STATE OF ALASKA INVITATION TO BID (ITB)

ICY CAPE TRAIL CONSTRUCTION AND STRUCTURE ASSEMBLY PROJECT

ITB 2021 1000 4769

FEBRUARY 22, 2021

THE DEPARTMENT OF NATURAL RESOURCES, ALASKA MENTAL HEALTH TRUST LAND OFFICE IS SOLICITING BIDS FOR A QUALIFIED CONTRACTOR TO PROVIDE TRAIL AND STRUCTURE ASSEMBLY SERVICES IN ICY CAPE, ALASKA.

<u>IMPORTANT NOTICE:</u> If you received this solicitation from the State of Alaska's "Online Public Notice" web site, you must register with the procurement officer listed below in order to receive notification of subsequent amendments to the solicitation. Failure to register with the procurement officer may result in the rejection of your offer.

BIDDER'S NOTICE: By signature on this form, the bidder certifies that they comply with the following:

- (1) the bidder has a valid Alaska business license or will obtain one prior to award of any contract resulting from this ITB. If the bidder possesses a valid Alaska business license, the license number must be written below or one the following forms of evidence submitted with the bid:
 - a canceled check for the business license fee;
 - a copy of the business license application with a receipt date stamp from the State's business license office;
 - a receipt from the State's business license office for the license fee;
 - a copy of the bidder's valid business license;
 - a sworn notarized affidavit that the bidder has applied and paid for a business license;
- (2) the price(s) submitted was arrived at independently and without collusion, under penalty of perjury, and that the bidder is complying with:
 - the laws of the State of Alaska;
 - the applicable portion of the Federal Civil Rights Act of 1964;
 - the Equal Employment Opportunity Act and the regulations issued thereunder by the state and federal Government;
 - the Americans with Disabilities Act of 1990 and the regulations issued thereunder by the state and federal government;
 - the bid will remain open and valid for at least 90 days;
 - all terms and conditions set out in this Invitation to Bid (ITB).

If a bidder does not hold an Alaska Business License (1) at the time designated in the ITB for opening the State will disallow the Alaska Bidder Preference. Bids must also be submitted under the name as appearing on the bidder's current Alaska business license in order to receive the Alaska Bidder Preference. If a bidder fails to comply with (2) of this paragraph, the State may reject the bid, terminate the contract, or consider the contractor in default.

NAME Chris Brooks	COMPANY SUBMITTING BID	*DOES YOUR BUSINESS QUALIFY FOR THE ALASKA BIDDER'S PREFERENCE? [] YES [] NO			
	AUTHORIZED SIGNATURE	*DOES YOUR BUSINESS QUALIFY FOR THE ALASKA VETERAN PREFERENCE? [] YES [] NO			
Phone: (907)269-8666		*SEE ITB FOR EXPLANATION OF CRITERIA			
	PRINTED NAME	TO QUALIFY			
Email: christopher.brooks@alaska.gov	DATE	TELEPHONE NUMBER			
ALASKA BUSINESS LICENSE NUMBER	FEDERAL TAX ID NUMBER	E-MAIL ADDRESS			

TABLE OF CONTENTS

INTRODUCTION & INSTRUCTIONS	4
PURPOSE OF THE ITB	4
DEADLINE FOR RECEIPT OF BIDS	4
PRIOR EXPERIENCE	
INVITATION TO BID (ITB) REVIEW	
QUESTIONS PRIOR TO DEADLINE FOR RECEIPT OF BIDS	
SITE INSPECTION	4
SUBMITTING BIDS	
BID FORMS	5
PRICES	
, , , , , , , , , , , , , , , , , , ,	
FMPLOYMENT PROGRAM PREFERENCE	
	PURPOSE OF THE ITB DEADLINE FOR RECEIPT OF BIDS. PRIOR EXPERIENCE. INVITATION TO BID (ITB) REVIEW. QUESTIONS PRIOR TO DEADLINE FOR RECEIPT OF BIDS. SITE INSPECTION. SUBMITTING BIDS. ENROLLMENT IN IRIS. BID FORMS. PRICES. PRE-BID CONFERENCE. ASSISTANCE TO BIDDERS WITH A DISABILITY. AMENDMENTS TO BIDS. AMENDMENTS TO THE ITB. ITB SCHEDULE. ALTERNATE BIDS. SUPPORTING INFORMATION. FIRM, UNQUALIFIED, AND UNCONDITIONAL OFFER. CONTRACT INFORMATION. CONTRACT TERM. CONTRACT TERM. CONTRACT TERM. CONTRACT EXTENSION. CONTRACT CHANGES — UNANTICIPATED AMENDMENTS. SUBCONTRACT PERFORMANCE LOCATION. RIGHT TO INSPECT PLACE OF BUSINESS. SCOPE OF WORK AND SPECIFICATIONS. INSPECTION & MODIFICATION - REIMBURSEMENT FOR UNACCEPTABLE DELIVERABLES. CONTINUES CONTRINING ON FORMATION - REIMBURSEMENT FOR UNACCEPTABLE DELIVERABLES. SIDIAT VENTURES CONTINUES ON BOUGHAITON - REIMBURSEMENT FOR UNACCEPTABLE DELIVERABLES. SIDIATED QUANTITIES BILLING INSPECTIONS. INSPECTION & MODIFICATION - REIMBURSEMENT FOR UNACCEPTABLE DELIVERABLES. CONTRACT INVOICING AND PAYMENTS. BILLING INSTRUCTIONS. INDEMNIFICATION INSURANCE. CONTRACT TO STATE PURCHASES PROMPT PAYMENT FOR STATE PURCHASES. THIRD-PARTY FINANCING AGREEMENTS NOT ALLOWED. EVALUATION OF BIDS. APPLICATION OF PREFERENCE. ALASKA BIDDER PREFERENCE. ALASKA BIDDER PREFERENCE. ALASKA BIDDER PREFERENCE.

ICY CAPE TRAIL CONSTRUCTION AND STRUCTURE ASSEMBLY PROJECT

SEC. 4.06	ALASKANS WITH DISABILITIES PREFERENCE	16
SEC. 4.07	PREFERENCE QUALIFICATION LETTER	17
SEC. 4.08	EXTENSION OF PRICES	17
SEC. 4.09	METHOD OF AWARD	17
SEC. 4.10	NOTICE OF INTENT TO AWARD	17
SECTION 5.	GENERAL PROCESS AND LEGAL INFORMATION	18
SEC. 5.01	ALASKA BUSINESS LICENSE AND OTHER REQUIRED LICENSES	18
SEC. 5.02	AUTHORITY	18
SEC. 5.03	COMPLIANCE	18
SEC. 5.04	SUITABLE MATERIALS, ETC.	19
SEC. 5.05	SPECIFICATIONS	19
SEC. 5.06	CONTRACTOR SITE INSPECTION	19
SEC. 5.07	ORDER DOCUMENTS	19
SEC. 5.08	HUMAN TRAFFICKING	19
SEC. 5.09	RIGHT OF REJECTION	19
SEC. 5.10	STATE NOT RESPONSIBLE FOR PREPARATION COSTS	20
SEC. 5.11	DISCLOSURE OF BID CONTENTS	20
SEC. 5.12	ASSIGNMENTS	20
SEC. 5.13	FORCE MAJEURE (IMPOSSIBILITY TO PERFORM)	20
SEC. 5.14	DEFAULT	21
SEC. 5.15	DISPUTES	21
SEC. 5.16	SEVERABILITY	21
SEC. 5.17	CONTRACT CANCELLATION	21
SEC. 5.18	GOVERNING LAW; FORUM SELECTION	21
SEC. 5.19	SOLICITATION ADVERTISING	21
SEC. 5.20	QUALIFIED BIDDERS	21
SEC. 5.21	FEDERALLY IMPOSED TARIFFS	
SEC. 5.22	PROTEST	22
SECTION 6.	ATTACHMENTS	24
SEC. 6.01	ATTACHMENTS	24

SECTION 1. INTRODUCTION & INSTRUCTIONS

SEC. 1.01 PURPOSE OF THE ITB

The Department of Natural Resources, Alaska Mental Health Trust Land Office is soliciting bids for a qualified contractor to provide trail and structure assembly services in Icy Cape, Alaska.

SEC. 1.02 DEADLINE FOR RECEIPT OF BIDS

Bids must be received no later than 2:00 p.m. Alaska Time on March 8, 2021 at which time they will be publicly opened. Late bids or amendments will be disqualified and not opened or accepted for evaluation.

SEC. 1.03 PRIOR EXPERIENCE

Not applicable to this ITB.

SEC. 1.04 INVITATION TO BID (ITB) REVIEW

Bidders shall carefully review this ITB for defects and questionable or objectionable material. Comments concerning defects and questionable or objectionable material in the ITB should be made in writing and received by the procurement officer at least ten days before the bid opening date. This will allow time for an amendment to be issued if one is required. It will also help prevent the opening of a defective bid, upon which award cannot be made, and the resultant exposure of bidders' prices.

SEC. 1.05 QUESTIONS PRIOR TO DEADLINE FOR RECEIPT OF BIDS

All questions must be in writing and directed to the procurement officer. The interested party must confirm telephone conversations in writing. Two types of questions generally arise. One may be answered by directing the questioner to a specific section of the ITB. These questions may be answered over the telephone. Other questions may be more complex and may require a written amendment to the ITB. The procurement officer will make that decision.

The deadline for submission of questions is March 1, 2021 at 2:00 p.m. Alaska Time.

SEC. 1.06 SITE INSPECTION

Not applicable to this ITB.

SEC. 1.07 SUBMITTING BIDS

Bidders must submit one hard copy of their bid, in writing, to the procurement officer in a sealed package. The sealed bid package must be addressed as follows:

Department of Natural Resources
Procurement Section
Attention: Chris Brooks
Invitation to Bid (ITB) Number: 2021 1000 4769
ITB Title: Icy Cape Trail Construction and Structure Assembly Project
550 West 7th Avenue, Suite 1330
Anchorage, Alaska 99501

If using U.S. mail, please use the following address:

550 West 7th Avenue, Suite 1330 Anchorage, Alaska 99501

If using a <u>delivery service</u>, please use the following address:

550 West 7th Avenue, Suite 1330 Anchorage, Alaska 99501

If submitting a bid via email, the bid may be emailed to christopher.brooks@alaska.gov and must contain the ITB number in the subject line of the email. The maximum size of a single email (including all text and attachments) that can be received by the State is 20mb (megabytes). If the email containing the bid exceeds this size, the bid must be sent in multiple emails that are each less than 20 megabytes and each email must comply with the requirements described above.

Please note that email transmission is not instantaneous. Similar to sending a hard copy bid, if you are emailing your bid, the State recommends sending it enough ahead of time to ensure the email is delivered by the deadline for receipt of bid.

It is the bidder's responsibility to contact the issuing agency at (907) 269-8666 to confirm that the bid has been received. The State is not responsible for unreadable, corrupt, or missing attachments.

SEC. 1.08 ENROLLMENT IN IRIS

Bidders will be required to be enrolled in the State of Alaska's Integrated Resource Information System (IRIS) database prior to award of a contract resulting from this RFP. Enrollment can be done online at the following link: https://iris-vss.alaska.gov/webapp/PRDVSS1X1/AltSelfService. Bidders who are not enrolled prior to award of a contract will be notified by DNR Procurement. Failure of a bidder to enroll in the IRIS database will delay award of the contract and may delay issuance of contract work.

SEC. 1.09 BID FORMS

Bidders shall use the front page of this ITB and any other forms identified in this ITB for submitting bids. All bids must be signed by an individual authorized to bind the bidder to the provisions of the ITB.

BIDDER'S CERTIFICATION

By signature on the bid, the bidder certifies that they comply with the following:

- A. the laws of the State of Alaska;
- B. the applicable portion of the Federal Civil Rights Act of 1964;
- C. the Equal Employment Opportunity Act and the regulations issued thereunder by the state and federal government;
- D. the Americans with Disabilities Act of 1990 and the regulations issued thereunder by the state and federal government;
- E. all terms and conditions set out in this ITB;

- F. the price(s) submitted was arrived at independently arrived and without collusion, under penalty of perjury; and
- G. that the bid will remain open and valid for at least 90 days.

If any bidder fails to comply with [a] through [g] of this paragraph, the State reserves the right to disregard the bid, terminate the contract, or consider the Contractor in default.

CONFLICT OF INTEREST

Each bid shall include a statement indicating whether or not the company or any individuals working on the contract has a possible conflict of interest (e.g., currently employed by the State of Alaska or formerly employed by the State of Alaska within the past two years) and, if so, the nature of that conflict. The procurement officer reserves the right to **consider a bid non-responsive and reject it** or cancel the award if any interest disclosed from any source could either give the appearance of a conflict or cause speculation as to the objectivity of the contract to be performed by the bidder.

SEC. 1.10 PRICES

The bidder shall state prices in the units of issue on this ITB. Prices quoted in bids must be exclusive of federal, state, and local taxes. If the bidder believes that certain taxes are payable by the state, the bidder may list such taxes separately, directly below the bid price for the affected item.

SEC. 1.11 PRE-BID CONFERENCE

Not applicable to this ITB.

SEC. 1.12 ASSISTANCE TO BIDDERS WITH A DISABILITY

Bidders with a disability may receive accommodation regarding the means of communicating this ITB or participating in the procurement process. For more information, contact the procurement officer no later than ten days prior to the deadline for receipt of bids.

SEC. 1.13 AMENDMENTS TO BIDS

Amendments to or withdrawals of bids will only be allowed if acceptable requests are received prior to the deadline that is set for receipt of bids, in accordance with 2 AAC 12.140. No amendments or withdrawals will be accepted after the deadline unless the delay is due to an error of the contracting agency, in accordance with 2 AAC 12.160.

SEC. 1.14 AMENDMENTS TO THE ITB

If an amendment is issued, it will be provided to all who were notified of the ITB and to those who have registered with the procurement officer after receiving the ITB from the State of Alaska Online Public Notice website.

SEC. 1.15 ITB SCHEDULE

The ITB schedule set out herein represents the State of Alaska's best estimate of the schedule that will be followed. If a component of this schedule, such as the deadline for receipt of bids, is delayed, the rest of the schedule may be shifted accordingly. All times are Alaska Time.

ACTIVITY	TIME	DATE
Issue Date / ITB Released		February 22, 2021
Deadline for Receipt of Bids / Bid Due Date	2:00 p.m.	March 8, 2021
ANTICIPATED Bid Evaluations Complete		Week of March 8, 2021
ANTICIPATED Notice of Intent to Award		Week of March 8, 2021
ANTICIPATED Contract Issued		Week of March 22, 2021
ANTICIPATED Kickoff Meeting		Week of March 22, 2021

This ITB does not, by itself, obligate the State. The State's obligation will commence when the contract is approved by the Commissioner of the Department of Natural Resources, or the Commissioner's designee. Upon written notice to the Contractor, the State may set a different starting date for the contract. The State will not be responsible for any work done by the Contractor, even work done in good faith, if it occurs prior to the contract start date set by the State.

SEC. 1.16 ALTERNATE BIDS

Bidders may only submit one bid for evaluation. In accordance with 2 AAC 12.830 alternate bids (bids that offer something different than what is asked for) will be rejected.

SEC. 1.17 SUPPORTING INFORMATION

Bidders shall submit all required technical, specification, and other supporting information with their bid, so that a detailed analysis and determination can be made by the procurement officer that the product offered meets the ITB specifications and that other requirements of the ITB have been met. However, provided a bid meets the requirements for a definite, firm, unqualified, and unconditional offer, the State reserves the right to request supplemental information from the bidder, after the bids have been opened, to ensure that the products or services offered completely meet the ITB requirements. The requirement for such supplemental information will be at the reasonable discretion of the State and may include the requirement that a bidder will provide a sample product(s) so that the State can make a first-hand examination and determination.

A bidder's failure to provide this supplemental information or the product sample(s), within the time set by the State, will cause the State to consider the offer non-responsive and reject the bid.

SEC. 1.18 FIRM, UNQUALIFIED, AND UNCONDITIONAL OFFER

Bidders must provide enough information with their bid to constitute a definite, firm, unqualified and unconditional offer. To be responsive a bid must constitute a definite, firm, unqualified and unconditional offer to meet all the material terms of the ITB. Material terms are those that could affect the price, quantity, quality, or delivery. Also included as material terms are those which are clearly identified in the ITB and which, for reasons of policy, must be complied with at risk of bid rejection for non-responsiveness.

SECTION 2. CONTRACT INFORMATION

SEC. 2.01 CONTRACT TERM

The length of the contract will be from the date of award to September 30, 2021.

SEC. 2.02 CONTRACT ADMINISTRATION

The administration of this contract is the responsibility of the procurement officer or approved designee.

SEC. 2.03 CONTRACT FUNDING

The State estimates a budget of approximately \$350,000.00 dollars for the term of contract. The State does not guarantee a minimum or maximum number of services to be provided or dollar amount to be spent under any contract resulting from this ITB. Bids priced at more than \$350,000.00 will be considered non-responsive.

Approval or continuation of a contract resulting from this ITB is contingent upon legislative appropriation.

SEC. 2.04 CONTRACT EXTENSION

Unless otherwise provided in this ITB, the State and the successful bidder/Contractor agree: (1) that any extension of the contract excluding any exercised renewal options, will be considered as a month-to-month extension, and all other terms and conditions shall remain in full force and effect and (2) the procurement officer will provide written notice to the Contractor of the intent to cancel the month-to-month extension at least 30 days before the date of cancellation. A month-to-month extension may only be executed by the procurement officer via a written contract amendment.

SEC. 2.05 CONTRACT CHANGES – UNANTICIPATED AMENDMENTS

During the course of this contract, the Contractor may be required to perform additional work. That work will be within the general scope of the initial contract. When additional work is required, the State will provide the Contractor a written description of the additional work and request the Contractor to submit a firm time schedule for accomplishing the additional work and a firm price for the additional work. Cost and pricing data must be provided to justify the cost of such amendments per AS 36.30.400.

The Contractor will not commence additional work until the procurement officer has secured required State approvals necessary for the amendment and issued a written contract amendment.

SEC. 2.06 SUBCONTRACTORS

Subcontractors will not be allowed.

SEC. 2.07 JOINT VENTURES

Joint ventures will not be allowed.

SEC. 2.08 CONTRACT PERFORMANCE LOCATION

The project location site is located in Icy Cape, Alaska.

The State will not provide workspace for the Contractor. The Contractor must provide its own workspace.

By signature on their bid, the bidder certifies that all services provided under this contract by the Contractor and all subcontractors shall be performed in the United States.

If the bidder cannot certify that all work will be performed in the United States, the bidder must contact the procurement officer in writing to request a waiver at least 10 days prior to the deadline for receipt of bids.

The request must include a detailed description of the portion of work that will be performed outside the United States, where, by whom, and the reason the waiver is necessary.

Failure to comply with these requirements may cause the State to reject the bid as non-responsive, or cancel the contract.

SEC. 2.09 RIGHT TO INSPECT PLACE OF BUSINESS

At reasonable times, the State may inspect those areas of the Contractor's place of business that are related to the performance of a contract. If the State makes such an inspection, the Contractor must provide reasonable assistance.

SEC. 2.10 SCOPE OF WORK AND SPECIFICATIONS

The Department of Natural Resources (DNR), Trust Land Office (TLO) is requesting bids for construction of trails and assembly of a prefabricated metal structure in Icy Cape, Alaska. The Icy Cape land block is located in the Gulf of Alaska near Icy Bay about 75 miles northwest of Yakutat, Alaska. Land and resources are owned by the Alaska Mental Health Trust Authority and managed by the TLO. The area is remote; is accessible only by boat, airplane, or helicopter; and has a poorly developed and non-maintained road infrastructure created by past timber logging operations. There is no camp or electricity at the project site, nor potable water. The successful bidder is required to bring in his own camp, heavy equipment, power, supplies, and fuel for the project. Barge service from Ketchikan to Icy Cape will be provided around June 2, 2021 (one trip) and from Icy Cape back to Ketchikan around mid-September (one trip). All other barge trips as well as air transportation to Icy Cape will be at the contractor's own expense.

Scope of Work

Contractor is required to:

- Have all necessary equipment, supplies etc. in Ketchikan no later than May 25, 2021.
- Start work immediately after barge delivers all equipment to Icy Cape.
- Construction of approximately four miles of drill access trails, including drill pads and turnaround locations in the area. Due to confidentiality, the drill access trail plan with be shared and discussed with the successful bidder only. Access trails must accommodate conventional drilling trucks and support vehicles of up to 40,000 lbs. and 35' x 10' x 12' dimensions. Work requires logging and harvesting and ground clearing to provide a trail system that can accommodate Marookas and Nodwells that are wheel and track mounted and/or other heavy equipment such as bulldozers.
- Reinforce trail surfaces with gravel and/or with harvested timber to accommodate ground conditions and drainage crossings as required. Gravel pits in the vicinity of project area may

provide fill and surface materials. Trails will be constructed to standards that allow access with minor maintenance for a period of five years after completion. Harvested timber will be stacked for future construction use near camp.

- Assembly and erection of a 40' x 60' prefabricated metal structure according to specifications outlined on Attachment 2. Additional electrical wiring work may be included at an agreed-to cost.
- Prepare pads for and set-up containerized housing (approximately four units) at campsite and hook up to existing septic and electrical systems.
- Contractor must have all equipment and supplies needed to complete the project.
- All work must be completed by September 30, 2021. Barge service to Ketchikan will be provided around mid-September 2021.
- Participate in a pre-project meeting with the Project Manager before services begin.
- Obtain approval from DNR/TLO before starting construction on trails and assembly of prefabricated metal structure.

DNR/TLO is required to:

- Coordinate a date/time with the contractor to conduct the pre-project meeting.
- Provide contractor sequence/timing of construction, specifications, and location of construction for trails, and assembly of prefabricated metal structure.

Mobilization and Demobilization

Mobilization and demobilization costs must be included in the prices offered for this Invitation to Bid (ITB).

Site Inspection

Bidders are encouraged to visit the work site to evaluate this project and to see the conditions under which the work described in this ITB will be performed. The bidder's failure to visit the work site will in no way relieve the bidder of the responsibility of performing the work in strict compliance with the true intent and meaning of the terms, conditions, and specifications of this ITB.

Project Completion Deadline

Work is anticipated to begin in the beginning of May 2021. Project work shall be completed by no later than September 30, 2021.

<u>Project Manager – Day-to-Day Project Administration</u>

Project Manager Karsten Eden or designated representative will work with the contractor on day-to-day project administration. Karsten Eden may be contacted by phone at (907) 269-8656 or by email at karsten.eden@alaska.gov. Neither Karsten Eden nor designated representative can substantially change or alter a contract resulting from this ITB.

Termination for Default

If the Project Manager determines that the contractor has refused to perform the work or has failed to perform the work with such diligence as to ensure its timely and accurate completion, the State may, by providing written notice to the contractor, terminate the contractor's right to proceed with part or all of the remaining work.

