fiber pullouts from resin. The specimen gauge dimension is about 3/8" x 2/8", with clear finish from a milling machine. One of the samples failed at 2340 lbs, resulted in an ultimate strength of roughly 25 ksi. A very limited numbers of samples were tested and a more careful study was suggested in order to obtain useful results.

(a) Dog-bone specimens (b) Failed under tension
Figure 1 tensile specimens prepared for the Instron Hydraulic Universal Testing Machine

As one of the most fundamental experiments, tensile tests of fiber-resin reinforced composites can be done using the Instron Tester at WWU. For more useful work to be accomplished, a design of experiment may be developed to make a systematic study of certain fiber resin composites that are current used in the factory.

Flexural Strength and Elastic Modulus using a Three-Point Bending Fixture

In our engineering materials lab, we have an existing 3-point bending fixture. This fixture may be further improved in design if the test protocol using a 3-point bending test works well. Figure 2 shows how the specimen may be tested using the Olsen Universal Testing Machine in our materials lab.

Figure 2: A 3-point bending test using the Olsen Universal Testing Machine

The basic principle using a 3-point bending test is readily available in literature. The basics of this type of test may be illustrated in Figure 3. When the load F is applied at the middle of the specimen, deformation occurs and stress develops in the specimen. At certain load, the specimen fails and the indicator on the machine dial points to the maximum load. Any continuous loading will not cause a rise of the load on the dial. We may denote this load as F_f . Based on the principle of strength of materials, the flexural strength, which is the maximum bending stress across the middle cross-section geometry of the sample, can be expressed as:

$$\sigma_{fs} = \frac{3F_f L}{2bh^2}$$

Where

 F_f = failure load [lb]

 σ_{fs} = flexural strength [psi]

L = sample span length between the two simple supports [in]

b, h = sample cross-section dimensions [in]

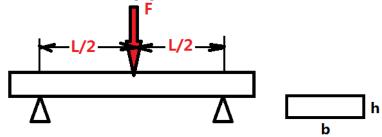


Figure 3: the principle of 3-point bending test for flexural strength and modulus of elasticity

If the vertical displacement along the neutral axis at the middle section of the sample can be monitored during the test, then the modulus of elasticity can be determined using the following formula.

$$F = E\left(\frac{4bh^3}{L^3}\delta\right)$$

Where

F = applied load [lb]

 δ = displacement of the neutral surface at the middle section of the sample [in]

I tested two of the samples using our Olsen machine and summarized the test data in Table 1. The results show that the flexural strength of the sample is approximately 33ksi and its modulus of elasticity from the bending test is approximately 1400 ksi, which seems a bit lower than some literature.

Table 1 three-point bending test of the fiber composite samples

Fiber Informati			the fiber composite samples		
Resin Information: rype of fleet					
Fiber/Resin ratio: 36 vol% of fiber???					
Sample Observations: there is a thin mat (one layer?) lined up in the middle of the specimen; chopped					
fibers mixed bonded by resin on both sides of the mat; one side is rough with fiber clearly seen and the					
other smooth w					•
Sample 1:	b :	= 0.995 ir			L = 8 in.
Test #	F (lb)	δ (in.)	$(4bh^3/L^3) \delta = 1.5471(10^{-4}) \delta$	E (ksi)	Notes
1	40	0.17	2.63007E-05	1521	
2	60	0.23	3.55833E-05	1686	
3	80	0.329	5.08996E-05	1572	
4	110	0.461	7.13213E-05	1542	
5	140	0.591	9.14336E-05	1531	
6	160	0.721	0.000111546	1434	
7	180	0.841	0.000130111	1383	
8	200	0.961	0.000148676	1345	
average				1502	
Failure load F _f			$\int_{a}^{b} \left(2bh^{2}\right)^{-b}$	$_{\rm f}$ = 164.2 $\rm F_{\rm f}$ =	
Sample 2:	1	= 0.996 ir			L = 8 in.
Test #	F (lb)	δ (in.)	$(4bh^3/L^3) \delta = 4.7231(10^{-4}) \delta$	E(ksi)	Notes
1	160	0.198	9.35174E-05	1711	
2	200	0.320	0.000151139	1323	
3	240	0.393	0.000185618	1293	
4	280	0.473	0.000223403	1253	
5	320	0.553	0.000261187	1225	
6	360	0.647	0.000305585	1178	
7	400	0.715	0.000337702	1184	
8	420	0.768	0.000362734	1158	
average				1291	
Failure load $F_f = 420$ (lb); Flexural Strength: $\sigma_{fs} = \left(\frac{3L}{2bh^2}\right)F_f = 78.01 \text{ F}_f = 32.76 \text{ ksi}$					

Remarks:

- Load dial may need calibration for accuracy, especially for low load range dial.
- Displacement measurement needs to be improved.