Payment of Work

Complete payment will be made 1) upon completion of the project to the satisfaction of the Project Manager 2) upon receipt of the contractor's original, accurate and complete invoice.

Submit Invoices To

State of Alaska
Department of Natural Resources
Trust Land Office
Katie Vachris, Business Analyst
Email: katie.vachris@alaska.gov

Phone: 907-269-8659

SEC. 2.11 INSPECTION & MODIFICATION - REIMBURSEMENT FOR UNACCEPTABLE DELIVERABLES

The Contractor is responsible for proving all products or the completion of all work set out in the contract. All products or work is subject to inspection, evaluation, and approval by the State. The State may employ all reasonable means to ensure that the work is progressing and being performed in compliance with the contract. The State may instruct the Contractor to make corrections or modifications if needed in order to accomplish the contract's intent. The Contractor will not unreasonably withhold such changes.

Substantial failure of the Contractor to perform the contract may cause the State to terminate the contract. In this event, the State may require the Contractor to reimburse monies paid (based on the identified portion of unacceptable products or work received) and may seek associated damages.

SEC. 2.12 CONTINUING OBLIGATION OF CONTRACTOR

Notwithstanding the expiration date of a contract resulting from this ITB, the Contractor is obligated to fulfill its responsibilities until warranty, guarantee, maintenance, and parts availability requirements have completely expired.

SEC. 2.13 ESTIMATED QUANTITIES

The quantities referenced in this ITB are the State's estimated requirements and may vary more or less from the quantities actually purchased. The State does not guarantee any minimum or maximum purchase. Orders will be issued throughout the contract period on an as-needed basis.

SEC. 2.14 INDEMNIFICATION

The Contractor shall indemnify, hold harmless, and defend the contracting agency from and against any claim of, or liability for error, omission or negligent act of the Contractor under this agreement. The Contractor shall not be required to indemnify the contracting agency for a claim of, or liability for, the independent negligence of the contracting agency. If there is a claim of, or liability for, the joint negligent error or omission of the Contractor and the independent negligence of the contracting agency, the indemnification and hold harmless obligation shall be apportioned on a comparative fault basis. "Contractor" and "contracting agency", as used within this and the following article, include the employees, agents and other contractors who are directly responsible, respectively, to each. The term "independent negligence" is negligence other than in the contracting agency's selection, administration, monitoring, or controlling of the Contractor and in approving or accepting the Contractor's work.

SEC. 2.15 INSURANCE

Without limiting the Contractor's indemnification, it is agreed that the Contractor shall purchase at its own expense and maintain in force at all times during the performance of services under this agreement the following policies of insurance. Where specific limits are shown, it is understood that they shall be the minimum acceptable limits. If the Contractor's policy contains higher limits, the State shall be entitled to coverage to the extent of such higher limits.

Certificates of Insurance must be furnished to the procurement officer prior to contract approval and must provide for a notice of cancellation, non-renewal, or material change of conditions in accordance with policy provisions. Failure to furnish satisfactory evidence of insurance or lapse of the policy is a material breach of this contract and shall be grounds for termination of the Contractor's services. All insurance policies shall comply with and be issued by insurers licensed to transact the business of insurance under AS 21.

Proof of insurance is required for the following:

- Workers' Compensation Insurance: The Contractor shall provide and maintain, for all employees
 engaged in work under this contract, coverage as required by AS 23.30.045, and; where applicable,
 any other statutory obligations including but not limited to Federal U.S.L. & H. and Jones Act
 requirements. The policy must waive subrogation against the State.
- <u>Commercial General Liability Insurance</u>: covering all business premises and operations used by the Contractor in the performance of services under this agreement with minimum coverage limits of \$300,000 combined single limit per occurrence.
- <u>Commercial Automobile Liability Insurance</u>: covering all vehicles used by the Contractor in the
 performance of services under this agreement with minimum coverage limits of \$300,000 combined
 single limit per occurrence.

The State shall be added as Additional Insured. This insurance shall be considered to be primary and non-contributory to any other insurance carried by the State through self-insurance or otherwise. In addition to providing the above insurance coverage the Contractor shall in any contract or agreement with subcontractors performing work, require that all indemnities and waivers of subrogation it obtains, and that any stipulation to be named as an additional insured it obtains, also be extended to waive rights of subrogation against the State and add the State as additional named indemnity and as additional insured.

SECTION 3. CONTRACT INVOICING AND PAYMENTS

SEC. 3.01 BILLING INSTRUCTIONS

All invoices produced by the Contractor must contain the following information at a minimum:

- Contract number and title;
- Identification of the billing period;
- An itemized listing of deliverables and charges for the invoiced period;
- Total amount billed;
- Date invoice was submitted for payment;
- Entity name, contact information, and Alaska vendor number.

Invoices must be billed to the ordering agency's address shown on the individual Purchase Order, Contract Award or Delivery Order. The State will make payment after it receives the goods or services and the invoice. Questions concerning payment must be addressed to the ordering agency.

SEC. 3.02 PAYMENT FOR STATE PURCHASES

Payment for agreements under \$500,000 for the undisputed purchase of goods or services provided to a state agency, will be made within 30 days of the receipt of a proper billing or the delivery of the goods or services to the location(s) specified in the agreement, whichever is later. A late payment is subject to 1.5% interest per month on the unpaid balance. Interest will not be paid if there is a dispute or if there is an agreement that establishes a lower interest rate or precludes the charging of interest.

Any single contract payments of \$1 million or higher must be accepted by the Contractor via Electronic Funds Transfer (EFT).

SEC. 3.03 PROMPT PAYMENT FOR STATE PURCHASES

The State is eligible to receive a **5%** discount for all invoices paid within **15** business days from the date of receipt of the commodities or services and/or a correct invoice, whichever is later. The discount shall be taken on the full invoice amount. The State shall consider payment being made as either the date a printed warrant is issued or the date an Electronic Funds Transfer (EFT) is initiated.

SEC. 3.04 THIRD-PARTY FINANCING AGREEMENTS NOT ALLOWED

Because of the additional administrative and accounting time required of the State when third party financing agreements are permitted, they will not be allowed under this contract.

SECTION 4. EVALUATION AND CONTRACTOR SELECTION

SEC. 4.01 EVALUATION OF BIDS

After bid opening, the procurement officer will evaluate the bids for responsiveness. Bids deemed non-responsive will be eliminated from further consideration. An evaluation may not be based on discrimination due the race, religion, color, national origin, sex, age, marital status, pregnancy, parenthood, disability, or political affiliation of the bidder.

SEC. 4.02 APPLICATION OF PREFERENCES

Certain preferences apply to all State contracts, regardless of their dollar value. The Alaska Bidder and Alaska Veteran preferences are the most common preferences involved in the ITB process. Additional preferences that may apply to this procurement are listed below. Guides that contain excerpts from the relevant statutes and codes, explain when the preferences apply and provide examples of how to calculate the preferences are available at the following website:

http://doa.alaska.gov/dgs/pdf/pref1.pdf

- Alaska Products Preference AS 36.30.332
- Recycled Products Preference AS 36.30.337
- Local Agriculture and Fisheries Products Preference AS 36.15.050
- Employment Program Preference AS 36.30.321(b)
- Alaskans with Disabilities Preference AS 36.30.321(d)

The Division of Vocational Rehabilitation in the Department of Labor and Workforce Development keeps a list of qualified employment programs and individuals who qualify as persons with a disability. As evidence of a business' or an individual's right to the Employment Program or Alaskans with Disabilities preferences, the Division of Vocational Rehabilitation will issue a certification letter. To take advantage of these preferences, a business or individual must be on the appropriate Division of Vocational Rehabilitation list prior to the time designated for receipt of proposals. Bidders must attach a copy of their certification letter to the proposal. A bidder's failure to provide this certification letter with their proposal will cause the State to disallow the preference.

SEC. 4.03 ALASKA BIDDER PREFERENCE

An Alaska Bidder Preference of 5% will be applied to the total bid price. The preference will be given to a bidder who:

- 1) holds a current Alaska business license prior to the deadline for receipt of bids;
- 2) submits a bid for goods or services under the name appearing on the bidder's current Alaska business license;
- 3) has maintained a place of business within the state staffed by the bidder, or an employee of the bidder, for a period of six months immediately preceding the date of the bid;

- 4) is incorporated or qualified to do business under the laws of the state, is a sole proprietorship and the proprietor is a resident of the state, is a limited liability company (LLC) organized under AS 10.50 and all members are residents of the state, or is a partnership under AS 32.06 or AS 32.11 and all partners are residents of the state; and
- 5) if a joint venture, is composed entirely of ventures that qualify under (1)-(4) of this subsection.

Alaska Bidder Preference Certification Form

In order to receive the Alaska Bidder Preference, the bid must include the Alaska Bidder Preference Certification Form attached to this ITB. A bidder does not need to complete the Alaska Veteran Preference questions on the form if not claiming the Alaska Veteran Preference. A bidder's failure to provide this completed form with their bid will cause the State to disallow the preference.

SEC. 4.04 ALASKA VETERAN PREFERENCE

An Alaska Veteran Preference of 5%, not to exceed \$5,000, will be applied to the total bid price. The preference will be given to a bidder who qualifies under AS 36.30.990(2) as an Alaska Bidder and is a:

- a) sole proprietorship owned by an Alaska veteran;
- b) partnership under AS 32.06 or AS 32.11 if a majority of the partners are Alaska veterans;
- c) limited liability company organized under AS 10.50 if a majority of the members are Alaska veterans; or
- d) corporation that is wholly owned by individuals, and a majority of the individuals are Alaska veterans.

In accordance with AS 36.30.321(i), the bidder must also add value by actually performing, controlling, managing, and supervising the services provided, or for supplies, the bidder must have sold supplies of the general nature solicited to other state agencies, other government, or the general public.

Alaska Veteran Preference Certification

In order to receive the Alaska Veteran Preference, the bid must include the Alaska Bidder Preference Certification Form attached to this ITB. A bidder's failure to provide this completed form with their bid will cause the State to disallow the preference.

SEC. 4.05 EMPLOYMENT PROGRAM PREFERENCE

If a bidder qualifies for the Alaska Bidder Preference and is offering goods or services through an employment program as defined under AS 36.30.990(12), an Employment Program Preference of 15% will be applied to the total bid price.

In accordance with AS 36.30.321(i), the bidder must also add value by actually performing, controlling, managing, and supervising the services provided, or for supplies, the bidder must have sold supplies of the general nature solicited to other state agencies, other government, or the general public.

SEC. 4.06 ALASKANS WITH DISABILITIES PREFERENCE

If a bidder qualifies for the Alaska Bidder Preference and is a qualifying entity as defined in AS 36.30.321(d), an Alaskans with Disabilities Preference of 10% will be applied to the total bid price.

In accordance with AS 36.30.321(i), the bidder must also add value by actually performing, controlling, managing, and supervising the services provided, or for supplies, the bidder must have sold supplies of the general nature solicited to other state agencies, other government, or the general public.

SEC. 4.07 PREFERENCE QUALIFICATION LETTER

Regarding the Employment Program Preference and the Alaskans with Disabilities Preference, the Division of Vocational Rehabilitation in the Department of Labor and Workforce Development maintains lists companies who qualify for those preferences. As evidence of a company's right to the preferences, the Division of Vocational Rehabilitation will issue a certification letter. To take advantage of the preferences, a bidder must be on the appropriate Division of Vocational Rehabilitation list at the time the bid is opened and must attach a copy of their certification letter to their bid. The bidder's failure to provide this certification letter with their bid will cause the State to disallow the preference.

SEC. 4.08 EXTENSION OF PRICES

In case of error in the extension of prices in the bid, the unit prices will govern; in a lot bid, the lot prices will govern.

SEC. 4.09 METHOD OF AWARD

Award will be made to the lowest responsive and responsible bidder. The maximum allowable budget for this ITB is \$350,000. Bids that exceed this budget shall be deemed non-responsive to the ITB.

SEC. 4.10 NOTICE OF INTENT TO AWARD

After the responses to this ITB have been opened and evaluated, a tabulation of the bids will be prepared. This tabulation, called a Notice of Intent to Award, serves two purposes. It lists the name of each company or person that offered a bid and the price they bid. It also provides notice of the State's intent to award a contract(s) to the bidder(s) indicated. A copy of the Notice of Intent will be mailed to each company or person who responded to the ITB. Bidders identified as the apparent low responsive bidders are instructed not to proceed until a Purchase Order, Contract Award, Lease, or some other form of written notice is given by the procurement officer. A company or person who proceeds prior to receiving a Purchase Order, Contract Award, Lease, or some other form of written notice from the procurement officer does so without a contract and at their own risk.

SECTION 5. GENERAL PROCESS AND LEGAL INFORMATION

SEC. 5.01 ALASKA BUSINESS LICENSE AND OTHER REQUIRED LICENSES

Prior to the award of a contract, a bidder must hold a valid Alaska business license. However, in order to receive the Alaska Bidder Preference and other related preferences, such as the Alaska Veteran Preference and Alaskans with Disabilities Preference, a bidder must hold a valid Alaska business license prior to the deadline for receipt of bids. Bidders should contact the **Department of Commerce, Community and Economic Development, Division of Corporations, Business, and Professional Licensing, PO Box 110806, Juneau, Alaska 99811-0806,** for information on these licenses. Acceptable evidence that the bidder possesses a valid Alaska business license may consist of any one of the following:

- copy of an Alaska business license;
- certification on the bid that the bidder has a valid Alaska business license and has included the license number in the bid;
- a canceled check for the Alaska business license fee;
- a copy of the Alaska business license application with a receipt stamp from the State's occupational licensing office; or
- a sworn and notarized statement that the bidder has applied and paid for the Alaska business license.

You are not required to hold a valid Alaska business license at the time bids are opened if you possess one of the following licenses and are offering services or supplies under that specific line of business:

- fisheries business licenses issued by Alaska Department of Revenue or Alaska Department of Fish and Game,
- liquor licenses issued by Alaska Department of Revenue for alcohol sales only,
- insurance licenses issued by Alaska Department of Commerce, Community and Economic Development, Division of Insurance, or
- Mining licenses issued by Alaska Department of Revenue.

Prior the deadline for receipt of bids, all bidders must hold any other necessary applicable professional licenses required by Alaska Statute.

SEC. 5.02 AUTHORITY

This ITB is written in accordance with AS 36.30 and 2 AAC 12.

SEC. 5.03 COMPLIANCE

In the performance of a contract that results from this ITB, the Contractor must comply with all applicable federal, state, and borough regulations, codes, and laws; be liable for all required insurance, licenses, permits and bonds; and pay all applicable federal, state, and borough taxes.

SEC. 5.04 SUITABLE MATERIALS, ETC.

Unless otherwise specified in this ITB, all materials, supplies or equipment offered by a bidder shall be new, unused, and of the latest edition, version, model or crop and of recent manufacture.

SEC. 5.05 SPECIFICATIONS

Unless otherwise specified in this ITB, product brand names or model numbers specified in this ITB are examples of the type and quality of product required, and are not statements of preference. If the specifications describing an item conflict with a brand name or model number describing the item, the specifications govern. Reference to brand name or number does not preclude an offer of a comparable or better product, if full specifications and descriptive literature are provided for the product. Failure to provide such specifications and descriptive literature may be cause for rejection of the offer.

SEC. 5.06 CONTRACTOR SITE INSPECTION

The State may conduct on-site visits to evaluate the bidder's capacity to perform the contract. A bidder must agree, at risk of being found non-responsive and having its bid rejected, to provide the State reasonable access to relevant portions of its work sites. Individuals designated by the procurement officer at the State's expense will make site inspection.

SEC. 5.07 ORDER DOCUMENTS

Except as specifically allowed under this ITB, an ordering agency will not sign any vendor contract. The State is not bound by a vendor contract signed by a person who is not specifically authorized to sign for the State under this ITB. Unless otherwise specified in this ITB, the State of Alaska Purchase Order, Contract Award and Delivery Order are the only order documents that may be used to place orders against the contract(s) resulting from this ITB.

SEC. 5.08 HUMAN TRAFFICKING

By signature on their bid, the bidder certifies that the bidder is not established and headquartered or incorporated and headquartered in a country recognized as Tier 3 in the most recent United States Department of State's Trafficking in Persons Report.

The most recent United States Department of State's Trafficking in Persons Report can be found at the following website: http://www.state.gov/j/tip/

Failure to comply with this requirement will cause the State to reject the bid as non-responsive, or cancel the contract.

SEC. 5.09 RIGHT OF REJECTION

Bidders must comply with all of the terms of the ITB, the State Procurement Code (AS 36.30), and all applicable local, state, and federal laws, codes, and regulations. The procurement officer may reject any bid that does not comply with all of the material and substantial terms, conditions, and performance requirements of the ITB.

Bidders may not qualify the bid nor restrict the rights of the State. If a bidder does so, the procurement officer may determine the bid to be a non-responsive counter-offer and the bid may be rejected. Minor informalities that:

do not affect responsiveness;

- are merely a matter of form or format;
- do not change the relative standing or otherwise prejudice other offers;
- do not change the meaning or scope of the ITB;
- are trivial, negligible, or immaterial in nature;
- do not reflect a material change in the work; or
- do not constitute a substantial reservation against a requirement or provision;

may be waived by the procurement officer.

The State reserves the right to refrain from making an award if it determines that to be in its best interest. A bid from a debarred or suspended bidder shall be rejected.

SEC. 5.10 STATE NOT RESPONSIBLE FOR PREPARATION COSTS

The State will not pay any cost associated with the preparation, submittal, presentation, or evaluation of any bid.

SEC. 5.11 DISCLOSURE OF BID CONTENTS

All bid prices become public information at the bid opening. After the deadline for receipt of bids, all other bid material submitted become the property of the State of Alaska and may be returned only at the State's option. AS 40.25.110 requires public records to be open to reasonable inspection. All other bid information will be held in confidence during the evaluation process and prior to the time a Notice of Intent to Award is issued. Thereafter, bids will become public information.

Trade secrets and other proprietary data contained in bids may be held confidential if the bidder requests, in writing, that the procurement officer does so, and if the procurement officer agrees, in writing, to do so. The bidder's request must be included with the bid, must clearly identify the information they wish to be held confidential, and include a statement that sets out the reasons for confidentiality. Unless the procurement officer agrees in writing to hold the requested information confidential, that information will also become public after the Notice of Intent to Award is issued.

SEC. 5.12 ASSIGNMENTS

Per 2 AAC 12.480, the Contractor may not transfer or assign any portion of the contract without prior written approval from the procurement officer. Bids that are conditioned upon the State's approval of an assignment will be rejected as non-responsive.

SEC. 5.13 FORCE MAJEURE (IMPOSSIBILITY TO PERFORM)

The parties to a contract resulting from this ITB are not liable for the consequences of any failure to perform, or default in performing, any of its obligations under the contract, if that failure or default is caused by any unforeseeable Force Majeure, beyond the control of, and without the fault or negligence of, the respective party.

For the purposes of this ITB, Force Majeure will mean war (whether declared or not); revolution; invasion; insurrection; riot; civil commotion; sabotage; military or usurped power; lightning; explosion; fire; storm; drought; flood; earthquake; epidemic; quarantine; strikes; acts or restraints of governmental authorities affecting the project or directly or indirectly prohibiting or restricting the furnishing or use of materials or labor required; inability to secure materials, machinery, equipment or labor because of priority, allocation or other regulations of any governmental authorities.

SEC. 5.14 DEFAULT

In case of default by the Contractor, for any reason whatsoever, the State may procurement the goods or services from another source and hold the Contractor responsible for any resulting excess cost and may seek other remedies under law or equity.

SEC. 5.15 DISPUTES

If the Contractor has a claim arising in connection with the contract that it cannot resolve with the State by mutual agreement, it shall pursue the claim, if at all, in accordance with the provisions of AS 36.30.620 – AS 36.30.632.

SEC. 5.16 SEVERABILITY

If any provision of the contract or agreement is found to be invalid or declared by a court to be illegal or in conflict with any law, the validity of the remaining terms and provisions will not be affected; and, the rights and obligations of the parties will be construed and enforced as if the contract did not contain the particular provision held to be invalid.

SEC. 5.17 CONTRACT CANCELLATION

The State reserves the right to cancel the contract at its convenience upon 30 calendar days written notice to the Contractor. The State is only liable for payment in accordance with the payment provisions of this contract for supplies or services provide before the effective date termination.

SEC. 5.18 GOVERNING LAW; FORUM SELECTION

A contract resulting from this ITB is governed by the laws of the State of Alaska. To the extent not otherwise governed by Section 5.15 of this ITB, any claim concerning the contract shall be brought only in the Superior Court of the State of Alaska and not elsewhere.

SEC. 5.19 SOLICITATION ADVERTISING

Public notice has been provided in accordance with 2 AAC 12.220.

SEC. 5.20 QUALIFIED BIDDERS

Per 2 AAC 12.875, unless provided for otherwise in the ITB, to qualify as a bidder for award of a contract issued under AS 36.30, the bidder must:

- 1) Add value in the contract by actually performing, controlling, managing, or supervising the services to be provided; or
- 2) Be in the business of selling and have actually sold on a regular basis the supplies that are the subject of the ITB.

If the bidder leases services or supplies or acts as a broker or agency in providing the services or supplies in order to meet these requirements, the procurement officer may not accept the bidder as a qualified bidder under AS 36.30.

SEC. 5.21 FEDERALLY IMPOSED TARIFFS

Changes in price (increase or decrease) resulting directly from a new or updated federal tariff, excise tax, or duty, imposed after contract award may be adjusted during the contract period or before delivery into the United States via contract amendment.

- Notification of Changes: The Contractor must promptly notify the procurement officer in writing of
 any new, increased, or decreased federal excise tax or duty that may result in either an increase or
 decrease in the contact price and shall take appropriate action as directed by the procurement
 officer.
- After-imposed or Increased Taxes and Duties: Any federal excise tax or duty for goods or services
 covered by this contract that was exempted or excluded on the contract award date but later
 imposed on the Contractor during the contract period, as the result of legislative, judicial, or
 administrative action may result in a price increase provided:
 - a) The tax or duty takes effect after the contract award date and isn't otherwise addressed by the contract;
 - b) The Contractor warrants, in writing, that no amount of the newly imposed federal excise tax or duty or rate increase was included in the contract price, as a contingency or otherwise.
- After-relieved or Decreased Taxes and Duties: The contract price shall be decreased by the amount
 of any decrease in federal excise tax or duty for goods or services under the contract, except social
 security or other employment taxes, that the Contractor is required to pay or bear, or does not
 obtain a refund of, through the Contractor's fault, negligence, or failure to follow instructions of
 the procurement officer.
- State's Ability to Make Changes: The State reserves the right to request verification of federal excise tax or duty amounts on goods or services covered by this contract and increase or decrease the contract price accordingly.
- **Price Change Threshold:** No adjustment shall be made in the contract price under this clause unless the amount of the adjustment exceeds \$250.

SEC. 5.22 PROTEST

AS 36.30.560 provides that an interested party may protest the content of the ITB.

An interested party is defined in 2 AAC 12.990(a) (7) as "an actual or prospective bidder or offeror whose economic interest might be affected substantially and directly by the issuance of a contract solicitation, the award of a contract, or the failure to award a contract."

If an interested party wishes to protest the content of a solicitation, the protest must be received, in writing, by the procurement officer at least ten days prior to the deadline for receipt of bids.

AS 36.30.560 also provides that an interested party may protest the award of a contract or the proposed award of a contract.

If a bidder wishes to protest the award of a contract or the proposed award of a contract, the protest must be received, in writing, by the procurement officer within ten days after the date the Notice of Intent to Award the contract is issued.

A protester must have submitted a bid in order to have sufficient standing to protest the proposed award of a contract. Protests must include the following information:

- the name, address, and telephone number of the protester;
- the signature of the protester or the protester's representative;
- identification of the contracting agency and the solicitation or contract at issue;
- a detailed statement of the legal and factual grounds of the protest including copies of relevant documents; and the form of relief requested.

Protests filed by telex or telegram are not acceptable because they do not contain a signature. Fax copies containing a signature are acceptable.

The procurement officer will issue a written response to the protest. The response will set out the procurement officer's decision and contain the basis of the decision within the statutory time limit in AS 36.30.580. A copy of the decision will be furnished to the protester by certified mail, fax or another method that provides evidence of receipt.

All bidders will be notified of any protest. The review of protests, decisions of the procurement officer, appeals, and hearings, will be conducted in accordance with the State Procurement Code (AS 36.30), Article 8 "Legal and Contractual Remedies."

SECTION 6. ATTACHMENTS

SEC. 6.01 ATTACHMENTS

Attachments:

- 1) Attachment 1 Bid Schedule
- 2) Attachment 2 Prefabricated Metal Structure Specifications

ATTACHMENT 1 BID SCHEDULE

ITB 2021 1000 4769

ICY CAPE TRAIL CONSTRUCTION AND STRUCTURE ASSEMBLY PROJECT

Bidders are to submit their bid using this Bid Schedule. Bid prices are to remain firm for the duration of the contract and are to include all costs associated with providing required services, to include but not limited to, materials, supplies, equipment, labor, overhead, and profit.

1. BID OFFERED:

Description	Total Cost
Icy Cape Trail Construction and Structure Assembly Project -	
as specified in Section 2.10 Scope of Work and Specifications	
	\$
Company Name:	
Authorized Representative's Printed Name:	
Authorized Representative's Signature:	
Date Bid Schedule Signed:	

2. PREFERENCE CERTIFICATION:

ITEM	QUESTION	YES	NO
1.	Does your company qualify for the Alaska Bidder's Preference?		
2.	Does your company qualify for the Alaska Veteran's Preference? If yes,		
	provide a copy of your DD 214 with your service/social security number, date		
	of birth, and other Privacy Act protected information redacted or "inked" out.		
3.	Does your company qualify for the Alaskans with Disabilities preference? If		
	yes, you must provide a copy of your certification letter issued by the Division		
	of Vocational Rehabilitation to receive this preference.		
4.	Does your company qualify for the Employment Program Preference? If yes,		
	you must provide a copy of your certification letter issued by the Division of		
	Vocational Rehabilitation to receive this preference.		

1700 E. Louise Avenue, Lathrop, Ca. 95330 Tel: (209) 983-0910 • Fax: (209) 858-2354

DESIGN PARAMETERS

: C17C0461

Sheet ::

Customer : Icy Cape Sample Processing Bldg.

Designed by : BC Checked by : M W : 9-Jan-2018

Revision: 00

STRUCTURE DESCRIPTION

: Clear Span Frame Type 40.00 ft. **Building Width** 60.00 ft. **Building Length** 16.00 ft. Eave Height

Max. Tributary Spac. 20.00 ft.

2 in. / ft. Roof Slope

BASIC LOADS

Building Code : IBC 2012 Risk Category: II

Roof Live Load 20 psf Tributary Reduction (Y/N): n

20 psf Frame Live Load

Wind Load

150 mph (3-sec gust) Speed, Vult

Enclosure Condition: Enclosed

Exposure

Seismic Load

Design Category: Ε 1.00 Importance D Site Class

Ss: 171.80% S1: 80.80% 3.50 3.00

Snow Load

Roof Snow 105 psf Ground Snow 150 psf Importance 1.00

Ce: 1.0

Ct: 1.0

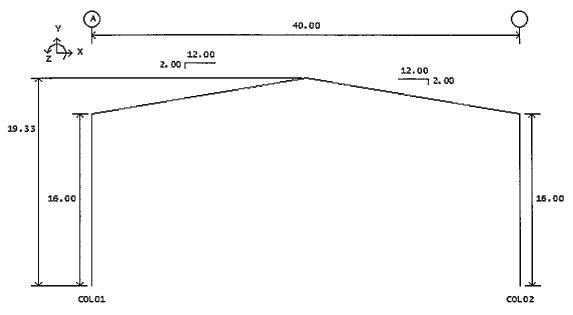
Collateral Load

Dead Load

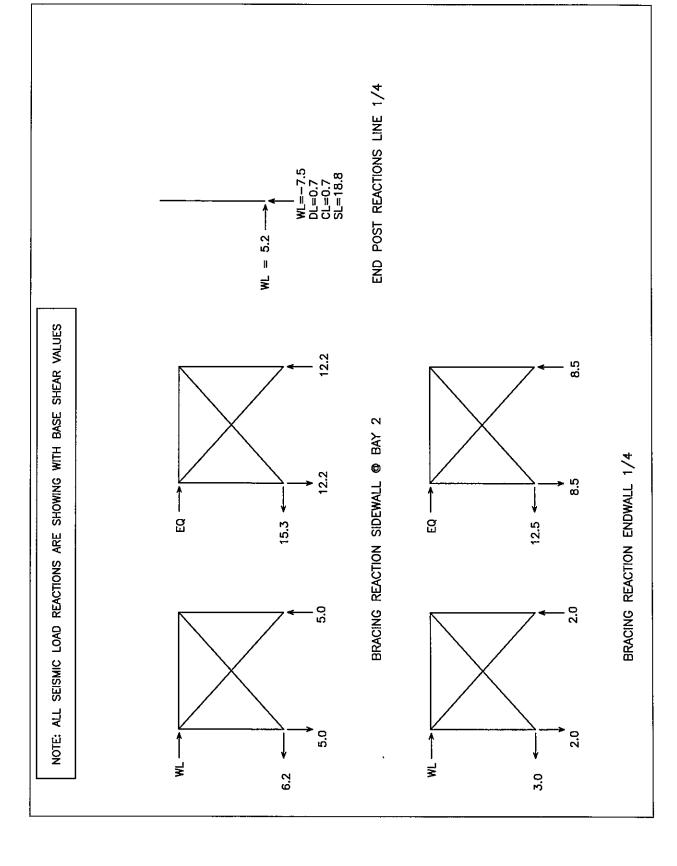
5.0 psf 5.0 psf (Total)

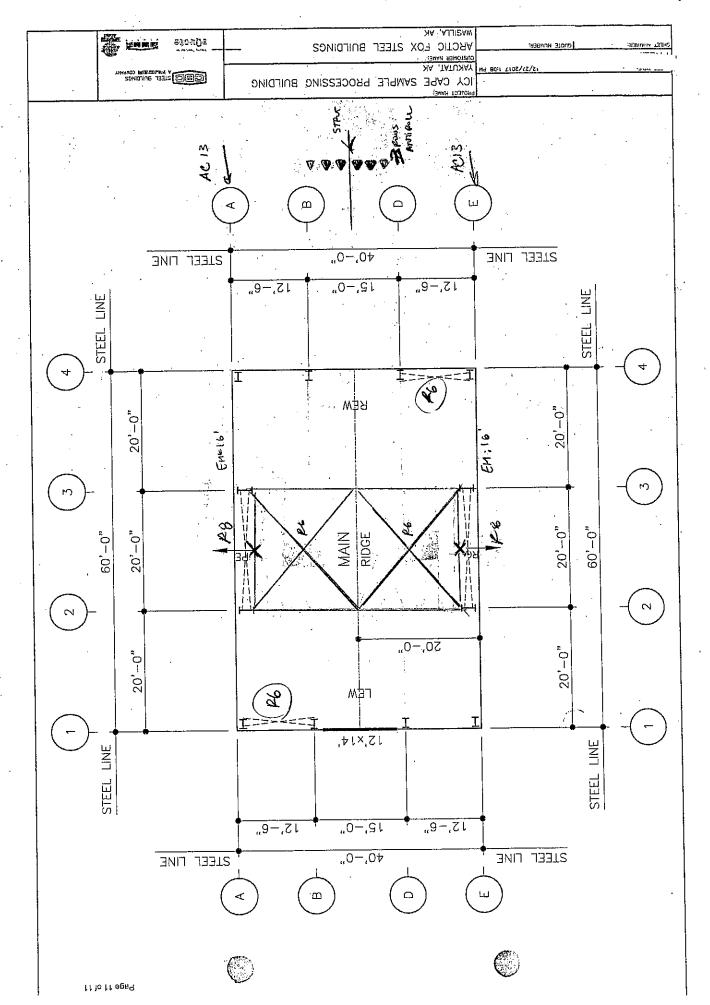
2.0 psf Frame Wt: 1.5 psf Purlins: Panels:

1.0 psf Misc.: 0.5 psf


NOTES

^{***} This structure is designed in compliance with CBC Steel Buildings specifications and standards utilizing the pertinent provisions and recommendations of the American Institute of Steel Construction (AISC), International Conference of Building Officials (ICBO), American Iron and Steel Institute (AISI), the Metal Building Manufacturer's Association (MBMA) and their publications. ***


NUCOR BUILDINGS GROUP Job #: 12/1/17
Frame : Frame @ Line(s) 2,3 ' Frame Nam By:
Job Name: Icy Cape Sample Processing Building


*** DESIGN SUMMARY - FRAME REACTIONS BY LOAD CASE ***

Page: Date: 01-09-18
File: F01-800825

Member	X (kips)	Y (kips) (Z kip-ft)	$egin{array}{cccc} X & Y & Z \\ \ \mbox{Member} & (\mbox{kips}) & (\mbox{kips}) & (\mbox{kip-ft}) \end{array}$
COL01 COL02	1 ~ DEAD 1 -1	3 3	0	LOAD CASE 10 - LONG. WIND 1 TO BACK COLO1 -1 -7 0 COLO2 1 -5 0
	2 - COLLATER 1 -1	AL 3 · 3	0	LOAD CASE 11 - LONG. WIND 1 TO FRONT COL01
LOAD CASE COL01 COL02	3 - ROOF LIV 3 -3		0	LOAD CASE 12 - LONG. WIND 2 TO BACK COL01
LOAD CASE COL01 COL02	13	40 40	0	LOAD CASE 13 - LONG. WIND 2 TO FRONT COL01
LOAD CASE COL01 COL02	5 - USER OVE 14 -14	RRIDE SNOW 42 43	0	LOAD CASE 14 - SEISMIC TO RIGHT
LOAD CASE COL01 COL02	-8 -1	-10 -4	0	LOAD CASE 15 - SEISMIC TO LEFT COL01
COL01 COL02	7 - WIND CAS 1 8	E 1 TO LEFT -4 -10	0	LOAD CASE 16 - ALTERNATE SNOW 1 COL01
COL01 COL02	8 - WIND CAS -8 -1			LOAD CASE 17 - ALTERNATE SNOW 2 COL01
LOAD CASE COL01 COL02	9 - WIND CAS 1 8	E 2 TO LEFT -10 -16	0	

Sheet:

C - 1

Job #:

9-Jan-18

Date:

SHEETING DESIGN

ROOF PANELS

Loads:

Overhang Panel (Y/N) = N

Building Enclosure = Enclosed

Dead, DL

= 3.00 psf

(Panel Wt.)

< Allo. (ok)

< Allo. (ok)

Live (or Snow), LL = 137.47 psf

(UN BAVAVED)

Wind, WL:

 $q_h = 42.13 \text{ psf}$

WL = -79.20 psf

Panel Span = 3.00 ft Trib. Width = 1.00 ft

Roof Slope = 2.00:12

= 9.46 °

Type of Span = Three or More Span

Gravity Load:

DL+LL = 140.47 psf< Allo. (ok) Effective Wind Area = 3.00 ft²

 $GC_p = -1.70$

Uplift Load:

DL+0.6WL = -44.52 psf

 $GC_{pl} = -0.18$

USE: 24 Ga. Standard 'R' Panel (50 ksi)

Allowable Load:

Gravity = 155 psf

(See Chart at Sht. C-)

Uplift = 152 psf

WALL PANELS

 $q_h = 42.13 \text{ psf}$

Panel Span $= 5.00 \, \text{ft}$

Trib. Width = 1.00 ft

Wind, 0.6WL = -36.40 psf

Type of Span = Three or More Span

Roof Slope = 9.46 ° < 10 °

Effective Wind Area = 5.00 ft²

 $GC_p = -1.26$

 $GC_{Di} = -0.18$

USE: 26 Ga. Standard 'R' Panel (80 ksi)

Allowable Load:

Suction = 44 psf

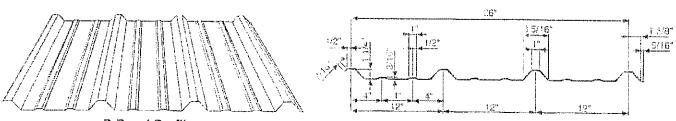
(See Chart at Sht. C-)

FASTENERS

Purlin Spacing = 3.00 ft

Wind Uplift = -79.20 psf

Actual Load = 142.57 lbs/ft


USE: #12-14 x 1 in. Self Drilling Screw at 12 in. o.c

(Atlas Bolt & Screw Co.)

Allowable = 252 lbs.

CHART - 'C' ('R'-Panel)

R-Panel Profile

R-Panel Cross Section

Standard R-Panel Engineering Properties										
Design Total Panel Top in Bottom in Gauge Thickness Thickness Weight Compression Compression										
	IN	IN	PSF		lχ	Sx	lx	Sx		
26	0.0177	0.0199	0.97	1	0.0397	0.0398	0.0317	0.0471		
24	0.0225	0.0244	1.19		0.0543	0.0551	0.0423	0.0607		

R Panel SAFE UNIFORM LOAD (PSF)

GRAVITY (PRESSURE)

TYPE OF	GAUGE	SPAN (FT)												
SPAN		2	2.5	3	3.5	4	4.5		5.5	6	6.5	7	7.3333	Я
	26	238	152	106	78	60	47	38	32	26	23	19	181	15
	80 ksi	430	220	127	. 80	54	38	28	21	16	13	10	9	7
SIMPLE	26	211	135	94	69	53	42	34	28	23	20	17	16	13
SPAN	50 ksi	433	222	128	81	54	38	28	21	16	13		9	7
	24	294	188	131	96	73	58	47	39		28	24	22	18
	50 ksl	619	317	183	116	77	54	40	30		18		13	10
	26	277	177	123	90	69	55	44	37	31	26		21	17
	80 ksl	1035	530	307	193	129	91	66			30		21	16
TWO	26	233	149	104	76	58	46	37	31	26	22		17	15
SPAN	50 ksi	1044	535	309	195	130	92	67	50		30			16
	24	299	192	133	98	75		48			28	24	22	19
	50 ksi	1491	764	442	278	186	131	95		55	43	35	30	23
	26	323	207	144	106	81	64	52	43	36	31	26	24	20
THREE	80 ksl	861	441	255	161	108	76	55	41	32	25	20	17	13
OR	26	272	174	121	89	68	54	44	36		26	22	20	17
MORE	50 ksi	868	445	257	162	109	76	56		32	25	20		14
SPANS	24	349	224	155	114	87	69	56		39	33	29	26	22
	50 ksi	1240	635	367	231	155	109				36	29	25	19

UPLIFT (SUCTION)

					41 411 1	100000	-14/						
GAUGE						SF	AN (FT)						
	2		3	3.5	4	4.5	5	5.5	6	6.5	7	7.3333	- 8
26			123	90	69	55	44	37	31	26	23		17
80 ksi			104	65	44	31	22	17	13				5
26	233	149	104	76	58	46	37	31	26	22			15
50 ksi	361	185	107	67	45	32	23	17					
24	299	192	133	98	75	59	48	40	33	28			19
50 ksi	481	246	142	90	60	42	31	23					8
26	238	152	106	78	60	47	38	32	26	23			15
80 ksil	842	431	250	157	105	74	54	40					13
26	211	135	94	69	53	42	34	28					
50 ksi	869	445	257	162	109	76	56						14
24	294	188	131	96	73	58	47	39					18
50 ksi	1158	593	343	216	145	102	74	56					18
26	278	178	124	91	70	55	44	37					17
80 ksi	700	359	208	131	88	61	45	34	26				
26	246	158	109	80	62	49	39						
50 ksii	722	370	214	135	90	63							11
24	343	220	152	112	86	- 68							21
50 ksi	963	493	285	180	120								15
	26 50 ksi 24 50 ksi 26 80 ksi 26 50 ksi 24 50 ksi 26 80 ksi 26 50 ksi 26 20 ksi 26 20 ksi 22 24	26 277 80 ksi 350 26 233 50 ksi 361 24 299 50 ksi 481 26 238 80 ksi 842 26 211 50 ksi 869 24 294 50 ksi 1158 26 278 80 ksi 700 26 246 50 ksi 722 24 343	2 2,5 26 277 177 80 ksi 350 179 26 233 149 50 ksi 361 185 24 299 192 50 ksi 481 246 26 238 152 80 ksi 842 431 26 211 135 50 ksi 869 445 24 294 188 50 ksi 1158 593 26 278 178 80 ksi 700 359 26 246 158 50 ksi 722 370 24 343 220	2 2.5 3 26 277 177 123 80 ksi 350 179 104 26 233 149 104 50 ksi 361 185 107 24 299 192 133 50 ksi 481 246 142 26 238 152 106 80 ksi 842 431 250 26 211 135 94 50 ksi 869 445 257 24 294 188 131 50 ksi 1158 593 343 26 278 178 124 80 ksi 700 359 208 26 246 158 109 50 ksi 722 370 214 24 343 220 152	2 2.5 3 3.5 3 5.5 26 277 177 123 90 80 ksi 350 179 104 65 26 233 149 104 76 50 ksi 361 185 107 67 24 299 192 133 98 50 ksi 481 246 142 90 26 238 152 106 78 80 ksi 842 431 250 157 26 211 135 94 69 50 ksi 869 445 257 162 24 294 188 131 96 50 ksi 1158 593 343 216 26 278 178 124 91 80 ksi 700 359 208 131 26 50 ksi 700 359 208 131 26 50 ksi 722 370 214 135 50 ksi 722 370 214 135 24 343 220 152 112	GAUGE 2 2.5 3 3.5 4 26 277 177 123 90 69 80 ksi 350 179 104 65 44 26 233 149 104 76 58 50 ksi 361 185 107 67 45 24 299 192 133 98 75 50 ksi 481 246 142 90 60 26 238 152 106 78 60 80 ksi 842 431 250 157 105 26 211 135 94 69 53 50 ksi 869 445 257 162 109 24 294 188 131 96 73 50 ksi 1158 593 343 216 145 26 278 178 124 91 70 80 ksi 700 359 208 131 88 26 246 158 109 80 62 50 ksi 722 370 214 135 90 24 343 220 152 112 86	GAUGE 2 2.55 3 3.55 4 4.5 26 277 177 123 90 69 55 80 ksi 350 179 104 65 44 31 26 233 149 104 76 58 46 50 ksi 361 185 107 67 45 32 24 299 192 133 98 75 59 50 ksi 481 246 142 90 60 42 26 238 152 106 78 60 47 80 ksi 842 431 290 157 105 74 26 211 135 94 69 53 42 50 ksi 869 445 257 162 109 76 24 294 188 131 96 73 58 50 ksi 1158 593 343 216 145 102 26 278 176 124 91 70 55 80 ksi 700 359 208 131 8 51 26 246 158 109 80 62 49 50 ksi 722 370 214 135 90 63 24 343 220 152 112 86 68	2 2.5 3 3.5 4 4.5 5 26 277 177 123 90 69 55 44 80 ksi 350 179 104 65 44 31 22 26 233 149 104 76 58 46 37 50 ksi 361 185 107 67 45 32 23 24 299 192 133 98 75 59 48 50 ksi 481 246 142 90 60 42 31 26 238 152 106 78 60 42 31 26 238 152 106 78 60 47 38 80 ksi 842 431 250 157 105 74 54 26 211 135 94 69 53 42 34 50 ksi 869 445 257 162 109 76 56 24 294 188 131 96 73 58 47 50 ksi 1158 593 343 216 145 102 74 26 278 178 124 991 70 55 44 80 ksi 700 359 208 131 88 61 45 26 246 158 109 80 62 49 39 50 ksi 722 370 214 135 90 63 46 24 343 220 152 112 86 68 55	GAUGE 2 2.5 3 3.5 4 4.5 5 5.5 26 277 177 123 90 69 55 44 37 80 ksl 350 179 104 65 44 31 22 17 26 233 149 104 76 58 46 37 31 50 ksl 361 185 107 67 45 32 23 17 24 299 192 133 98 75 59 48 40 50 ksl 481 246 142 90 60 42 31 23 26 238 152 106 78 60 47 38 32 80 ksl 842 431 250 157 105 74 54 26 211 135 94 69 53 42 34 50 ksl 869 445 257 162 109 76 56 42 24 294 188 131 96 73 58 47 39 50 ksl 1158 593 343 216 145 102 74 56 26 278 178 124 91 70 55 44 37 80 ksl 700 359 208 131 88 61 45 34 26 24 343 220 152 112 86 68 55 45	GAUGE 2 2.5 3 3.5 4 4.5 5 5.5 6 26 277 177 123 90 69 55 44 37 31 80 ksl 350 179 104 65 44 31 22 17 13 26 233 149 104 76 58 46 37 31 26 50 ksl 361 185 107 67 45 32 23 17 13 24 299 192 133 98 75 59 48 40 33 50 ksl 481 246 142 90 60 42 31 23 18 26 238 152 106 78 60 47 38 32 26 80 ksl 842 431 250 157 167 74 54 40 31 26 211 135 94 69 53 42 34 28 23 50 ksl 869 445 257 162 109 76 56 42 32 24 294 188 131 96 73 58 47 39 33 50 ksl 1158 593 343 216 145 102 74 56 43 26 278 178 124 91 70 55 44 37 31 80 ksl 700 359 208 131 88 61 45 34 26 26 246 158 109 80 62 49 39 33 27 26 24 34 34 22 370 214 135 90 63 46 35 27 24 34 34 220 152 112 86 68 55 45 38	GAUGE 2 2.5 3 3.5 4 4.5 5 5.6 6 6.5 26 277 177 123 90 69 55 44 37 31 26 80 ksi 350 179 104 65 44 31 22 17 13 10 26 233 149 104 76 58 46 37 31 26 22 50 ksi 361 185 107 67 45 32 23 17 13 11 24 299 192 133 98 75 59 48 40 33 28 50 ksi 481 246 142 90 60 42 31 23 18 14 26 238 152 106 78 60 47 38 32 26 23 80 ksi 842 431 250 157 105 74 54 40 31 25 26 211 135 94 69 53 42 34 28 23 50 ksi 869 445 257 162 109 76 56 42 32 25 24 294 188 131 96 73 58 47 39 33 28 50 ksi 1158 593 343 216 145 102 74 56 43 34 26 278 178 124 91 70 55 44 37 31 26 80 ksi 700 359 208 131 88 61 45 34 26 20 26 246 158 109 80 62 49 39 33 27 23 50 ksi 722 370 214 135 90 63 46 35 27 21 24 343 220 152 112 86 68 55 45 38 32	GAUGE 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 26 277 177 123 90 69 55 44 37 31 26 23 80 ksi 350 179 104 65 44 31 22 17 13 10 8 26 233 149 104 76 58 46 37 31 26 22 19 50 ksi 361 185 107 67 45 32 23 17 13 11 8 24 299 192 133 98 75 59 48 40 33 28 24 50 ksi 481 246 142 90 60 42 31 23 18 14 11 26 238 152 106 78 60 47 38 32 26 23 19 80 ksi 842 431 250 157 105 74 54 40 31 25 20 26 211 135 94 69 53 42 34 28 23 20 17 50 ksi 869 445 257 162 109 76 56 42 32 25 20 24 294 188 131 96 73 58 47 39 33 28 24 50 ksi 1158 593 343 216 145 102 74 56 43 34 27 26 278 178 124 91 70 55 44 37 31 26 23 80 ksi 700 359 208 131 88 61 45 34 26 20 16 26 24 34 25 37 27 21 17 28 26 26 278 178 124 91 70 55 44 37 31 26 23 50 ksi 700 359 208 131 88 61 45 34 26 20 16 26 26 26 158 109 80 62 49 39 33 27 23 20 50 ksi 722 370 214 135 90 63 46 35 27 21 17 24 343 220 152 112 86 68 55 45 38 32 28	GAUGE 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.3333 26 277 177 123 90 69 55 44 37 31 26 23 21 80 ksi 350 179 104 65 44 31 22 17 13 10 8 7 26 233 149 104 76 58 46 37 31 26 22 19 17 50 ksi 361 185 107 67 45 32 23 17 13 11 88 61 45 32 26 23 19 17 24 299 192 133 98 75 59 48 40 33 28 24 22 50 ksi 481 246 142 90 60 42 31 23 18 14 11 10 26 238 152 106 78 60 47 38 32 26 23 19 18 80 ksi 842 431 250 157 105 74 54 40 31 25 20 17 50 ksi 869 445 257 162 109 76 56 42 32 25 20 17 50 ksi 869 445 257 162 109 76 56 42 32 25 20 17 26 278 178 124 91 70 55 44 37 31 26 23 21 80 ksi 700 359 208 131 88 61 45 34 26 20 16 14 80 ksi 700 359 208 131 88 61 45 34 26 20 16 14 26 24 343 220 152 112 86 68 55 45 38 32 26 20 17 27 28 29 30 34 20 15 30 38 31 26 24 22 28 29 30 30 37 31 26 20 18 29 30 30 30 30 30 30 30 30 30 30 30 30 30