Fig. 4 Failed samples under the 3-point bending tests

Integrated Testing Techniques

- Shear strength test in general
- Fiber composite and wood laminates

A discussion is on-going with Andrew about how the shear strength of fiber-resin-wood composites can be tested in our lab. The grip part might be too short to be applicable using either of the tensile machines.

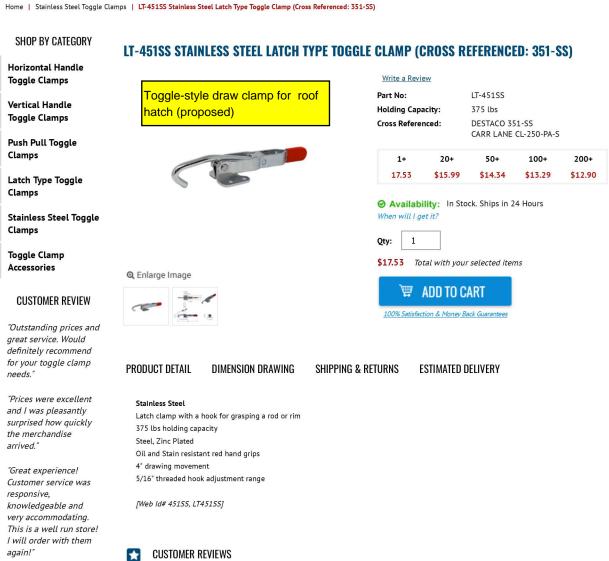


Fig. 5 Andrew's samples for shear tests

References

- [1] Kirk Betz, "Fiber Glass Tank Redesign", senior project report, October 6, 2009
- [2] Qin Ma, "Analysis of Design Strength of A Hatchery Round Tank Including Wind Load, Snow Load and Seismic Load", Report, March 3, 2009.

Read More...

Be the first to review this product (Reviews are subject to approval.)

YOU MAY ALSO LIKE THESE

LT-451 Latch Type Toggle Clamp (Cross Referenced: 351) Price: \$7.12

LT-431 Latch Action Toggle Clamp (Cross Referenced: 331) Price: \$6.55

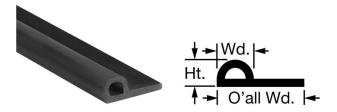
HH-201B Horizontal Handle Toggle Clamp (Cross Referenced: 215-U) Price: \$5.09

VH-12050 Vertical Handle Toggle Clamp (Cross Referenced: 202)

Price: \$6.23

SAFE, SECURE SHOPPING GUARANTEED

FREE SHIPPING OVER \$199


QUANTITY PRICING AVAILABLE

90 DAYS NO HASSLE RETURNS

McMASTER-CARR.

Water- and Weather-Resistant Foam Rubber Seal Flange-Mount, 1-1/4" Overall Width

Delivers tomorrow 1-3 pm 1-99 Ft. \$1.13 100 or more \$0.97 93085K91

Hatch seal, affix to lid (proposed)

1 1/4"
1/2"
1/2"
EPDM Foam
Closed
Bulb
Hollow
Adhesive Back
Adhesive
0° to 140° F
0° to 140° F
Yes
Water
Black
10 ft., 20 ft., 50 ft., 100 ft., Other
RoHS 3 (2015/863/EU) Compliant
REACH (EC 1907/2006) (01/19/2021, 211 SVHC) Compliant
Specialty Metals COTS-Exempt
United States
Yes
401610.0000
EAR99

Softer and more flexible than EPDM rubber seals, these EPDM foam rubber seals will effortlessly conform to uneven surfaces. They resist water, sunlight, and ozone. They have hollow construction for compressibility and a flange that can be positioned along a door's edge to cover gaps and block dust, noise, and vibration. The foam has closed-cell construction, which resists absorption.

1 of 1 6/9/2022, 2:48 PM