Notes:

- 2. Top value is based on stress and bottom value is based on deflection.
- 3. Weight of panel is not included in the above allowables.
- 4. Deflection allowables are based on I/180. To adjust for other limits use the following:

For I/90 multiply the above allowables by 2.0 For I/240 multiply the above allowables by 0.75

- Stress allowables may be increased by 4/3 for wind loading if allowed by the building code.
 The panel properties are calculated in accordance with the 2012 North American Specification for the Design of Cold Formed Steel Structural Members.

Front Roof Design Designer: Version Number: Ver. 47.5 Job Number: 37461, Module: 1 Date/Time: 01/09/18 02:06 PM Type Width Length Ridge Dist Slope(F) Slope(R) No.BAYS LRF 40.000 ft 60.000 ft 20.000 ft 2.000:12 2.000:12 3 Wall Base Adjustments: FSW RSW LEW REW 0.000 ft 0.000 ft 0.000 ft 0.000 ft S.Wall Eave Ht. Lean-To Width E.Wall Type Col_Spc. Girt Type Overhang Front: 16.000 ft 0.000 ft Left 1 C I 0.000 ft Rear: 16.000 ft 0.000 ft Right 1 C I 0.000 ft Building Code: 2012 International Building Code ______ Building Use Category: II. All buildings and other structures except those listed in Risk Categories I, III, and IV (Snow Importance Factor = 1.000) Roof Dead Load = 3.000 psf Collateral Load = 5.000 psf Roof Live Load = 20.000 psf Ground Snow Load = 150.000 psf Snow Exposure Category: Partially Exposed (Snow Exposure Factor = 1.000) Thermal Condition: All structures except as indicated below (Thermal Factor = 1.000)Roof Snow Load = 105.000 psf Wind Velocity = 150.000 mph Open Condition: Enclosed Buildings Wind Exposure Category: C. Open terrain with scattered obstructions having heights generally less than 30 feet & where Exposures B or D do not apply Design Wind Pressure (Cladding and Secondary) = 42.130 psf _____ Anti-Roll Region #1 from eave to peak Width: 20.2759 ft On Slope: 2:12 Lines(np): 8 W(gravity): 148.859 psf At Frame Line: 2 Applied Force(PL): -3791.55 lbs Qty Clips Needed: 2 Qty Clips Utilized: 2 Resistance: -4000 lbs Purlin locations on slope from peak to eave.

Line	Distance	Design	Interest	Anti-Roll	Lt.Edge	Rt.Edge	Weight	
No.	(feet)	Spacing	Line	Region Clip	Package	Package	(lbs)	
1 2 3 4 5	1.50 4.00 6.50 9.00 11.50 14.00	2.75 2.50 2.50 2.50 2.50 2.50	Y	1 Y(DnHill) 1 Y(DnHill) V6	(3) ear	 Lh V	381.8 381.8 381.8 381.8 381.8 381.8	TYP
7 8	16.50 18.39	2.19 1.89	Y		ı		381.8 381.8	
9	20.28	0.94	Y					eave strut
				LINE	WEIGHT T	OTAL	3411.1 60.3	sag lines
				EXTENDED	WEIGHT T	OTAL	3471.3	

Roof purlin line 3 (Unbalanced Snow w/ Peak Surcharge)

Design Spacing Mounting Condition at Supports Lateral Restraint by Panel Attachment End Inset Dimension at Lt End of Line End Inset Dimension at Rt End of Line

With a 4.000 ft Edge Strip at Lt End and a 4.000 ft Edge Strip at Rt End Wind Suction Coefficient at Interior Region -0.980 Wind Suction Coefficient in Edge Strip at End Wind Pressure Coefficient 0.480

0.458 ft -1.380

2.500 ft (max)

THROUGH-FASTENED

BYPASS

0.458 ft

DESIGN SUMMARY

Roof purlin line 3 (Unbalanced Snow w/ Peak Surcharge)

Span ID	Length (ft)	Mark No.	Left Lap (ft)	Right Lap (ft)	Brace Pts	End Clips	Load Case		Controlling Check
1L	1.000	95Z12	0.000	0.000	0	B.End	3	0.041	bending+shear
					<u>^</u>		3	L/ 80	deflection
1	19.000	95Z12	0.000	2.000) 1 <u>}</u>	B.End	3	0.950	bending
)	20	L/ 321	deflection
2	20.000	95Z12	2.000	2.000	(1)	B.End	3	0.935	bending
					\ /		27	L/1273	deflection
3	19.000	95Z12	2.000	0.000	1/	B.End	3		bending
							20		deflection
3R	1.000	95212	0.000	0.000	0	B.End	3	0.041	bending+shear
							3		deflection

Total weight (extended) = 381.8 (389.4) lbs. Max check ratio = 0.950

LOAD COMBINATIONS

Roof purlin line 3 (Unbalanced Snow w/ Peak Surcharge)

No.	Load Case Description
1	D+C + L
2	Check By ASD; No Deflection Limit D+C + S
3	Check By ASD; No Deflection Limit
3	D+C + SU~ Check By ASD; No Deflection Limit
4	D+C + SEFHL~ Check By ASD; No Deflection Limit
5	D+C + SEFHR~
6	Check By ASD; No Deflection Limit D+C + SEHFL~
7	Check By ASD; No Deflection Limit D+C + SEHFR~
0	Check By ASD; No Deflection Limit
8	D+C + SDFH1L~ Check By ASD; No Deflection Limit
9	D+C + SDFHX1~ Check By ASD; No Deflection Limit
10	D+C + SDFHX2~

11	D+C + SDFHX3	•	Deflection Limit
			Deflection Limit
12	D + 0.6W-	Check By ASD; No	Deflection Limit
13	D+C + 0.6W+	-	Deflection Limit
14	D+C + 0.45W+	+ 3/4L	
15	D+C + 0.45W+		Deflection Limit
			Deflection Limit
16	0.6D + 0.6W-	Check By ASD; No	Deflection Limit
17	0.6(D+C) + 0		Deflection Limit
18	L	_	
19	S	No Stress Check;	L/150 Deflection Limit
20	SU~	No Stress Check;	L/180 Deflection Limit
		No Stress Check;	L/180 Deflection Limit
21	SEFHL~	No Stress Check;	L/180 Deflection Limit
22	SEFHR~		
23	SEHFL~		L/180 Deflection Limit
24	SEHFR~	No Stress Check;	L/180 Deflection Limit
		No Stress Check;	L/180 Deflection Limit
25	SDFH1L~	No Stress Check;	L/180 Deflection Limit
26	SDFHX1~	No Stress Check:	L/180 Deflection Limit
27	SDFHX2~		
28	SDFHX3~	No Stress Check;	L/180 Deflection Limit
29	0.42W-	No Stress Check;	L/180 Deflection Limit
		No Stress Check;	L/180 Deflection Limit
30	0.42W+	No Stress Check;	L/180 Deflection Limit

APPLIED LOADS

Roof purlin line 3 (Unbalanced Snow w/ Peak Surcharge)

No.		 Designation	Span #	Intensity lb/ft(kips)	From feet	Intensity lb/ft	To feet
1	UNIF	D	ALL	7.398	0.000	7.398	0.000
2	UNIF	D+C	ALL	19.560	0.000	19.560	0.000
3	UNIF	L	\mathtt{ALL}	48.649	0.000	48.649	0.000
4	UNIF	S	\mathtt{ALL}	255.405	0.000	255.405	0.000
5	UNIF	SU~	\mathtt{ALL}	343.937	0.000	343.937	0.000
6	UNIF	SEFHL~	1L	255.405	0.000	255.405	1.000
7	UNIF	SEFHL~	1	255.405	0.000	255.405	19.000
8	UNIF	SEFHL~	2	127.703	0.000	127.703	20.000
9	UNIF	SEFHL~	3	127.703	0.000	127.703	19.000
10	UNIF	SEFHL~	3R	127.703	0.000	127.703	1.000
11	UNIF	SEFHR~	1L	127.703	0.000	127.703	1.000
12	UNIF	SEFHR~	1	127.703	0.000	127.703	19.000

13	UNIF	SEFHR~	2	127.703	0.000	127.703	20.000
14	UNIF	SEFHR~	3	255.405	0.000	255.405	19.000
15	UNIF	SEFHR~	3R	255.405	0.000	255.405	1.000
16	UNIF	SEHFL~	1L	127.703	0.000	127.703	1.000
17	UNIF	SEHFL~	1	127.703	0.000	127.703	19.000
18	UNIF	SEHFL~	2	255.405	0.000	255.405	20.000
19	UNIF	SEHFL~	3	255.405	0.000	255.405	19.000
20	UNIF	SEHFL~	3R	255.405	0.000	255.405	1.000
21	UNIF	SEHFR~	1L	255.405	0.000	255.405	1.000
22	UNIF	SEHFR~	1	255.405	0.000	255.405	19.000
23	UNIF	SEHFR~	2	255.405	0.000	255.405	20.000
24	UNIF	SEHFR~	3	127.703	0.000	127.703	19.000
25	UNIF	SEHFR~	3R	127.703	0.000	127.703	1.000
26	UNIF	SDFH1L~	1L	127.703	0.000	127.703	1.000
	UNIF	SDFH1L~	1	127.703	0.000	127.703	19.000
28	UNIF	SDFH1L~	\mathtt{ALL}	127.703	0.000	127.703	0.000
29	UNIF	SDFHX1~	1L	127.703	0.000	127.703	1.000
30	UNIF	SDFHX1~	1	127.703	0.000	127.703	19.000
	UNIF	SDFHX1~	2	127.703	0.000	127.703	20.000
32	UNIF	SDFHX1~	ALL	127.703	0.000	127.703	0.000
	UNIF	SDFHX2~	2	127.703	0.000	127.703	20.000
34	UNIF	SDFHX2~	3	127.703	0.000	127.703	19.000
35	UNIF	SDFHX2~	3R	127.703	0.000	127.703	1.000
36	UNIF	SDFHX2~	\mathtt{ALL}	127.703	0.000	127.703	0.000
37	UNIF	SDFHX3~	3	127.703	0.000	127.703	19.000
38	UNIF	SDFHX3~	3R	127.703	0.000	127.703	1.000
39	UNIF	SDFHX3~	\mathtt{ALL}	127.703	0.000	127.703	0.000
40	UNIF	M-	1.L	-145.348	0.000	-145.348	0.458
41	UNIF	M-	1	-145.348	0.000	-145.348	3.542
42	UNIF	M	1	-103.218	3.542	-103.218	19.542
43	UNIF	M-	2	-103.218	0.000	-103.218	20.000
44	UNIF	M-	3	-103.218	0.000	-103.218	16.000
45	UNIF	M-	3	-145.348	16.000	-145.348	19.542
46	UNIF	₩~	3R	-145.348	0.000	-145.348	0.458
47	UNIF	₩+	ALL	50.556	0.000	50.556	0.000

NBG LIGHT GAGE ANALYSIS SHORT REPORT | 01/09/2018

Software: NBG Light Gage Analysis [version: 2017.06.28.1 date: 06/28/2017]
Analysis Config: CBC [version: 2016.07.12.001]

C:\Users\Brian.Cuan\Documents\Jobs\C17C0461 Icy Cape Sample Processing Bldg\LIGHTGAGE\G1

Input File: Project Name:

GIRT SW <-- (JOB DESCRIPTION) / NAME

AISI Spec Year: 2010 Building Code: IBC20 Inventory: CBCCA IBC2012 CBCCA-GZ

Purlin spacing:

5.00 o.c. Insulation Thickness: 0.00

spacing: 3'6,3'10, 5' o.c.

AU 824 W/ 21 LAP

SPAN PA	RAMETERS									
Span	Length	Section	Design Group	Design	Brace Type	Left Support	Right Support	Left Lap	Right Lap	
	(ft)							(in)	(in)	
1	1.00	08Z060	1	Yes	Тор	1	2	Cant.	0.00	
2	19,00	082060	1	Yes	Top	2	3	0.00	22.50	
3	20.00	08Z060	2	Yes	Top	3	4	22.50	22.50	
4	19.00	082060	3	Yes	Top	4	5	22.50	0.00	
5	1.00	082060	3	Yes	Top	5	6	0.00	Cant.	

MAXIMUM COMPUTED DISPLACEMENTS, FORCES & LOAD RATIOS

S	pan Pro	Properties Maximum Computed Displacements & Forces Maximum Computed Load Ratios							ì					
No	Length	Section	Displacement	Axial	Shear	Moment(+)	Moment(-)	Ten.(T)	Comp.(P)	Shear (V)	Mom.(M)	TeM	Pam	MaV
1	1.00	082060 x comb	-0.131 0.00 2	0.00 0.00 0	-0.12 12.00 2	0.06 12.00 2	-0.05 12.00 1	0.00 0.00 0	0.00 0.00 0	0.05 12.00 2	0.01 12.00 2	0.01 12.00 2	0.01 12.00 2	0.05 12.00 2
2	19.00	082060 x comb	0.669 102.09 2	0.00 0.00 0	-1.37 228.00 2	4.87 228.00 2	-4.40 228.00 1	0.00 0.00 0	0.00 0.00 0	0.44 205.50 2	0.93 90.75 2	0.93 90.75 2	0.93 90.75 2	0.69 205.50 2
3	20.00	082060 x comb	-0.061 34.50 2	0.00	-1.18 0.00 2	4.87 240.00 2	-4.40 0.00 1	0.00 0.00 0	0.00 0.00 0	0.37 22.50 2	0.67 22.50 1	0.67 22.50 1	0.67 22.50 1	0.70 22.50 2
4	19.00	08Z060 x comb	0.669 125.91 2	0.00 0.00 0	-1.37 0.00 2	4.87 0.00 2	-4.40 0.00 1	0.00 0.00 0	0.00 0.00 0	0.44 22.50 2	0.93 137,25 2	0.93 137.25 2	0.93 137,25 2	0.69 22.50 2
5	1.00	08Z060 x comb	-0.131 12.00 2	0.00 0.00 0	-0.12 0.00 2	0.06 0.00 2	-0.05 0.00 1	0.00 0.00 0	0.00 0.00 0	0.05 0.00 2	0.01 0.00 2	0.01 0.00 2	0.01 0.00 2	0.05 0.00 2
			Displacement	Axial	Shear	Moment(+)	Moment (-)	Ten.(T)	Comp. (P)	Shear (V)	Mom. (M)	Tem	P&M	Vam
Dis Spa		rom Left	0.669 102.09 2 2	0.00 0.00 0	-1.37 0.00 4 2	4.87 228.00 2 2	-4.40 0.00 3 1	0.00 0.00 0	0.00 0.00 0	0.44 22.50 4 2	0.93 90.75 2 2	0.93 90.75 2 2	0.93 90.75 2 2	0.70 22.50 3 2

SUPPORT CONNECTIONS

	-444.0000000000000000000000000000000000
Support No.	2 3 4 5
Connection Code	NC NC NC

VERTICAL REACTIONS [kips]

Comb							Support No
	1	2	3	4	5	6	
1 2 3 4	0.00 0.00 0.00 0.00	-0.89 1.00 -0.62 0.70	-2.30 2.55 -1.61 1.78	-2.30 2.55 -1.61 1.78	-0.89 1.00 -0.62 0.70	0.00 0.00 0.00 0.00	

^{*} Negative reaction for gravity loads

SUPPORT RATIOS

Support	Support Type*		Crippling	Crip & Bend	Bolt Shear	Bearing*	
2	1	Max Ratios Combo	0.84 1	0.57 1	0.23 2	0.20 2	
3	1	Max Ratios Combo	0.69 1	0.65 1	0.58 2	0.25 2	
4	1	Max Ratios Combo	0.69 1	0.65 1	0.58 2	0.25 2	
5	1	Max Ratios Combo	0.84 1	0.57 1	0.23 2	0.20	

Maximum Ratios of All Supports 0.84 0.65 0.25 Support Combo Support Type * Bolt type between purlin & clip: A307
* Support types: 1 = No Clip | 2 = Crippling Clip | 3 = Bolted or Welded Clip w/ A307 | 4 = Bolted or Welded Clip w/ A325
* Bearing ratio is check of bearing of clip bolts on purlins GENERAL LOADS

Load Case	Uniform Load (psf)	Load Case Name
1	35.4	Pressure Wind Load
2	-39.2	Suction Wind Load
3	-40.5	Edge Suction Wind Load

LINEAR LOADS

Load Case	span	Load Type	Start Load	Start X	End Load	End X	=======================================
			(lb/ft)	(ft)	(lb/ft)	(ft)	
1	2	Shear Shear	177.10 177.10	0.00 0.00	177.10 177.10	1.00 19.00	
ī	3	Shear	177.10	0.00	177.10	20.00	
1	4	Shear	177.10	0.00	177.10	19.00	
1	5	Shear	177.10	0.00	177.10	1.00	
2	l o	Shear Shear	-202,50 -196.00	0.00 3.00	-202.50 -196.00	1.00 19.00	
2	3	Shear	-196.00	0.00	-196.00	20.00	
2	4	Shear	-196.00	0.00	-196.00	16.00	
2	5	Shear	-202.50	0.00	-202.50	1.00	
2	2 4	Shear Shear	-202.50 -202.50	0.00 16.00	-202.50 -202.50	3.00 19.00	

LOAD COMBINATIONS

Com	b Active Load Combination Name Allow		Allowable				Load Case No.
#	(Y/N)		Factor	<u>i</u>	1	2	
1 2 3 4	ı	Wind Pressure Wind Suction Wind Pressure Deflection Wind Suction Deflection	1.00 1.00 1.00 1.00	j (0.60 0.00 0.42 0.00	0.60	

DEFLECTION LIMITATIONS

The 50 year deflection limit The 50 year maximum deflection = L / 90.0 = 2.67"

* Deflection limitations were applied to combinations 3-4

GENERAL NOTES

* /* Ends of laps are considered as brace points.'

* '* Inflection points are considered brace points except for spans with discrete bracing,'

* All calculations are in accordance with the 2007 North American Specification with S2-2010 Supplement.

SYSTEM WEIGHT & COST

Total system weight = Total system cost = 193.72 lbs 245.03 dollars

PURLIN PRODUCTION LIST

Purlin	Section	Length	
1	082060	21.88	
2	082060	23.75	
3	082060	21.88	

MATERIAL SUMMARY

		.==========		
Section	Weight	Cost	Fu	
	-			
08Z060	193.72	245.03	55.0	

NBG LIGHT GAGE ANALYSIS SHORT REPORT | 01/09/2018

NBG Light Gage Analysis [version: 2017.06.28.1 date: 06/28/2017] CBC [version: 2016.07.12.001] Software:

Analysis Config: CBC

C:\Users\Brian.Cuan\Documents\Jobs\C17C0461 Icy Cape Sample Processing Bldg\LIGHTGAGE\G2 Input File:

GIRT EW 1 <-- (JOB DESCRIPTION) / NAME Project Name:

AISI Spec Year: Building Code: Inventory: 2010 IBC2012 / CBCCA-GZ

Purlin spacing: Insulation Thickness: 5.00 o.c. 0.00

SPAN PARAMETERS

Span	Length	Section	Design Group	Design	Brace Type	Left Support	Right Support	Left Lap	Right Lap	
	(ft)							(in)	(in)	
1 2 3	12.50 15.00 12.50	082060 082067 082060	1 2 3	Yes Yes Yes	Top Top Top	1 2 3	2 3 4	0.00	0.00 0.00	

MAXIMUM COMPUTED DISPLACEMENTS, FORCES & LOAD RATIOS

Span	Properties	 	cements & Fo	ements & Forces				Maximum Computed Load Ratios					
No Le	ngth Section	Displacement	Axial	Shear	Moment (+)	Moment (-)	Ten.(T)	Comp. (P)	Shear (V)	Mom. (M)	MaT	P&M	Vem
1 12	2.50 08Z060 x comb	69.23	0.00 0.00 0	-0.82 0.00 2	2.21 80.77 1	-2.48 69.23 2	0.00 0.00 0	0.00 0.00 0	0.32 0.00 2	0.80 69.23 2	0.80 69.23 2	0.80 69.23 2	0.52 69.23 2
2 15	082067 x comb	84.00	0.00 0.00 0	-0.94 0.00 2	3.19 96.00 1	-3.51 84.00 2	0.00 0.00 0	0.00 0.00 0	0.26 0.00 2	1.00 84.00 2	1.00 84.00 2	1.00 84.00 2	0.65 84.00 2
3 12	2.50 082060 x comb	80.77	0.00 0.00 0	-0.82 150.00 2	2.21 69.23 1	-2.48 80.77 2	0.00 0.00 0	0.00 0.00 0	0.32 150.00 2	0.80 80.77 2	0.80 80.77 2	0.80 80.77 2	0.52 80.77 2
		Displacement	Axial	Shear	Moment(+)	Moment (-)	Ten.(T)	Comp. (P)	Shear (V)	Mom. (M)	T &M	P&M	V&M
Distan Span	All Spans ice from Left Combination	0.535 84.00 2 2	0.00 0.00 0	-0.94 0.00 2 2	3.19 96.00 2 1	-3,51 84.00 2 2	0.00 0.00 0	0.00 0.00 0 0	0.32 0.00 1 2	1.00 84.00 2 2	1.00 84.00 2 2	1.00 84.00 2 2	0,65 84.00 2 2

SUPPORT CONNECTIONS

Support No.	1 2 3 4	
Connection Code	NC NC NC	•

VERTICAL REACTIONS [kips]

=====	=====			========	02505255	
Comb]					Support No
	1	1	2	3	4	
1	1 .	-0.71	-1.57	-1,57	-0.71	
2	ĺ	0.82	1.73	1.73	0.82	
3	í.	-0.50	-1.10	-1.10	-0.50	
4	í	0.58	1.21	1.21	0.58	
-	•					

^{*} Negative reaction for gravity loads

SUPPORT RATIOS

Support	Support Type*		Crippling	Crip & Bend	Bolt Shear	Bearing*	
1	1	Max Ratios Combo	0,67	0.45 1	0.19 2	0.16 2	
2	1	Max Ratios Combo	1,48	0.99 1	0.39 2	0.31	
3	1	Max Ratios Combo	1.48	0.99 1	0.39 2	0.34	
4	1	Max Ratios Combo	0,67 1	0.45 1	0.19 2	0.16 2	
Maximum F Support Combo Support 7	Ratios of All Su	apports	1.48 2 1	0.99 2 1 1	0.39 2 2 1	0.34 3 2	

^{*} Bolt type between purlin & clip: A307
* Support types: 1 = No Clip | 2 = Crippling Clip | 3 = Bolted or Welded Clip w/ A307 | 4 = Bolted or Welded Clip w/ A325
* Bearing ratio is check of bearing of clip bolts on purlins

GENERAL LOADS

=======================================		======================================
Load Case	Uniform Load (psf)	Load Case Name
		**
1	38,0	Pressure Wind Load
2	-41.8	Suction Wind Load
3	-45.6	Edge Suction Wind Load

LINEAR LOADS

Load Case	Span	Load Type	Start Load	Start X	End Load	End X	
			(lb/ft)	(ft)	(lb/ft)	(ft)	
1 1 1 2 2 2 2	1 2 3 1 2 3	Shear Shear Shear Shear Shear Shear Shear Shear	189.90 189.90 189.90 -208.80 -208.80 -208.80 -228.00	0.00 0.00 0.00 4.00 0.00 0.00 0.00	189.90 189.90 189.90 -208.80 -208.80 -228.00 -228.00	12.50 15.00 12.50 12.50 15.00 8.50 4.00	

LOAD COMBINATIONS

Com	o Active	Load Combination Name	Allowable	=== 			Load Case No.
#	(Y/N)		Factor	i	1	2	
1 2 3 4	Y Y Y	Wind Pressure Wind Suction Wind Pressure Deflection Wind Suction Deflection	1.00 1.00 1.00 1.00	İ	0.60 0.00 0.42 0.00	0.60	

DEFLECTION LIMITATIONS

The 50 year deflection limit The 50 year maximum deflection = L / 90.0 = 2.00"

 \star Deflection limitations were applied to combinations 3-4

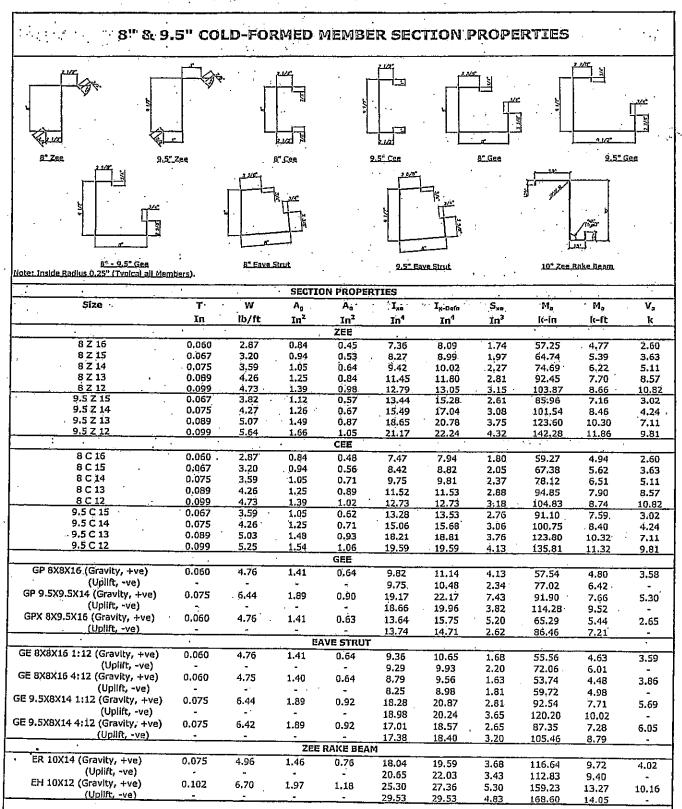
GENERAL NOTES

..............................

* '* Ends of laps are considered as brace points.'
* '* Inflection points are considered brace points except for spans with discrete bracing.'
* All calculations are in accordance with the 2007 North American Specification with S2-2010 Supplement.

SYSTEM WEIGHT & COST

Total system weight = 119.75 lbs Total system cost = 150.52 dollars


PURLIN PRODUCTION LIST

Purlin	Section	Length	
1	082060	12.50	
2	082067	15.00	
3	082060	12.50	

MATERIAL SUMMARY

Fy	Cost	Weight	Section
55.0	90.75	71.75	08Z060
55.0	59.76	48.00	08Z067

Sheet
Job #
Date
By...

Notes -

Section properties are calculated in accordance with the 2012 North American Specification for the Design of Cold-Formed Steel Members. Fy = 55 ksl.

^{2.} Bending allowables shown may be utilized for members having the compression flange continuously fastened to sheathing.

^{3.} Effective section properties are calculated at yield stress of Fy = 55 ksi. Deflection Moment of Inertia, 1_{x-oeff} is calculated at working stress level of 0.6 Fy.

NUCOR BUILDINGS GROUP

A DIVISION OF NUCOR CORPORATION

BEAM-COLUMN S.S. (AISC 14th Edition)

Project No.:	C17C046/	
Description:	· · · · · · · · · · · · · · · · · · ·	
Engineer:	BC	
Date:	1/9/2018	

MAIN REPORT: DESIGN SUMMARY

Version: 2015.04.22 (Date: 04/22/15) By NBG

			S	pan and Load	ling Condition	. •	
GENERAL INFORMATION			EW	r si .	EW	計画 初毛刷	•
(ENTER DATA IN GRAY SHADED CELLS!)			Rafter	ne injur	Column	rina il paggio	Remarks
Member Length	L _{bx}	ft.	15.00	es a Ejen.	18.08		Assumes Lbx = L
Unbraced Length - Minor	L _{by}	ft,	10.00		10.00		
Consideration of Tension Field Action for Shear			FALSE	FALSE	FALSE	FALSE	<= See cell comment & Chapter G.
Clear Distance between Transverse Stiffeners	a	in.	in Charles 14	January M	atta er ei	推動 自在内	<= See cell comment & Section G2.
Lateral-torsional buckling factor	Сь		1.000	1.000	1.000	1.000	<= See cell comment
Kx Factor	K _x		1.000	1.000	1.000	1,000	
Ky Factor	K _y		1.000	1.000	1.000	1.000	
Kz Factor	K _z		1.000	1.000	1.000	1.000	<= See cell comment
SECTION GEOMETRY		J. 18.3		ati Vita in		ing Grand	- outside flange (OF)
Select Wide-flange or Built-up Section:			BU	None	BU	None	y-exis bof
Section Description:	l		BU12x15		BU12x14	_	
Enter WF-Section:							tof
Total Depth	d	in,	12.000	-	12.000		
Web Thickness	t _w	in.	0.135	_	0.135		x-exis d
Outside Flange Width	b _{of}	in.	5 6.000	-	(5.000)		
Outside Flange Thickness	t _{of}	in.	0.250		0.250		Γ"
Inside Flange Width	b _{if}	in.	6.000		5.000		***
Inside Flange Thickness	t _{if}	in.	0.250		0.250		Ltif
MATERIAL INFORMATION		. 1 (%)					inside flange (IF) b if
Material Strength	F _v	ksi	55	55	55	55	
Elastic Modulus	E	ksi	29,000	29,000	29,000	29,000	Standard for steel shown
Shear Modulus	G	ksi	11,200	11,200	11,200	11,200	Standard for steel shown
Flange Yield Strength	F_{yf}	ksi	55	55	55	55	Surraire for stoor shown
Web Yield Strength	F _{yw}	ksi	55	55	55	55	
Ultimate Strength	F _u	ksi	70	70	70	70	
APPLIED LOADS] <u>-u</u>	VOI			les second ord		
Factor of Safety (Allowable Stress Factor)	S _f	y ki sa sa sa	1.000	1.000			<u> 1984 At Marie Hy</u> rold (Naughara)
Axial (compression => + pos., tension => - neg.)	P _a	kips	1.000	1.000	1.000 20.281	1.000	
			44.000	n i dine king Kanada dine			
Shear (absolute value)	V _x	kips	11.250	paridinadas. Propinsi	3.200		Major Axis (x-axis)
Moment (outside flange in compression => + pos.)	M _x	ft-kip	42,200		14.300		
Shear (absolute value)	V _y	kips					Minor Axis (y-axis)
Moment (absolute value)	M_y	ft-kip			#1.04E.56		
Design Results:	A.	3D	ОК		OK		Remarks
ASD Combined Strength Ratio	CSR		0.963		0.788		Eq. H1-1a or H1-1b
ASD Shear Strength Ratio (x-axis)	V _{rx} /V _{cx}		0.668	_	0.190		Major Axis (x-axis)
ASD Shear Strength Ratio (y-axis)	V _{ry} /V _{cy}		0.000		0.000		Minor Axis (y-axis)
Deflection Results (Major-axis)			OV	1	ΔV		
Deflection Limits (about x-axis)			OK	T /:100	OK 180	T / 100	Remarks
Maximum Deflection (about x-axis)		in	L/180 1.000 in.	L/100 :	L/180	L/100	Limits as numerals (i.e. 360 = L/360)
	Δ _{max}	in.	├	0.000 in.	1.206 in.	0.000 in.	
Member Deflection (about x-axis)	$\Delta_{\text{x-axis}}$	in.	0.488 in.	48	0.281 in.	-	$\Delta_{x-axis} \leq \Delta_{max}$
Deflection Results (Minor-axis)			OK		OK		Remarks
Deflection Limits (about y-axis)			L/100	L/100	L/100	L/100	Limits as numerals (i.e. 360 = L/360)
Maximum Deflection (about y-axis)	Δ_{max}	in.	1.800 in.	0.000 in.	2.170 in.	0.000 in.	
Member Deflection (about y-axis)	$\Delta_{y\text{-axis}}$	in.	0.000 in.		0.000 in.		$\Delta_{\text{y-axis}} \leq \Delta_{\text{max}}$
- 2/6 STF	· · · · · · · · · · · · · · · · · · ·			-		•	

319" CG (U) 349"

= 318" CAR (u) 344" & A 375)

(4) 34 " R (4) 34 " B A34

1700 E. Louise Avenue • Lathrop, CA 95330
Tel: (209) 983-0910 • Fax: (209) 858-2354

Job: Clf C0 46 (Sheet No. EZ By: By: By:

END WALL PAFTURS.

D+C+SY'LL -> ASSUME UNBALAN LED SNOW

(5 + 5 + 137.5) pst = 147.5 pst.

L= 151

ENDWALL COWNWS.

0,600

$$W = 25.31 \# \chi = \frac{(15 + 12'-6)}{2}$$
 This

NUCOR BUILDINGS GROUP

: 12/1/17 : Icy Cape Sample Processing Building : Frame @ Line(s) 2,3 ' Frame Name : 12/2/2017 Job # Job Name

Frame Date

Designer : File : F01-800825.nfr App Version : 2017.9.1.1

FRAME DESCRIPTION

Frame type : RCG Frame width : 40.00 Ft. Bay width : 20.00 Ft.

RIGHT Dim to ridge : 20.00 Ft. Roof slope : 2.00/12 Eave height : 16.00 Ft. Girt offset : 8.00 In. Purlin offset : 8.00 In. 20.00 Ft. -2.00/12 16.00 Ft. 8.00 In. 8.00 In.

Typ. Girt spacing: 5.00 Ft. Typ. Purlin spacing: 2.50 Ft.

line Z13

Col. spacing : 40.0000

Supports / Spring Constants

COL01 - Bottom V H COL02 - Bottom V H

Column Bracing:

WP1 Girt Brace : Y
Flange Brace : 0
Location (ft): 3.5

WP2 Girt Brace Flange Brace: 0 1 1 Location (ft): 3.5 7.3 11.7

Other Braces:

Column Left Brace Right Brace Location (ft):

LOADING CONDITIONS

Building Code & Year : IBC2012 : II-Standard Buildings : 2010 ASD Risk Category AISC Specification

LOADS (Psf)

our pior show = 105 psf-

Ce = 1.00 Seismic Design Category = E Site Class = D Sds = 1.145 Sd1 = 0.808 rho = 1.30 omega = 2.500

Wind speed : 150.00 Mph Exp. : C Wind pressure : 42.13 Psf

Building is Enclosed

Wind pressure coefficients

	Cl	C2E	C2	С3	C3E	C4
W1R	0.619	0.000	-0.510	-0.223	0.000	-0.152
W1L	-0.152	0.000	-0.223	-0.510	0.000	0.619
W2R	0.259	0.000	-0.870	-0.583	0.000	-0.512
W2L	-0.512	0.000	-0.583	-0.870	0.000	0.259
W5B	-0.270	0.000	-0.510	-0.190	0.000	-0.270
W5F	-0.270	0.000	-0.190	-0.510	0.000	-0.270
W6B	-0.630	0.000	-0.870	-0.550	0.000	-0.630
W6F	-0.630	0,000	-0.550	-0.870	0.000	-0.630

Tributary Widths

Trib. Width (ft) Panel

20.00 WP1 20.00 RP1 RP2 20.00

PROGRAM - APPLIED LOADS

Load Case	On Panel	Start Load Klf	End Load Klf	Start Loc Ft.	End Loc Ft.
RDL	RP1	-0.058	-0.058	0.000	20.000
RDL	RP2	-0.058	-0.058	20.000	40.000
COL	RP1	-0.100	-0.100	0.000	20,000
COL	RP2	-0.100	-0.100	20.000	40.000
SL	RP1	-1.956	-1.956	0.000	20.000
SR	RP2	-1.956	-1.956	20.000	40.000
UOS	RP1	-2.100	-2.100	0.000	20.000
UOS	RP2	-2.100	-2.100	20.000	40.000

RLL	RP1	-0.400	-0.400	0.000	20.000
RLR	RP2	-0.400	-0.400	20.000	40.000
W1R	RP1	-0.430	-0.430	0.000	20.000
WIR	RP2	-0.188	-0.188	20.000	40,000
WIR	WP1	0.521	0.521	0.000	16.000
WIR	WP2	0.128	0,128	0.000	16.000
WIL	RP1	-0.188	-0.188	0.000	20,000
WIL	RP2	-0.430	-0.430	20.000	40.000
WiL	WP1	-0.128	-0.128	0.000	16.000
WIL	WP2	-0.521	-0.521	0.000	16.000
W2R	RP1	-0.733	-0.733	0.000	20.000
WZR	RP2	-0.491	-0.491	20.000	40.000
W2R	WP1	0.218	0.218	0.000	16.000
W2R	WP2	0.431	0.431	0.000	16.000
WZL	RP1	-0.491	-0.491	0.000	20.000
W2L	RP2	-0.733	-0.733	20.000	40.000
W2L	WP1	-0.431	-0.431	0.000	16.000
WZL	WP2	-0.218	-0.218	0.000	16.000
W5B	RP1	-0.430	-0.430	0.000	20.000
W5B	RP2	-0.160	-0.160	20.000	40.000
W5B	WP1	-0.228	-0.228	0.000	16.000
W5B	WP2	0.228	0.228	0.000	16,000
W5F	RP1	-0.160	-0.160	0.000	20.000
WSF	RP2	-0.430	-0.430	20.000	40.000
W5F	WPl	-0.228	-0.228	0.000	16.000
W5F	WP2	0.228	0.228	0.000	16.000
W6B	RP1	-0.733	-0,733	0.000	20.000
W6B	RP2	-0.463	-0.463	20.000	40.000
W6B	WP1	-0.531	-0.531	0.000	16.000
W6B	WP2	0.531	0.531	0.000	16.000
W6F	RP1	-0.463	~0.463	0.000	20.000
WEF	RP2	-0.733	-0.733	20.000	40.000
WGF	WP1	-0.531	-0.531	0.000	16.000
WGF	WP2	0.531	0.531	0.000	16.000
EOR	RP1	0.185	0.185	0.000	20.000
EQR	RP2	0.185	0.185	20.000	40.000
EQL	RP1	-0.185	-0.185	0.000	20,000
EQL	RP2	-0.185	-0.185	20.000	40.000
LRD	RP1	-1.956	-1.956	0.000	20.000
LRD	RP1	-0.649	-0.649	2,682	20,000
LRD	RP2	-0.587	-0.587	20.000	40.000
RRD	RP1	-0.587	-0.587	0.000	20.000
RRD	RP2	-1.956	-1.956	20.000	40.000
RRD	RP2	-0.649	-0.649	20.000	37.318
****	115 2	.0.013	0.043	20.000	37.310

LOAD COMBINATIONS

ASR Cases

```
1) 1.00 SW+RDL+COL+NLL
2) 1.00 SW+RDL+COL+NLR
3) 1.00 SW+RDL+COL+SL+S
4) 1.00 SW+RDL+COL+SL+S
5) 1.00 SW+RDL+COL+RLL+
6) 1.00 SW+RDL+COL+RLL+
7) 1.00 SW+RDL+0.60W1L
8) 1.00 SW+RDL+0.60W2R
9) 1.00 SW+RDL+0.60W2R
100 SW+RDL+0.60W2R
                                                                                   SW+RDL+COL+NLR
SW+RDL+COL+SL+SR+NLL
SW+RDL+COL+SL+SR+NLR
                                                                                 SW+RDL+COL+SL+SK+NLR
SW+RDL+COL+SL+SR+NLR
SW+RDL+COL+RLL+RLR+NLR
SW+RDL+O.60WLL
SW+RDL+O.60WLL
SW+RDL+O.60WLR
SW+RDL+O.60WLR
SW+RDL+O.60WLR
SW+RDL+O.60WLR
O.60SW+O.60RDL+O.60WLR
O.60SW+O.60RDL+O.60WLR
O.60SW+O.60RDL+O.60WLR
SW+RDL+COL+O.75SL+O.75SR+O.45WLL
SW+RDL+COL+O.75SL+O.75SR+O.45WLR
SW+RDL+COL+O.75SL+O.75SR+O.45WLR
SW+RDL+COL+O.75SL+O.75SR+O.45WLR
SW+RDL+COL+O.75SL+O.75SR+O.45WLR
SW+RDL+COL+O.75SL+O.75SR+O.45WLR
SW+RDL+COL+O.75SL+O.75SLR+O.45WLR
SW+RDL+COL+O.75SLL+O.75SLR+O.45WLR
SW+RDL+COL+O.75RLL+O.75SLR+O.45WLR
SW+RDL+COL+O.75RLL+O.75RLR+O.45WLR
SW+RDL+COL+O.75RLL+O.75RLR+O.45WLR
SW+RDL+COL+O.75RLL+O.75RLR+O.45WLR
SW+RDL+COL+O.75RLL+O.75RLR+O.45WLR
SW+RDL+COL+O.75RLL+O.75RLR+O.45WLR
SW+RDL+OL+O.75RLL+O.75RLR+O.45WLR
SW+RDL+O.60WSB
SW+RDL+O.60WSB
SW+RDL+O.60WSB
10) 1.00
11) 1.00
12) 1.00
13) 1.00
14) 1.00
15) 1.00
16) 1.00
16) 1.00
17) 1.00
18) 1.00
19) 1.00
20) 1.00
21) 1.00
21) 1.00
22) 1.00
23) 1.00
24) 1.00
25) 1.00
26) 1.00
27) 1.00
28) 1.00
                                                                                     SW+RDL+0.60W5F
SW+RDL+0.60W5F
SW+RDL+0.60W6F
0.60SW+0.60RDL+0.60W5B
0.60SW+0.60RDL+0.60W6B
0.60SW+0.60RDL+0.60W5F
29) 1.00
30) 1.00
31) 1.00
32) 1.00
33) 1.00
34) 1.00
35) 1.00
36) 1.00
37) 1.00
38) 1.00
40) 1.00
41) 1.00
42) 1.00
43) 1.00
44) 1.00
44) 1.00
                                                                                     0.60SW+0.60RDL+0.60W5F
0.60SW+0.50RDL+0.60W6F
SW+RDL+COL+0.75SL+0.75SR+0.45W5B
SW+RDL+COL+0.75SL+0.75SR+0.45W5F
SW+RDL+COL+0.75SL+0.75SR+0.45W5F
SW+RDL+COL+0.75SL+0.75SR+0.45W6F
SW+RDL+COL+0.75SLL+0.75RLR+0.45W5B
SW+RDL+COL+0.75RLL+0.75RLR+0.45W5B
SW+RDL+COL+0.75RLL+0.75RLR+0.45W5B
SW+RDL+COL+0.75RLL+0.75RLR+0.45W5F
SW+RDL+COL+0.75RLL+0.75RLR+0.45W5F
SW+RDL+COL+0.5FRLL+0.75RLR+0.45W6F
SW+RDL+COL+0.5FRLH+0.75RLR+0.45W6F
SW+RDL+COL+UOS+NLR
                          1.00 SW+RDL+COL+UOS+NLL
1.00 SW+RDL+COL+UOS+NLR
1.00 SW+RDL+COL+RD+NLL
1.00 SW+RDL+COL+RD+NLL
1.00 SW+RDL+COL+RD+NLL
1.00 SW+RDL+COL+RRD+NLL
1.00 SW+RDL+COL+RRD+NLR
1.00 1.16SM+1.16RDL+1.16COL+0.91EQL
1.00 1.16SM+1.16RDL+1.16COL+0.91EQR
1.00 1.12SW+1.12RDL+1.12COL+0.15SL+0.15SR+0.68EQL
1.00 1.12SW+1.12RDL+1.12COL+0.15SL+0.15SR+0.68EQR
1.00 0.44SW+0.44RDL+0.36EQL
1.00 0.44SW+0.44RDL+0.36EQR
 46) 1.00
47) 1.00
48) 1.00
```

Page: 1 File: F01-

Job : 12/1/17 Icy Cape Sample Processing Buildin NUCOR BUILDINGS GROUP Frame: Frame @ Line(s) 2,3 ' Frame Name Date: 01-09-18

*** DESIGN SUMMARY REPORT ***

Built Up Rafter - RAF01

	T/L	B/R							T/L	B/R	Max			- SHE	AR -		
Sectio		Flange Mat'l	Web Mat'l	Load Comb	Loc	Axial Kips	Axial Ratio	Moment Ft-kip	Bend Ratio	Bend Ratio	Unity Check	Load Comb	Loc	Force Kips	Shear Ratio	Flow T/L	(k/in) B/R
1	F6.38	F6.38	W250	39	1	-20.9	0,12	-162.7	0.88	0.88	0.94	39	1	36.12	0.54	1.37	1.37

1	F6.38 F	6,38	W250	39	1	-20.9	0.12	-162.7	0.88	0.88	0.94	39	1	36.12	0.54	1.37	1.37
Chkpt Depth Sectio	20.00 1 n	1	9 20	.00													
	widt	h thick	Fy	1													
T/L F1 Web B/R F1	T i	0.2500	55.00 55.00 55.00	İ													

Built Up Rafter - RAF02

	T/L	B/R							T/L	B/R	Max			- SnE			
Section	Flange on Mat'l		Web Mat'l	Load Comb	Loc	Axial Kips	Axial Ratio	Moment Ft-kip	Bend Ratio	Bend Ratio	Unity Check	Load Comb	Loc	Force Kips	Shear Ratio	Flow T/L	(k/in) B/R
1	F6.38	F6.38	W250	40	18	-20.9	0.12	-162.6	0.88	0.88	0.94	40	18	-36.21	0.55	1.37	1.37

Chkpt 10 Depth 20.00 Section |

	, ,	MICTOR	LINICK	гy		
T/L Flg	1	6.0	0.3750	55.00	1	
Web	İ		0.2500	55.00	Ĺ	
B/R Flg	l	6.0	0.3750	55,00	İ	

Built Up Column - COL01

	T/L	B/R							T/L	B/R	Max			SHE	AR -		
	Flange	e Flange	Web	Load		Axial	Axial	Moment	Bend	Bend	Unity	Load		Force	Shear	Flow	(k/in)
Section	n Mat'l	Mat'l	Mat'l	Comb	Loc	Kips	Ratio	Ft-kip	Ratio	Ratio	Check	Comb	Loc	Kips	Ratio	T/L	B/R
1	F6.38	F6.38	W250	39	25	-46.4	0.21	-187.1	0.80	0.80	0.92	39	25	-13.10	0.24	0.94	0.94

Chkpt 19 Depth 12.00 Section | 25 24.00 | width thick | Fy | T/L Flg | 6.0 0.3750 55.00 | Web | 0.2500 55.00 | B/R Flg | 6.0 0.3750 55.00 |

Built Up Column - COL02

	T/L	B/R							T/L	B/R	Max			SHE	AR -		
Section		Flange Mat'l	Web Mat'l	Load Comb	Loc	Axial Kips	Axial Ratio	Moment Ft-kip	Bend Ratio	Bend Ratio	Unity Check	Load Comb	Loc	Force Kips	Shear Ratio	Flow T/L	(k/in) B/R
1	F6.38	F6.38	W250	40	32	-46.4	0.21	187.0	0.80	0.80	0.92	40	32	13.10	0.24	0.94	0.94

Chkpt 26 Depth 12.00 32 24.00

Section	1	1	
1	width thick	Fy (
Web	6.0 0.3750 0.2500 6.0 0.3750	55.00	·

NUCOR BUILDINGS GROUP

Job#

:12/1/17

Job Name : Icy Cape Sample Processing Building

Frame : Frame @ Line(s) 2,3 '

Frame Name

File

: F01-800825.nfr

Designer :

App Version : 2017.9.1.1

Date :12/2/2017

BOLTED END-PLATES (BEP) SUMMARY

PLATE SIZE	: (in)
------------	--------

Splice	Left	Right	Members		Web	Left Plate						t Plate	
ID	Type	Type	Joined	Loc	Depth	Width	Thick	Length	Fy(ksi)	Width	Thick	Length	Fy(ksi)
1	6E	6E	COL01 To RAF01	Тор	19.25	6.00	0.63	25.14	55.0	6.00	0.63	25.14	55.0
1	6E	6E	COL01 To RAF01	Bot	19.25	6.00	0.63	25.14	55.0	6.00	0.63	25.14	55.0
2	6E	6E	RAF01 To RAF02	Top	19.25	6.00	0.63	25.52	55.0	6.00	0.63	25.52	55.0
2	6E	6E	RAF01 To RAF02	Bot	19.25	6.00	0.63	25.52	55.0	6.00	0.63	25.52	55.0
3	6E	6E	RAF02 To COL02	Top	19.25	6.00	0.63	25.14	55.0	6.00	0.63	25.14	55.0
3	6E	6E	RAF02 To COL02	Bot	19.25	6.00	0.63	25.14	55.0	6.00	0.63	25.14	55.0

PLATE DESIGN

				Max Moment					Max	Shear		Left	Right
Splice	Left	Right	Tension	Load	Axial	Shear	Moment	Load	Axial	Shear	Moment	Plate	Plate
ID	Type	Type	Location	Comb	(kip)	(kip)	(ft-kip)	Comb	(kip)	(kip)	(ft-kip)	Ratio	Ratio
1	6E	6E	Тор	36	-14.65	39.06	-162.70	11	2.47	-6.98	39.61	0.81	0.80
1	6E	6E	Bot	-49	3.68	-1.40	67.39	36	-14.65	39.06	-162.70	0.31	0.31
2	6E	6E	Top	9	3.71	0.44	-1 6.85	37	-11.45	-9.52	113.19	0.11	0.11
2	6E	6E	Bot	36	-14.65	0.04	146.10	20	2.24	0.99	-2.01	0.75	0.75
3	6E	6E	Top	36	-14.65	-39.15	-162.57	9	2.47	6.98	39.66	0.80	0.81
3	6E	6E	Bot	-45	3.67	1.40	67.39	36	-14.65	-39.15	-162.57	0.31	0.31

BOLT RUPTURE DESIGN

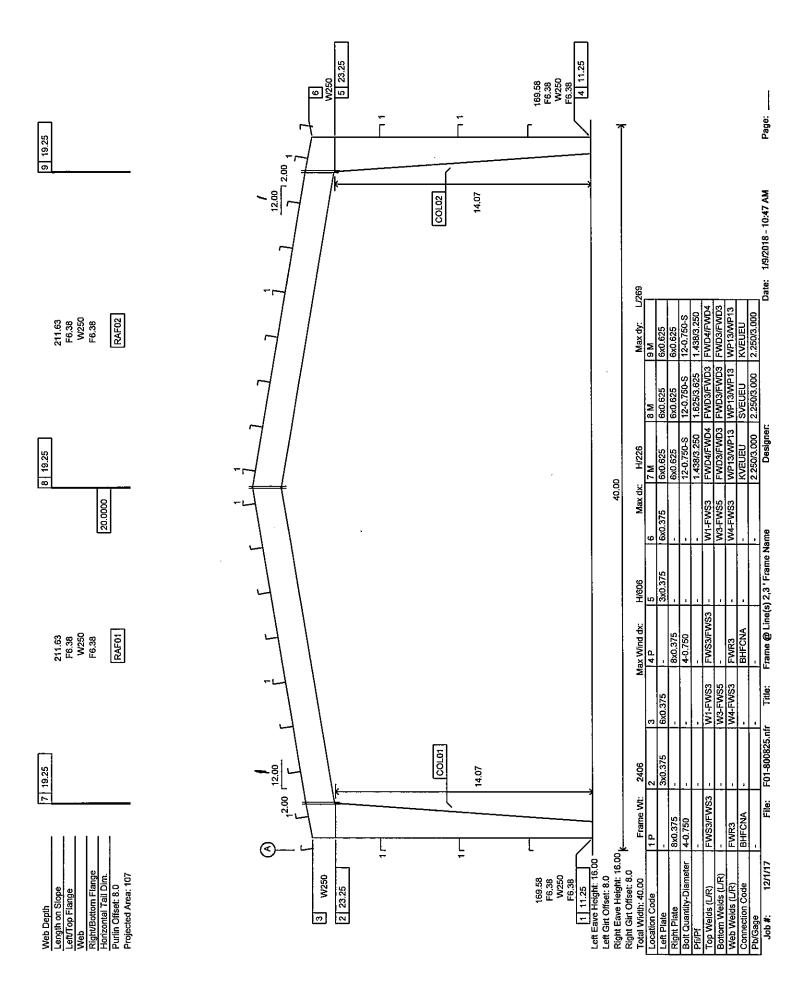
																	Left	Right
Splice	Left	Right		Bolt	Pre-									Load	Axial	Moment	Bolt	Bolt
ID	Type	Type	Loc	Type	Tension	Dia	Gage	Gage 2	Pfi	Pfo	Pf	Pb	de	Comb	(kip)	(ft-kip)	Ratio	Ratio
1	6E	6E	Top	A325	Yes	0.75	3.00		1.44	1.54	3.25	2.25	1.00	36	-14.65	-162.70	0.81	0.82
1	6E	6E	Bot	A325	Yes	0.75	3.00		1.44	1.44	3.25	2.25	1.00	-49	3.68	67.39	0.32	0.32
2	6E	6E	Top	A325	Yes	0.75	3.00		1.63	1.72	3.63	2.25	1.00	9	3.71	-16.85	0.11	0.11
2	6E	6E	Bot	A325	Yes	0.75	3.00		1.63	1.52	3.63	2.25	1.00	36	-14.65	146.10	0.73	0.73
3	6E	6E	Top	A325	Yes	0.75	3.00		1.44	1.33	3.25	2.25	1.00	36	-14.65	-162.57	0.82	0.81
3	6E	6E	Bot	A325	Yes	0.75	3.00		1.44	1.54	3.25	2.25	1.00	-45	3.67	67.39	0.32	0.32

COMBINED BOLT BEARING SHEAR DESIGN

																Left	Right
Splice	Left	Right		Bolt	Pre-									Load	Shear	Bolt	Bolt
ID	Type	Type	Loc	Type	Tension	_ Dia	Gage	Gage 2	Pfi	Pfo	Pf	Pb	de	Comb	(kip)	Ratio	Ratio
1	6E	6E	Top	A325	Yes	0.75	3.00		1.44	1.54	3.25	2.25	1.00	11	-6.98	0.10	0.10
1	6E	6E	Bot	A325	Yes	0.75	3.00		1.44	1.44	3.25	2.25	1.00	36	39.06	0.55	0.55
2	6E	6E	Top	A325	Yes	0.75	3.00		1.63	1.72	3.63	2.25	1.00	37	-9.52	0.13	0.13
2	6E	6E	Bot	A325	Yes	0.75	3.00		1.63	1.52	3.63	2.25	1.00	20	0.99	0.01	0.01
3	6E	6E	Top	A325	Yes	0.75	3.00		1.44	1.33	3.25	2.25	1.00	9	6.98	0.10	0.10
3	6E	6E	Bot	A325	Yes	0.75	3.00		1.44	1.54	3.25	2.25	1.00	36	-39.15	0.55	0.55

WELD DESIGN

					Left							Righ	t		
Splice	Loc		Welds			Che	cks			Welds			Che	cks	
ID		Flg	Web	Stf	Load	Tensile	Load	Shear	Flg	Web	Stf	Load	Tensile	Load	Shear
					Comb	Rupture	Comb	Rupture				Comb	Rupture	Comb	Rupture
1	Тор	FWD4	WP13		36	0.86	11	0.16	FWD4	WP13		36	0.85	11	0.16
1	Bot	FWD3	WP13		-49	0.40	36	0.90	FWD3	WP13		-49	0.40	36	0.91


					Left							Righ	t		
Splice	Loc		Welds			Che	cks			Welds			Che	cks	
ID		Fig	Web	Stf	Load	Tensile	Load	Shear	Flg	Web	Stf	Load	Tensile	Load	Shear
					Comb	Rupture	Comb	Rupture				Comb	Rupture	Comb	Rupture
2	Top	FWD3	WP13		9	0.13	37	0.22	FWD3	WP13		9	0.13	37	0.22
2	Bot	FWD3	WP13		36	0.89	20	0.02	FWD3	WP13		36	0.89	20	0.02
3	Top	FWD4	WP13		36	0.85	9	0.16	FWD4	WP13		36	0.86	9	0.16
3	Bot	FWD3	WP13		-45	0.40	36	0.91	FWD3	WP13		-45	0.40	36	0.90

LOAD COMBINATIONS:

LOAD C	OAD COMBINATIONS:											
No	ASR	Combination										
1	1.00	SW+RDL+COL										
2	1.00	SW+RDL+COL+SL+SR										
3	1.00	SW+RDL+COL+RLL+RLR										
4	1.00	SW+RDL+0.60W1L										
5	1.00	SW+RDL+0.60W2L										
6	1.00	SW+RDL+0.60W1R										
7	1.00	SW+RDL+0.60W2R										
8	1.00	0.60SW+0.60RDL+0.60W1L										
9	1.00	0.60SW+0.60RDL+0.60W2L										
10	1.00	0.60SW+0.60RDL+0.60W1R										
11	1.00	0.60SW+0.60RDL+0.60W2R										
12	1.00	SW+RDL+COL+0.75SL+0.75SR+0.45W1L										
13	1.00	SW+RDL+COL+0.75SL+0.75SR+0.45W2L										
14	1.00	SW+RDL+COL+0.75SL+0.75SR+0.45W1R										
15	1.00	SW+RDL+COL+0.75SL+0.75SR+0.45W2R										
16	1.00	SW+RDL+COL+0.75RLL+0.75RLR+0.45W1L										
17	1.00	SW+RDL+COL+0.75RLL+0.75RLR+0.45W2L										
18	1.00	SW+RDL+COL+0.75RLL+0.75RLR+0.45W1R										
19	1.00	SW+RDL+COL+0.75RLL+0.75RLR+0.45W2R										
20	1.00	SW+RDL+0.60W5B										
21	1.00	SW+RDL+0.60W6B										
22	1.00	SW+RDL+0.60W5F										
23	1.00	SW+RDL+0.60W6F										
24	1.00	0.60SW+0.60RDL+0.60W5B										
25	1.00	0.60SW+0.60RDL+0.60W6B										
26	1.00	0.60SW+0.60RDL+0.60W5F										
27	1.00	0.60SW+0.60RDL+0.60W6F										
28	1.00	SW+RDL+COL+0.75SL+0.75SR+0.45W5B										
29	1.00	SW+RDL+COL+0.75SL+0.75SR+0.45W6B										
30	1.00	SW+RDL+COL+0.75SL+0.75SR+0.45W5F										
31	1.00	SW+RDL+COL+0.75SL+0.75SR+0.45W6F										
32	1.00	SW+RDL+COL+0.75RLL+0.75RLR+0.45W5B										
33	1.00	SW+RDL+COL+0.75RLL+0.75RLR+0.45W6B										
34	1.00	SW+RDL+COL+0.75RLL+0.75RLR+0.45W5F										
35	1.00	SW+RDL+COL+0.75RLL+0.75RLR+0.45W6F										
36	1.00	SW+RDL+COL+UOS										
37	1.00	SW+RDL+COL+LRD										
38	1.00	SW+RDL+COL+RRD										
39	1.00	1.16SW+1.16RDL+1.16COL+0.91EQL										
40	1.00	1,16SW+1.16RDL+1,16COL+0.91EQR										
41	1.00	1.12SW+1.12RDL+1.12COL+0.15SL+0.15SR+0.68EQL										
42	1.00	1.12SW+1.12RDL+1.12COL+0.15SL+0.15SR+0.68EQR										
43	1.00	0.44SW+0.44RDL+0.31EQL										
44	1.00	0.44SW+0.44RDL+0.31EQR										
45*	1.20	Special Seismic										
46*	1.20	Special Seismic										
47*	1.20	Special Seismic										
48*	1.20	Special Seismic										
49*	1.20	Special Seismic										
50*	1.20	Special Seismic										

No ASR Combination

*Indicates a Special Seismic Load Combination

Minimum Seismic And Wind Forces Calculation

(IBC2012)

STEEL BUILDINGS A MUCCE Company

Job Number: C17C0461 Engineer: BC Building Geometry Information Building Width = 40.00 ft. Roof Weight D + C = 10.00 psf Building Length = 60.00 ft. Roof20 % Snow for Seismic = 21.00 psf FSW Eave Height = 16.00 ft. Weight of Sidewall = 3.00 psf Ridge From FSW = 20.00 ft. psf Weight of Endwall = 3.00 Roof Pitch = 2 /12 Longitudinal Partition WT. = 0.00 psf Canopy Width @ FSW = Quantity of Longitudinal Part. = 0.00 ft. 0 Transverse Partition WT. = Canopy Width @ RSW = 0.00 ft. 0.00 psf Max. Interior Bay Trib. = 20.00 ft. Quantity of Transverse Part. = Building End Bay Trib. = 10.00 Longitudinal Special Weight = ft 0.00 kips Transverse Special Weight = 0.00 kips Regular Structure: Yes Flexible Diaphragm: Yes Stories Above Grade: 1 .

Seismic Information Risk Category = $S_s(\%) = 171.80\%$ Site Class = D S₁(%) = 80.80% Transverse Direction(Interior): R= 3.50 $\Omega_0 =$ $T_a = 0.26$ 3.00 Transverse Direction(End): R≃ 3.50 $T_a = 0.26$ $\Omega_0 =$ 3.00 Longitudinal Direction: 3.25 2.00 $T_a = 0.16$ R= $\Omega_0 =$ Seismic Factor I_E = $F_a = 1.00$ F_v = 1.50 $S_{MS} = 1.50$ $S_{M1} =$ 1.21 $S_{D1} = 0.81$ Seismic Design Category = $S_{DS} = 1.00$

Wind Information $q_h = 0.00256K_hK_{zt}K_dV^2 =$ psf 42.13 Longitudinal GC_{pf} - GC_{pi} = 0.69/1.04 Transverse GC_{pf} - GC_{pi} = 0.96/1.44

Wind/Seismic Forces in Transverse Direction

Interior Bay Tributary Width = 20 ft

1. Wind Load

Total Load = $P_w^* B^* H/2 = 7.8 Kips$

2. Seismic Load

Redundancy Factor $\rho = 1.30$

W = 25.76 Kips

 $V = Q_E = 7.36 \text{ Kips}$ Cs= 0.29

 $E_h = \rho^*Q_E = 9.6 \text{ Kips}$ $E_v = 0.2S_{Ds}*D = 1.8 \text{ Kips}$

 $E_m = \Omega_O^*Q_E = 22.1 \text{ Kips}$

End Bay Tributary Width = 10 ft

1. Wind Load

Total Load = $P_w^* B^* H/2 = 5.9 Kips$

2. Seismic Load

 $\rho = 1.30$ Redundancy Factor

W = 12.88 Kips

 $V = Q_E = 3.68 \text{ Kips}$

E_h =p*Q_E = <u>4.8 Kips</u>

E, =0.2S_{0s}*D = 0.9 Kips

 $E_m = \Omega_0 Q_E = 11.0 \text{ Kips}$

Wind/Seismic Forces in Longitudinal Direction

1. Wind Load

Total Load = P_w *B* H/2 = 12.4 Kips

2. Seismic Load (Accidental Torsion Included if not flexible diaphragm)

Redundancy Factor $\rho = 1.30$

W = 76.5 Kips

 $C_{s} = 0.31$ $V = Q_E = 23.5 \text{ Kips}$

 $E_h = \rho^*Q_E =$ 30.6 Kips $E_v = 0.2S_{Ds}*D = 5.5 \text{ Kips}$

 $E_m = \Omega_O^*Q_E = 47.1 \text{ Kips}$

A DIVISION OF NUCOR CORPORATION

Wind Loading per ASCE 7-10

Project No. : C17C0461

Description : BC

Date : 1/9/2018

agrupul vis grapulijska

Geometry - -

Version: 2015.1.26 (Date: 01/26/15) By NBG-GS

eluszető névesk positikál allaphickál

Building Name: Building A Building Type: Gable R

Roof: Not by Nucor

Bldg. Width [B]: 40.0000'
Dist. To Ridge [W]: 20.0000'
Bldg. Length [D]: 60.0000'

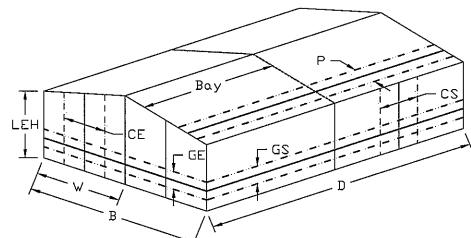
 Left Eave Ht. [LEH]:
 16.0000'

 Right Eave Ht. [REH]:
 16.0000'

 Left Roof Slope:
 2.00:12

 Right Roof Slope:
 2.00:12

 Bay Width [Bay]:
 20.0000'


 Purlin Trib. Width [P]:
 5.0000'

 EW Girt Trib Ht. [GS]:
 5.0000'

 SW Girt Length:
 20.0000'

 SW Girt Length:
 20.0000'

EW Col. Trib. Width [CE]: 13.7500' SW Col. Trib. Width [CS]: 20.0000'

BSW Top-of-Parapet: 0.0000'
Opening Area: 0.0 sf

FSW Top-of-Parapet: EW Top-of-Parapet:

Loading Information

Wind Speed: 150 mph

Wind Exposure: C

Building Porosity: Enclosed

Interior Partition Walls? No

General Loading Calculations

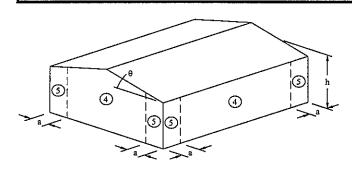
h: 16.0000'

 $K_d: 0.85$

 K_{zt} : 1.00

R_i: 1.00

q_b: 42.13 psf


K_z or K_h: 0.86

G: 0.85

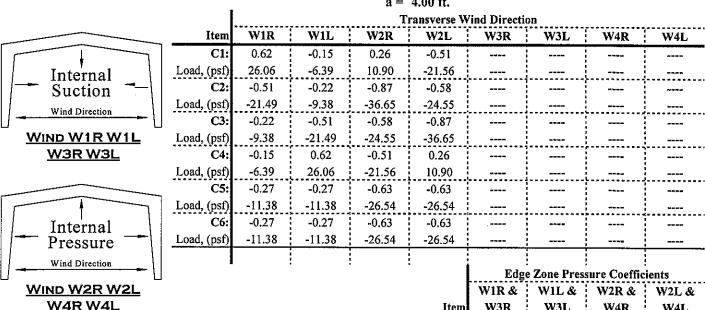
CC

 GC_{pi} : ± 0.18

Components and Cladding, Walls

a = 4.00 ft.												
	Tributary	Pressure	Suction	Suction								
	Area	Zones 4,5	Zone 4	Zone 5								
Item	(ft ²)	(psf)	(psf)	(psf)								
Sidewall Wind Column	320	35.42	-39.21	-40.51								
Endwall Wind Column	220	36.51	-40.30	-42.69								
Sidewall Girt	133	37.97	-41.76	-45.60								
Endwall Girt	133	37.97	-41.76	-45.60								
Wall Panel	8	45.50	-49.29	-60.67								

Note: Value of GCp in results above reduced by 10% per Note 5 of Figure 30.4-1 since slope angle is ≤ 10°.

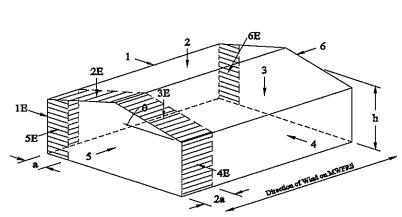

Case 1: Windward Total Load 🚤		Maximum		!	Windward	Leeward
Case 2: Leeward Total Load		Projection	$\mathbf{K}_{\mathtt{h_par}}$	q_p	Total Load	Total Loa
	Item	(ft)		(psf)	(psf)	(psf)
	BSW Parapet					
	FSW Parapet					
	EW Parapet					;

a 2a a	Applicable	Roof Slop	e Angle =	9.46 deg		·		
3 2 33 2 3 4		_	a =	4.00 ft.				
		Tributary	Pressure		Su	ction in Zo	nes	
<u> </u>		Area	All	1	2	2'	3	3'
	Item	(ft²)	(psf)	(psf)	(psf)	(psf)	(psf)	(psf)
2 0 22 0 2	Purlin/Joist	133	20.22	-41.29	-58.14		-91.84	
	Panel	0						
i i i i i i i i i i i i i i i i i i i	Fastener	0						
			Value	s Below are	for Overhan	g Portion o	f Roof	
,0	Purlin/Joist	133	*****		-92.69		-105.32	
	Panel	0						
h	Fastener	0 1						

Main Wind Force Resisting Systems (Transverse Wind Direction)

Applicable Roof Slope Angle = 9.46 deg

a = 4.00 ft.


	W1R &	W1L&	W2R &	W2L &
Item	W3R	W3L	W4R	W4L
C1E:	0.85	-0.31	0.49	-0.67
Load, (psf)	35.66	-13.16	20.50	-28.33
C2E:	-0.89	-0.40	-1.25	-0.76
Load, (psf)	-37.50	-16.75	-52.66	-31.92
C3E:	-0.40	-0.89	-0.76	-1.25
Load, (psf)	-16.75	-37.50	-31.92	-52.66
C4E:	-0.31	0.85	-0.67	0.49
Load, (psf)	-13.16	35.66	-28.33	20.50

Main Wind Porce Resisting Systems (Longitudinal Wind Direction)

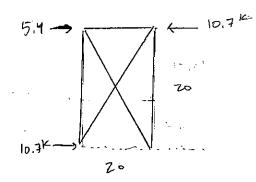
Applicable Roof Slope Angle = 9.46 deg

a = 4.00 ft.

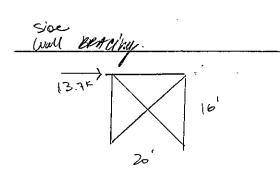
	_			a –	4.00 11.				
				Lo	ngitudinal \	Vind Direct	ion		
	Item	W5B	W5F	W6B	W6F	W7B	W7F	W8B	W8F
	C1:	-0.27	-0.27	-0.63	-0.63				
Internal	Load, (psf)	-11.38	-11.38	-26.54	-26.54				
Suction	C2:	-0.51	-0.19	-0.87	-0.55				
Wind Direction	Load, (psf)	-21.49	-8.00	-36.65	-23.17				
	C3:	-0.19	-0.51	-0.55	-0.87				
WIND W5B W5F	Load, (psf)	-8.00	-21.49	-23.17	-36.65				
<u>W7B W7F</u>	C4:	-0.27	-0.27	-0.63	-0.63				
	Load, (psf)	-11.38	-11.38	-26.54	-26.54				
	ClE:	-0.30	-0.30	-0.66	-0.66				
11 - 1	Load, (psf)	-12.64	-12.64	-27.81	-27.81				
Internal	C2E:	-0.89	-0.35	-1.25	-0.71				
Pressure	Load, (psf)	-37.50	-14.75	-52.66	-29.91				
Wind Direction	C3E:	-0.35	-0.89	-0.71	-1.25				====
	Load, (psf)	-14.75	-37.50	-29.91	-52.66				
WIND W6B W6F	C4E:	-0.30	-0.30	-0.66	-0.66				
<u>W8B W8F</u>	Load, (psf)	-12.64	-12.64	-27.81	-27.81				

•	End-Wall Pressure Coefficients							
	W5B &	W5F &	W6B &	W6F &				
Item	W7B	W7F	W8B	W8F				
C5:	0.58	-0.11	0.22	-0.47				
Load, (psf)	24.44	-4.63	9.27	-19.80				
C6:	-0.11	0.58	-0.47	0.22				
Load, (psf)	-4.63	24.44	-19.80	9.27				
C5E:	0.79	-0.25	0.43	-0.61				
Load, (psf)	33.28	-10.53	18.12	-25.70				
C6E:	-0.25	0.79	-0.61	0.43				
Load, (psf)	-10.53	33.28	-25.70	18.12				
		1						

Wind Uplift for Bracing Input: -14.75 psf
Longitudinal Force Resisted by Bracing: 11.25 kip


Total Longitudinal Net Pressure Applied to Building: 31.85 psf
Total Longitudinal Force Applied to Building: 22.51 kip

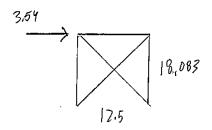
1700 E. Louise Avenue • Lathrop, CA 95330 Tel: (209) 983-0910 • Fax: (209) 858-2354


- Job: <u>CIF(046|</u> Sheet No. <u>G-5</u> Date: ______ By: _____ BC____

POOF BRACING

EDIAMIC GIVENS: 0.7 EN/18AY = (0.7)(30.61=) = 21.42= PISTRIBUTED WAD: 21.42 =/401 = 0,54 × 14

use: 3/4 \$ 200 (P6)

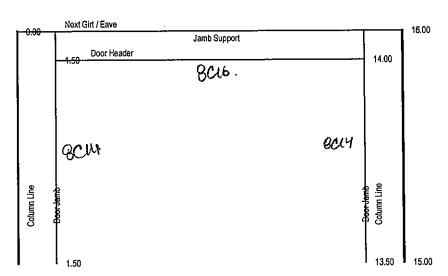


Seignic. governs: 0.58 En/25ines = (0.58) (47.11/2=13.716

$$T = \frac{13.7^{k}}{\cos t_{m} - 1(\frac{16}{3})} = \frac{17.5^{k} < 19.1^{k}}{17.5^{k}}$$

USE: 1" & ROD (R8)

END WALL BRACING


Wind governs: 0.6 W = 6.6) (5:915) = 3,59k

use: 3/4 " & pro (166)


CBC STEEL BUILDINGS

Framed Openings Calculation

STEEL BUILDINGS A MUEDR Company	lob Number <u>C/9</u> C	0461	Eng	ineer BC			
Module 1 ☐FSW BAY	RSW BAY		LEW I	BAY	☐REW BAY	<u> </u>	
DIMENSIONS			MSA SECO	NDARY FRAME	OUTPUT		ω
Span length (column to column)	15.00 ft	-	Wind pressu	ure (50 yr, wind)	42.13	psf	0.6
Door width (j)	12.00 ft	_	Suction coe	fficient	-0.99		
Door Height	14.00 ft	_	Pressure coe	efficient	0.90		
Distance from left column to 1st jamb (i)	1.50 ft	-	Suction	 :	-25.03	psf	_
Distance from header to jamb support	2.00 ft	_	Pressure		22.75	psf	_
Ht. of the girt/eave above jamb support	16.00 ft	_	Design space	cing, jamb supp.	0.00	in	
Deflection (standard is L/90 for 50 yr. wind)	L/ 150	-	Allowable S	Stress Ratio	1.03		_
Door is 1.5 feet from column, check column weak axis ber	ıding						_
Wall Girt Depth ●8" ○9.5" ○	12"		PANEL CO	ONDITION			
Nested (2) Girts ?	_		1	Jamb Support(s)	R =	0.65	
Use Hot-Rolled Channels? OYes	●No		See	comment window for R	(values		_
Distance Between Lateral Supports (in)	N/A in		Header	R = 0.65	Jambs R=	N/A	_
Chanucl Depth Selection Ocs	OC9 OC10		See	comment windows for	R values		
Use Hot Rolled Jambs?	No			Use Different Dep	th Jamb Support?	, 🗆	 No
Use Different Depth Jambs?	No		1	Maximum Girt Spa	cing = 5	ft	
Recommended Member For Jamb Support(s)		9716-	PAFTUR-	Stress Ratio= 0	.83	$\Delta_{\text{max}} = L$./ 631
Recommended Minimum Member Size For J	ambs	8C14		Stress Ratio= 0).98	$\Delta_{\text{max}} = L$,/ 319
Recommended Minimum Member Size For H	leader	8C16		Stress Ratio= 0).14	$\Delta_{\text{max}} = L$./ 4127
All members are designed as simple span.							
The reduced sectional properties were used for	n colu formed men	DC12'					

Building Informat	<u>ion</u>		
Building Width:	40'-0"	Front Eave Ht.:	16'-0"
Building Length:	60'-0"	Back Eave Ht.:	16'-0"
Roof Panel Type:	24 Ga. SMP "R"	Roof Color:	HUNTER GREEN
Wall Panel Type:	26 Ga. SMP "R"	Wall Color:	SAND STONE
Roof Trim Color:	HUNTER GREEN	Wall Trim Color:	SAND STONE

Material Specifications

1. Primary Framing: Web Plates, ASTM A529, A572, A1011, Grade 55 Flanges, ASTM A529, A572, Grade 55

2. Secondary Framing: Galvanized 16Ga, 15Ga. 14Ga, 13Ga, 12Ga, ASTM A653 G90, Grade 55, Min. Yield 55 ksi.

3. Roof & Wall Covering:

Product Certifications

26Ga Painted and Unpainted ZA., ASTM A792 AZ50, Grade 50 & 80 24Ga Painted and Unpainted ZA., ASTM A792 AZ50, Grade 50 26Ga Painted Galvanized, ASTM A653 G90, AZ55 Grade 50 & 80 24Ga Painted Galvanized, ASTM A653 G90, AZ55 Grade 50

4. Bracing: Cables, ASTM A475 Extra High Strength Grade. Angles, ASTM A36, Min. Yield 36 ksi. Rods , A529 Grade 50

1. IAS International Accreditation Services, Inc.

The design of this structure is in compliance with the CBC specifications and standards,

utilizing the pertinent provisions and recommendations of the following Codes.

2. American Institute of Steel Construction,

4. Metal Building Manufacturers Association,

5. American Welding Society, Structural Welding Code (AWS D1.1, 2008).

1. Shop Welding inspection is not required

according to the approved status of the above Certifications.

No field welding is required by CBC Steel Buildings. However, if any field welding is required due to any field modifications,

method of tightening is recommended, under the supervision of an independent testing

laboratory. Alternate methods of tightening may be used as permitted in the Specification for Structural Joints Using ASTM A325 or A490 Bolts (AISC Thirteenth Edition). CBC Steel

special inspection is required.

the inspection process.

design category "D", "E" or "F".

(Made with A325 Bolts)

CBC Steel Buildings

2. Special inspection is required for high strength bolts. The Turn of the Nut

Buildings shall not be responsible for administration or costs associated with

Special Bolting Connection Inspection Req.

1) Pre-tensioning of A325 bolts is required on

primary framing, bolted bracing, and strut connections if located in seismic performance/

2) Slip critical connections are not required by

3. American Iron and Steel Institute,

2010 Edition (AISI S100-07/SI-10)

2012 Edition (MBMA, 2012).

<u>Inspections</u>

Fourteenth Edition (AISC 360-10 & AISC 341-10).

Approved Fabricator AC-472, MB-152.

2. City of Los Angeles, CA. Approved

3. City of Riverside, CA. Approved Type I Fabricator No. SP07-0091.

Type Í Fabricator No. 1436.

4. Clark County, Approved Steel Fabricator No. 404.

1. International Building Code,

2012 Edition (IBC 2012).

Codes & Specifications

5. Bracing and Columns: Pipe, ASTM A53 Grade B, Min. Yield 35 ksi. Round HSS, ASTM A500 Grade B, Min. Yield 42 ksi. Rect. HSS, ASTM A500 Grade B, Min. Yield 46 ksi.

17C0461

Processing Bldg.

ample

CUSTOMER:

Icy Cape

LOCATION:

Yakutat, /

INFORMATION

GENERAL

6. Bolts:

High Strength Bolts, ASTM A325-N, Washer under turning element. Machine Bolts, ASTM A307. Anchor Bolts (Not By CBC) Sized Based on A36 Material.

7. Shop Coating:

All Steel members except galvanized secondary framing, cables, bolts and screws shall receive one shop coat.

Design Loads

This steel building is designed utilizing the following loads, in compliance with the pertinent provisions of the International Building Code, 2012 Edition (IBC 2012).

All accessories such as doors, windows, etc. not by CBC Steel Buildings, must be designed as Structural Components in accordance with the Wind Load provisions of the applicable Codes and Specifications referenced on this page.

the following loads meet the requirements of the local building department. CBC Steel Buildings and the undersigned are "NOT the Engineer of Record for the entire project.

Collateral Load5.0	0 psf. (Total) psf.) psf.
Live Load Reduction Allowed	_ No)5.0 psf.
Ce 1.0	<i>σ</i> .ο ρsι.
Impt. Factor 1.0	
Wind Load, Speed (Vult.) Exposure C Impt. Factor 1.0	150 mph (3-Sec gust)

Earth Quake Load: Seismic Design Category: E Seismic Site Class: D Coeff. Ss = 171.80% S1 = 0.80% Coeff. R = 3.5 for Moment Frames Omega = 3.0 Coeff. R = 3.25 for Braced Frames Omega = 2.0

N/A N/A N/A

Drawing Status

Preliminary:

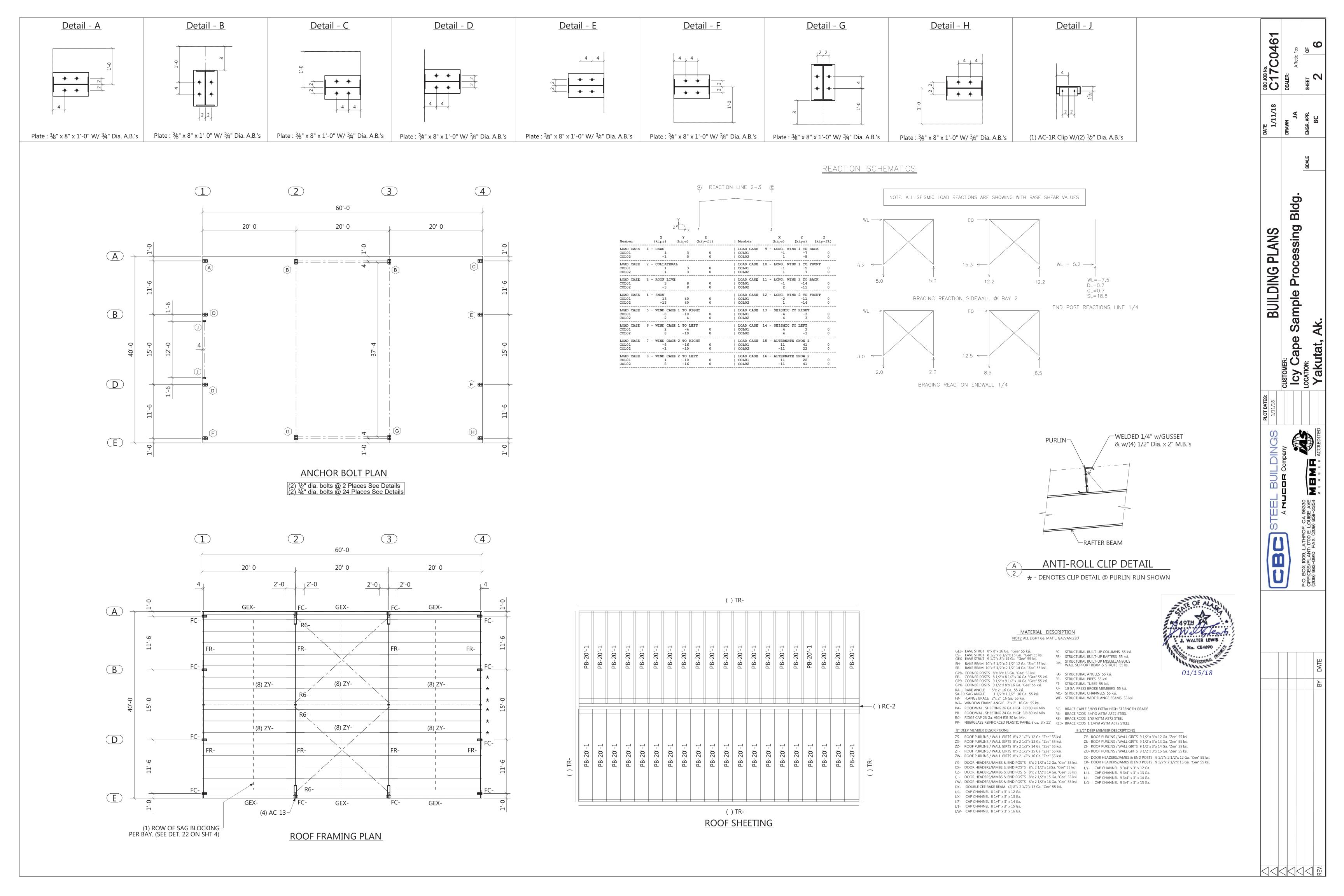
These drawings are conceptual only and are not to be used for the permit or construction process.

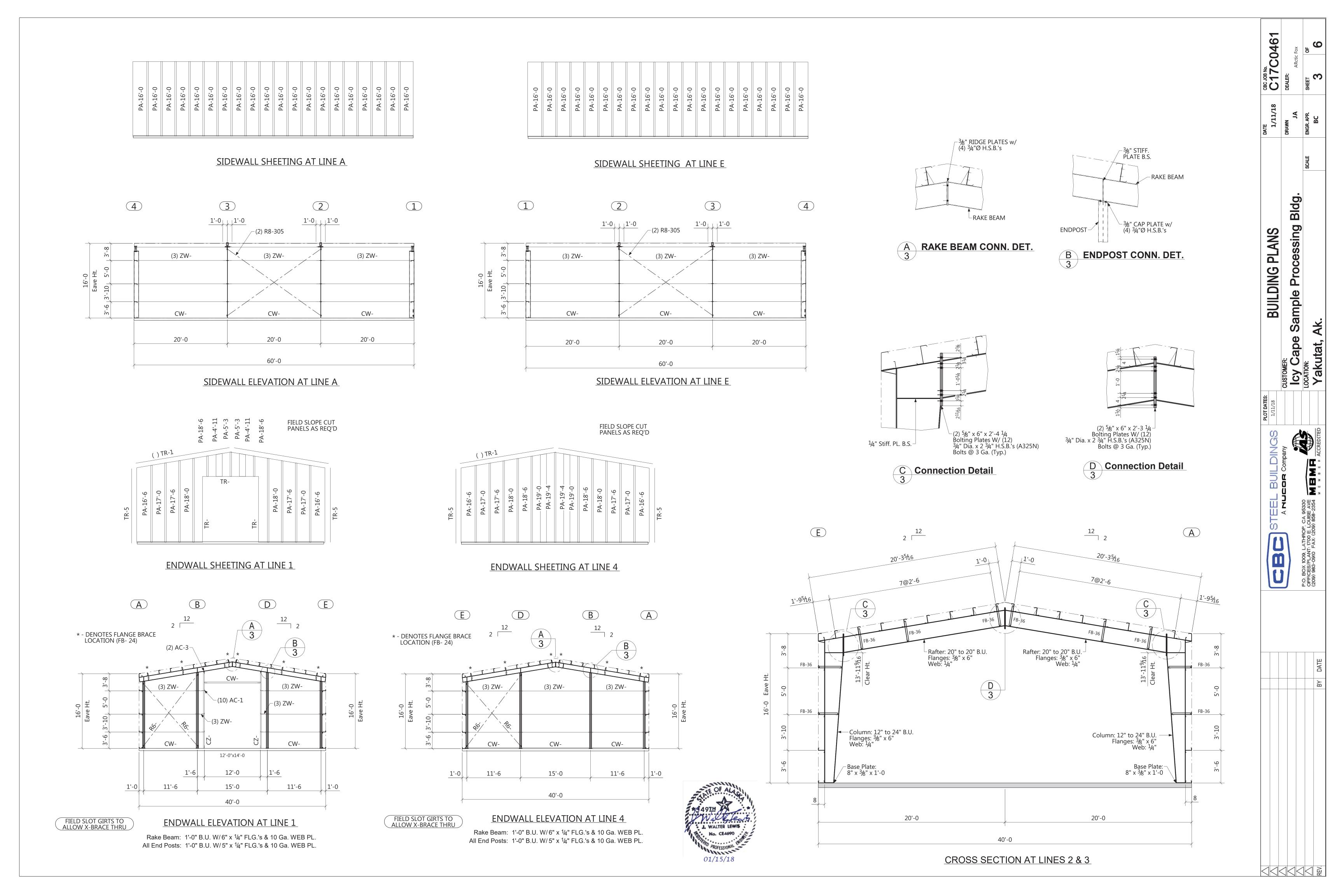
For Permit

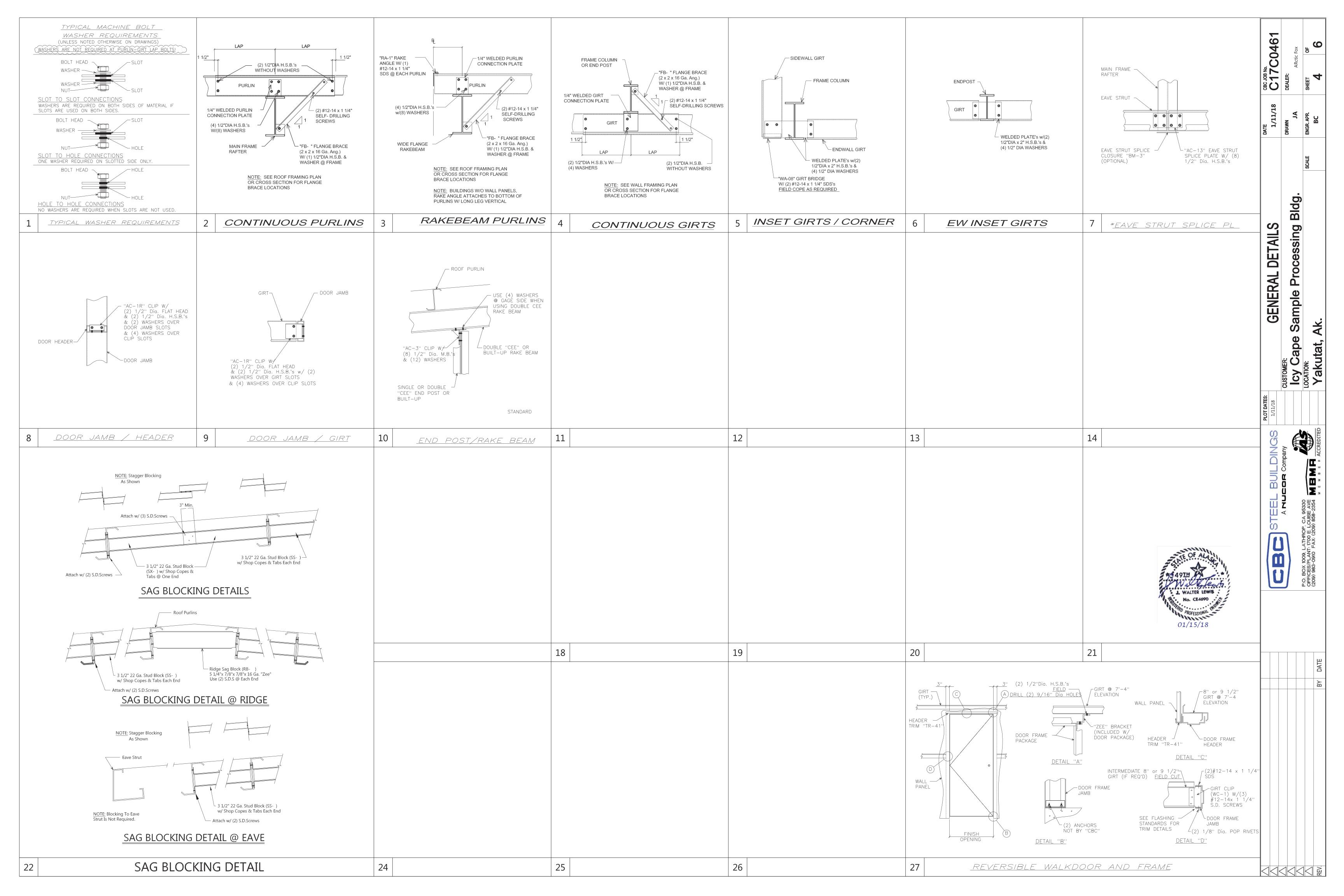
These drawings are Final and are for review by the building official or others. This set is not intended for construction, as piece markings have not been identified, nor is it intended for the ANCHOR BOLT PLAN to be poured.

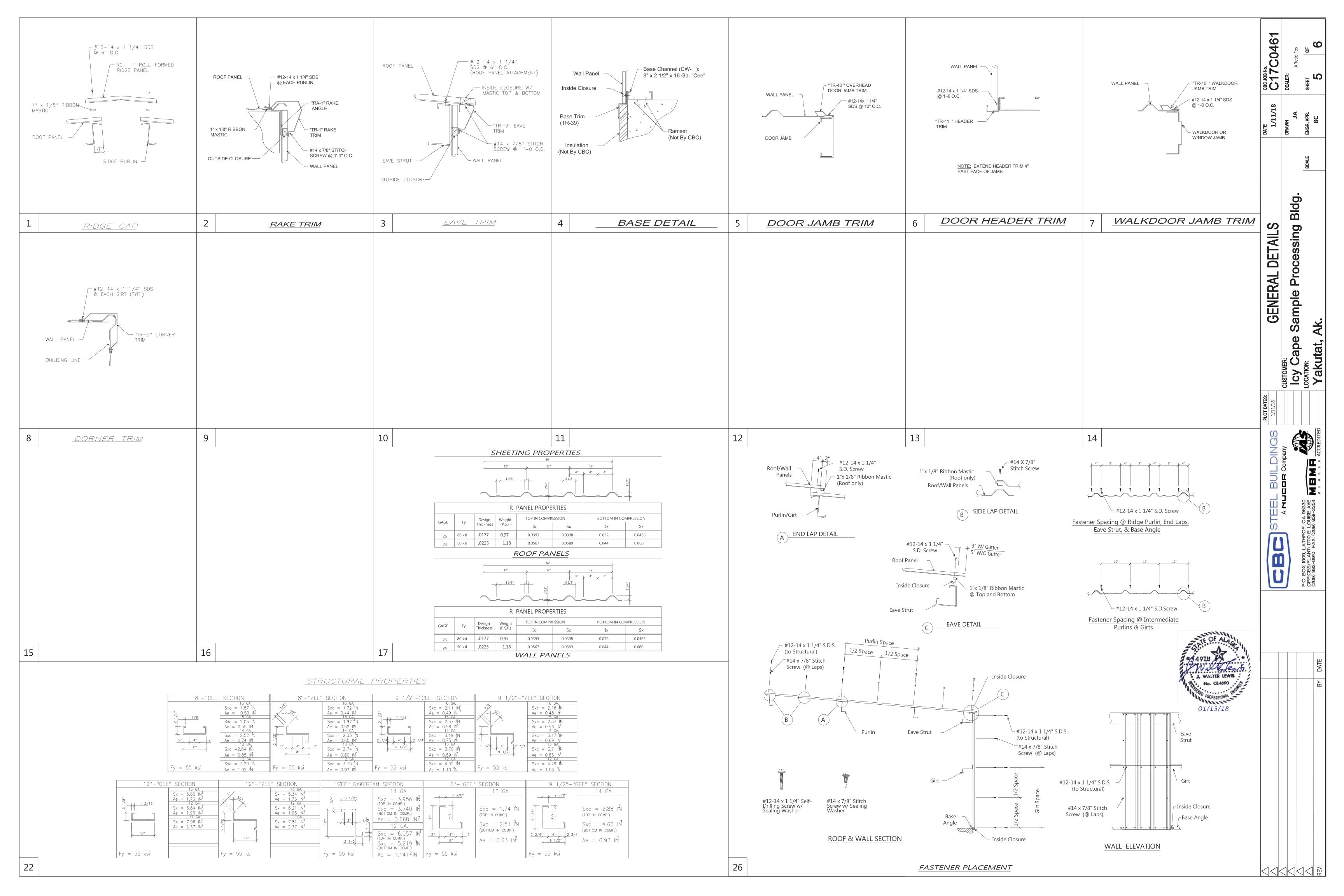
For Construction Erection drawings, identified as "Detailed for Fabrication".

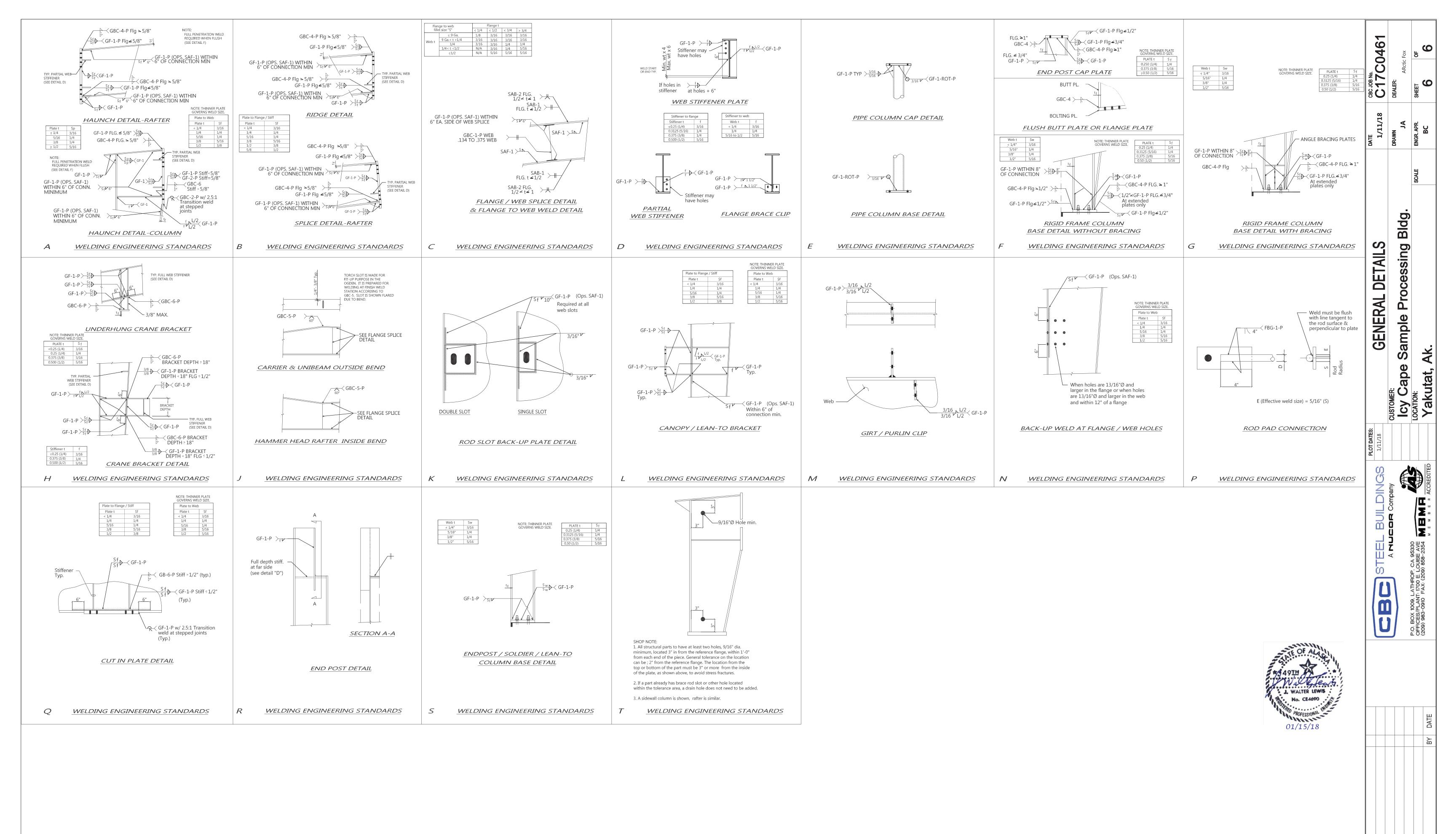
The Builder and/or the Engineer of Record must confirm that


Building Dead Load _ Collateral Load	<u>_</u>	_5.0 psf. (To .0 psf.	otal)
Live Load	20	0.0 psf.	
Live Load Reduction A			
Snow Load, Roof		105.0 psf.	
Ce 1.0 Impt. Factor	1.0		
Wind Load, Speed (Vu Exposure	ult.)	150 mp	h (3-


Impt. Factor __


Other Loads: Mezzanine: Live Load Dead Load Crane Load


Special Notes


N/A

P.O. BOX 1009, LATHROP, CA 95330 OFFICE/PLANT: 1700 E. LOUISE AVE. PH; (209) 983-0910, FAX: (209) 858-2354

Date: 1/9/2018

Letter Of Certification

Time: 10:55:46 AM

CBC Job No.:

C17C0461A

Builder: Arctic Fox

Customer:

Icy Cape Sample Processing Building

751 Reeve Circle

Location:

Yukatat, Ak

Wasilla, Ak 99654

Building Size: Width: 40'

Length: 60'

Eave Ht.: 16'

Roof Pitch:

2/12

Bay Spacing: (3) @ 20'

This is to certify that metal building components furnished by CBC Steel Buildings, an IAS-MB certified manufacturer, has been designed in our Lathrop office and for fabrication in our Lathrop, California plant. The members are designed to comply with the following loads specified in the order documents:

The Fabrication of the Steel Building is performed under the quality assurance procedures maintained by "CBC" as a part of its approved fabricator status with IAS, AC-472, MB-152,

Design Loads:

Collateral Load:

5 psf

Basic Load Combinations: D + C

Building Dead Load:

5 psf

D+C+(LrorS)

Live Load:

20 psf

0.6D + W

No

D + W

Roof Snow Load / Imp. Factor / Ce.:

Live Load Reduction Allowed:

105 psf / 1 / 1 (SL)

D + C + 0.7E

Wind Speed & Exp./ Imp. Factor / Kzt:

150 mph C / 1 / 1.0 (WL)

E/1/D/80.8/171.8

D + C + 0.75(W + (Lr or S))

Wind Enclosure:

Enclosed

D + C + 0.75(0.7E + (Lr or S))

IBC-2012 Section 1605.3.1

Seismic Design Category / Imp. Factor / Soil / S1 /Ss:

0.6(D + C) + 0.7E

Other Loads:

Note: Accessories (doors, windows, etc.) by others must be designed as "components and cladding" in accordance to specific wind provisions of the referenced Building Code.

Please note that unless otherwise specified on your Purchase Order, CBC Steel Buildings Serviceability Standards will be used for design and fabrication of your order.

These design loads and combinations are applied in accordance with The International Building Code, 2012 Edition, (IBC-2012). The design is in general accordance with the AISC 360-10, AISC 341-10, and AISI S100-2012 specifications.

This certification is limited to the structural design of the framing and covering parts manufactured by CBC Steel Buildings and as specified in the contract. Accessory items such as doors, windows, louvers, translucent panels, and ventilators are not included. Also excluded are other parts of the project not provided by CBC Steel Buildings such as bundations, masonry walls, mechanical equipment and the erection and inspection of the building. The full dispersion of the building should be erected on a properly designed foundation in accordance with The CBC Steel Buildings Erection Man referenced job.

Note: The undersigned is not the Engineer of Record for the entire project.

Sincerely,

JWL/

1700 E. Louise Avenue, Lathrop, Ca. 95330 Tel: (209) 983-0910 • Fax: (209) 858-2354

DESIGN PARAMETERS

: C17C0461 Job No.

Sheet:

Customer : Icy Cape Sample Processing Bldg.

Designed by: BC Checked by : M W

: 9-Jan-2018 Date Revision: 00

STRUCTURE DESCRIPTION

Frame Type

: Clear Span

Building Width

40.00 ft.

Building Length

60.00 ft.

Eave Height

16.00 ft.

Max. Tributary Spac.

20.00 ft.

Roof Slope

2 in. / ft.

BASIC LOADS

Building Code

: IBC 2012

Risk Category: II

Roof Live Load Frame Live Load 20 psf Tributary Reduction (Y/N):

20 psf

Wind Load

Speed, V_{ult}

150 mph (3-sec gust)

Enclosure Condition: Enclosed

Exposure

Seismic Load

Design Category: E

Ss: 171.80% 3.50

S1: 80.80%

Importance Site Class

1.00 D

R_{long}: _ 3.25 Ω_0 : 3.00 2.00

Snow Load

Roof Snow **Ground Snow**

105 psf 150 psf 1.00

Importance

Ce: 1.0

Ct: 1.0

Collateral Load

5.0 psf

Dead Load

5.0 psf (Total)

Frame Wt: 2.0 psf Purlins: 1.5 psf

Panels: 1.0 psf

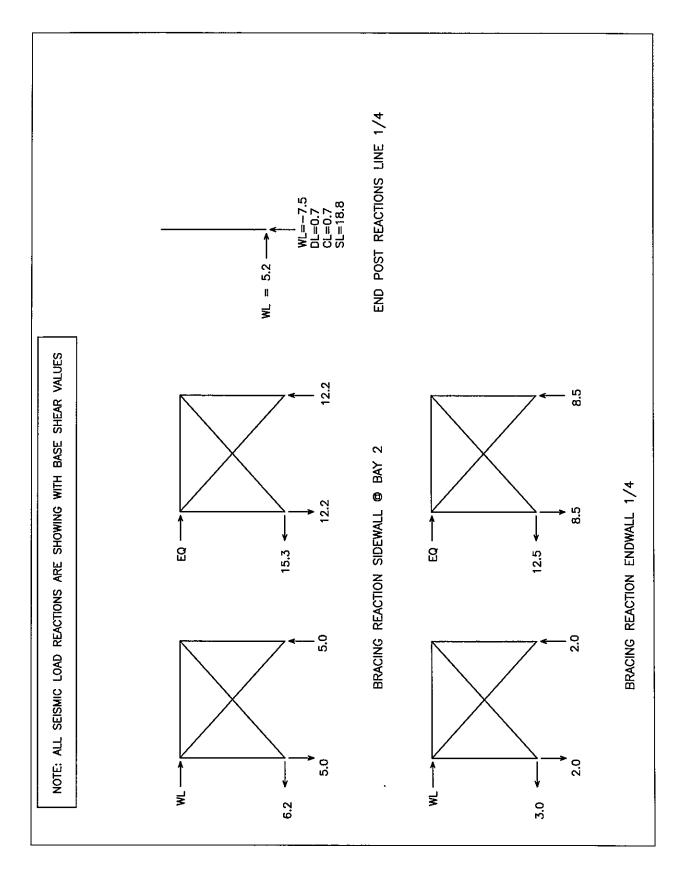
Misc.: 0.5 psf

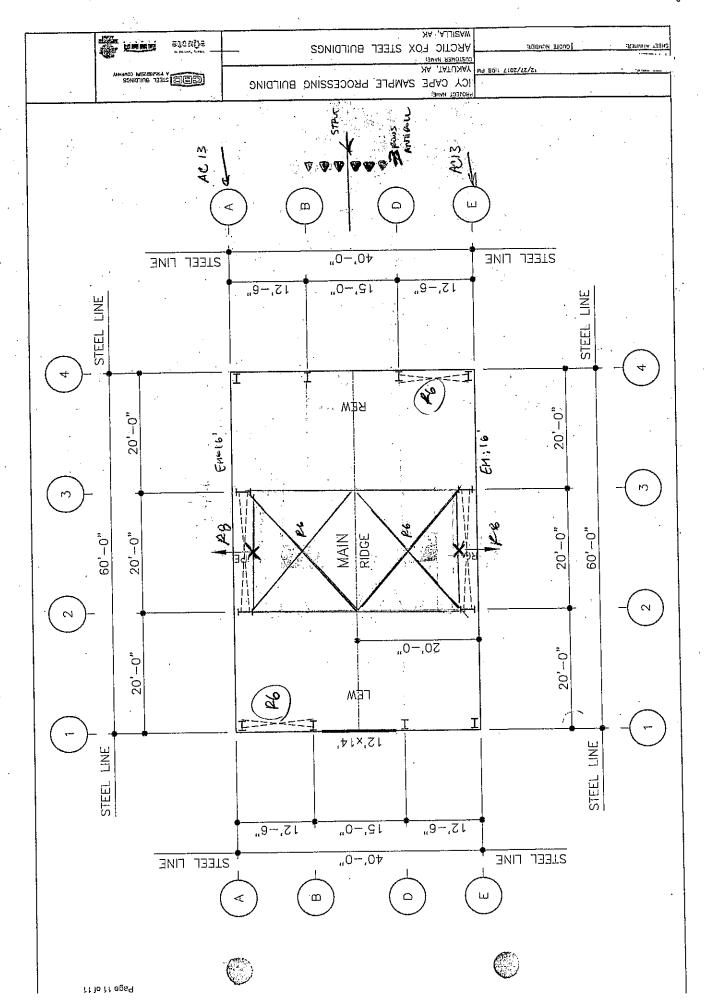
NOTES

REVISIONS

^{***} This structure is designed in compliance with CBC Steel Buildings specifications and standards utilizing the pertinent provisions and recommendations of the American Institute of Steel Construction (AISC), International Conference of Building Officials (ICBO), American Iron and Steel Institute (AISI), the Metal Building Manufacturer's Association (MBMA) and their publications. ***

....


NUCOR BUILDINGS GROUP Job #: 12/1/17 Frame : Frame @ Line(s) 2,3 ' Frame Nam By: Job Name: Icy Cape Sample Processing Building


Page: Date: 01-09-18 File: F01-800825

*** DESIGN SUMMARY - FRAME REACTIONS BY LOAD CASE ***

Member	X (kips)		Z kip-ft)	Member	X (kips) (Y kips)	Z (kip-ft)	
LOAD CASE COL01 COL02	1	3 3	0		10 - LONG. WIND	1 TO -7 -5	0 0	
COL01	2 - COLLATER 1 -1	RAL 3 3	0 0	COL01	11 - LONG. WING -1 1	-5 -7	0	
COL01 COL02	3 - ROOF LIV 3 -3	VE 8 8	0	LOAD CASE	12 - LONG. WINE -1	2 TO		
LOAD CASE COL01 COL02		40	0	LOAD CASE COLO1 COLO2	-	2 TO -11 -14	FRONT 0 0	
LOAD CASE COL01 COL02	5 - USER OV 14 -14	ERRIDE SNOW	0	LOAD CASE COL01 COL02	14 - SEISMIC TO	RIGHT -3 3	0 0	
	6 - WIND CAS -8 -1		0 0	LOAD CASE COL01 COL02	15 - SEISMIC TO 4 4) LEFT 3 -3	0 0	
LOAD CASE COL01 COL02	7 - WIND CAS 1 8	SE 1 TO LEFT -4 -10	0		16 - ALTERNATE 11 -11	SNOW 1 41 22	0	
COL01 COL02	8 - WIND CAS	SE 2 TO RIGH -16		LOAD CASE COLO1 COLO2	11	22	0 0	
LOAD CASE COL01 COL02	9 - WIND CA: 1 8	SE 2 TO LEFT -10 -16	0 0	 				

